Clinical Outcomes of Shifting from Transfemoral-First to Transradial-First Approach in Carotid Artery Stenting: A Retrospective Two-Timeframe Comparison at a Single Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Patient Characteristics
2.3. Antithrombotic Therapy
2.4. CAS Procedure
2.5. Outcome Measurement
2.6. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Procedural Details
3.3. Procedural Outcomes
4. Discussion
4.1. Effectiveness and Safety of TRA
4.2. Effect on Hospital Stay Reduction
4.3. Feasibility of TRA Applications and Challenges
4.4. Sheathless BGC Use in TRA
4.5. Study Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brott, T.G.; Hobson, R.W.I.; Howard, G.; Roubin, G.S.; Clark, W.M.; Brooks, W.; Mackey, A.; Hill, M.D.; Leimgruber, P.P.; Sheffet, A.J.; et al. Stenting versus Endarterectomy for Treatment of Carotid-Artery Stenosis. N. Engl. J. Med. 2010, 363, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European society for vascular surgery (ESVS). Eur Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [PubMed]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Abbott, A.L.; Paraskevas, K.I.; Kakkos, S.K.; Golledge, J.; Eckstein, H.-H.; Diaz-Sandoval, L.J.; Cao, L.; Fu, Q.; Wijeratne, T.; Leung, T.W.; et al. Systematic Review of Guidelines for the Management of Asymptomatic and Symptomatic Carotid Stenosis. Stroke 2015, 46, 3288–3301. [Google Scholar] [CrossRef] [PubMed]
- Oneissi, M.; Sweid, A.; Tjoumakaris, S.; Hasan, D.; Gooch, M.R.; Rosenwasser, R.H.; Jabbour, P. Access-site complications in transfemoral neuroendovascular procedures: A systematic review of incidence rates and management strategies. Oper. Neurosurg. 2020, 19, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Tostado, J.A.; Moise, M.A.; Bena, J.F.; Pavkov, M.L.; Greenberg, R.K.; Clair, D.G.; Kashyap, V.S. The brachial artery: A critical access for endovascular procedures. J. Vasc. Surg. 2009, 49, 378–385; discussion 385. [Google Scholar] [CrossRef]
- Kret, M.R.; Dalman, R.L.; Kalish, J.; Mell, M. Arterial cutdown reduces complications after brachial access for peripheral vascular intervention. J. Vasc. Surg. 2016, 64, 149–154. [Google Scholar] [CrossRef]
- Jolly, S.S.; Yusuf, S.; Cairns, J.; Niemelä, K.; Xavier, D.; Widimsky, P.; Budaj, A.; Niemelä, M.; Valentin, V.; Lewis, B.S.; et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): A randomised, parallel group, multicentre trial. Lancet 2011, 377, 1409–1420. [Google Scholar] [CrossRef]
- Baklanov, D.V.; Kaltenbach, L.A.; Marso, S.P.; Subherwal, S.S.; Feldman, D.N.; Garratt, K.N.; Curtis, J.P.; Messenger, J.C.; Rao, S.V. The prevalence and outcomes of transradial percutaneous coronary intervention for ST-segment elevation myocardial infarction: Analysis from the National Cardiovascular Data Registry (2007 to 2011). J. Am. Coll. Cardiol. 2013, 61, 420–426. [Google Scholar] [CrossRef]
- Eleid, M.F.; Rihal, C.S.; Gulati, R.; Bell, M.R. Systematic use of transradial PCI in patients with ST-segment elevation myocardial infarction: A call to “arms”. JACC Cardiovasc. Interv. 2013, 6, 1145–1148. [Google Scholar] [CrossRef]
- Mamas, M.A.; Tosh, J.; Hulme, W.; Hoskins, N.; Bungey, G.; Ludman, P.; de Belder, M.; Kwok, C.S.; Verin, N.; Kinnaird, T.; et al. Health economic analysis of access site practice in England during changes in practice: Insights from the British cardiovascular interventional society. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004482. [Google Scholar] [CrossRef] [PubMed]
- Folmar, J.; Sachar, R.; Mann, T. Transradial approach for carotid artery stenting: A feasibility study. Catheter. Cardiovasc. Interv. 2007, 69, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Pinter, L.; Cagiannos, C.; Ruzsa, Z.; Bakoyiannis, C.; Kolvenbach, R. Report on initial experience with transradial access for carotid artery stenting. J. Vasc. Surg. 2007, 45, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Ruzsa, Z.; Nemes, B.; Pintér, L.; Berta, B.; Tóth, K.; Teleki, B.; Nardai, S.; Jambrik, Z.; Szabó, G.; Kolvenbach, R.; et al. A randomised comparison of transradial and transfemoral approach for carotid artery stenting: RADCAR (RADial access for CARotid artery stenting) study. EuroIntervention 2014, 10, 381–391. [Google Scholar] [CrossRef]
- Jaroenngarmsamer, T.; Bhatia, K.D.; Kortman, H.; Orru, E.; Krings, T. Procedural success with radial access for carotid artery stenting: Systematic review and meta-analysis. J. Neurointerv. Surg. 2020, 12, 87–93. [Google Scholar] [CrossRef]
- Batista, S.; Oliveira, L.d.B.; Borges, J.; Pinheiro, A.C.; Filho, J.A.A.; Santana, L.S.; Bertani, R.; Koester, S.; Hanel, R. Transradial versus transfemoral access in carotid artery stenting: A meta-analysis. Interv Neuroradiol. 2023, 15910199231194664. [Google Scholar] [CrossRef]
- Rodriguez-Calienes, A.; Chavez-Ecos, F.A.; Espinosa-Martinez, D.; Bustamante-Paytan, D.; Vivanco-Suarez, J.; Borjas-Calderón, N.F.; Galecio-Castillo, M.; Morán-Mariños, C.; Guerrero, W.R.; Ortega-Gutierrez, S. Transradial access versus transfemoral approach for carotid artery stenting: A systematic review and meta-analysis. Stroke Vasc. Interv. Neurol. 2024, 4, e001156. [Google Scholar] [CrossRef]
- North American Symptomatic Carotid Endarterectomy Trial Collaborators; Barnett, H.J.M.; Taylor, D.W.; Haynes, R.B.; Sackett, D.L.; Peerless, S.J.; Ferguson, G.G.; Fox, A.J.; Rankin, R.N.; Hachinski, V.C.; et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Engl. J. Med. 1991, 325, 445–453. [Google Scholar] [CrossRef]
- Madhwal, S.; Rajagopal, V.; Bhatt, D.L.; Bajzer, C.T.; Whitlow, P.; Kapadia, S.R. Predictors of difficult carotid stenting as determined by aortic arch angiography. J. Invasive Cardiol. 2008, 20, 200–204. Available online: https://www.ncbi.nlm.nih.gov/pubmed/18460700 (accessed on 5 December 2024).
- Brinjikji, W.; Huston, J.; Rabinstein, A.A.; Kim, G.-M.; Lerman, A.; Lanzino, G. Contemporary carotid imaging: From degree of stenosis to plaque vulnerability. J. Neurosurg. 2016, 2016, 27–42. [Google Scholar] [CrossRef]
- Uno, T.; Shojima, M.; Oyama, Y.; Yamane, F.; Shin, M.; Matsuno, A. Anatomical factors that impede using the radial artery approach for carotid artery revascularization. World Neurosurg. 2022, 160, e398–e403. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Dodo-Williams, T.S.; Janssen, C.; Patel, R.J.; Mahmud, E.; Malas, M.B. Comparing outcomes of transfemoral versus transbrachial or transradial approach in carotid artery stenting (CAS). Ann. Vasc. Surg. 2023, 93, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, Y.; Koyama, J.-I.; Yamazaki, D.; Miyaoka, Y.; Fujii, Y.; Nakamura, T.; Ogiwara, T.; Ito, K.; Horiuchi, T. Transradial Approach as the Primary Vascular Access with a 6-Fr Simmons Guiding Sheath for Anterior Circulation Interventions: A Single-Center Case Series of 130 Consecutive Patients. World Neurosurg. 2020, 138, e597–e606. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Uchida, M.; Takasuna, H.; Goto, T.; Takumi, I.; Fukano, T.; Hagiwara, Y.; Tanaka, Y. Left transradial neurointerventions using the 6-French Simmons guiding sheath: Initial experiences with the interchange technique. World Neurosurg. 2021, 152, e344–e351. [Google Scholar] [CrossRef] [PubMed]
- Heck, D.; Jost, A.; Howard, G. Stenting the carotid artery from radial access using a Simmons guide catheter. J. Neurointerv. Surg. 2022, 14, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Koge, J.; Iwata, T.; Hashimoto, T.; Mizuta, S.; Nakamura, Y.; Tanaka, E.; Kawajiri, M.; Matsumoto, S.-I.; Yamada, T. Carotid artery stenting with proximal embolic protection via the transbrachial approach: Sheathless navigation of a 9-F balloon-guiding catheter. Neuroradiology 2018, 60, 1097–1101. [Google Scholar] [CrossRef]
- Hanaoka, Y.; Koyama, J.-I.; Kiuchi, T.; Kamiya, K.; Kuwabara, H.; Kamijo, T.; Horiuchi, T.; Hongo, K. Proximal balloon protection during carotid artery stenting via the transradial approach. J. Neuroendovascular. Ther. 2018, 12, 520–526. [Google Scholar] [CrossRef]
- Harada, K.; Fujimura, H.; Kajihara, M.; Arakawa, K. Carotid artery stenting using a 7 French Optimo balloon guide catheter combined with a distal filter. Interv. Neuroradiol. 2023, 15910199231162492. [Google Scholar] [CrossRef]
TFA-First Period (n = 42) | TRA-First Period (n = 43) | p-Value | |
---|---|---|---|
Age, years | 76 (71–81) | 75 (72–84) | 0.73 |
Gender, male | 86% (36) | 93% (40) | 0.27 |
Cormobidities | |||
Hypertension | 76% (32) | 71% (30) | 0.67 |
Dyslipidemia | 62% (26) | 53% (23) | 0.43 |
Diabetes mellitus | 33% (14) | 47% (20) | 0.22 |
Coronary artery disease | 26% (11) | 23% (10) | 0.75 |
Symptomatic lesion | 43% (18) | 44% (19) | 0.90 |
Stenosis ratio | 78 (74–82) | 78 (71–82) | 0.39 |
Carotid ultrasound † | |||
Low echogenicity | 34% (14/41) | 25% (9/36) | 0.38 |
Mobility | 10% (4/41) | 8% (3/36) | 0.83 |
Ulceration | 12% (5/41) | 14% (5/36) | 0.83 |
Target side | 0.91 | ||
Right | 55% (23) | 53% (23) | |
Left | 45% (19) | 47% (20) | |
Aortic arch type | 0.52 | ||
Type 1 | 29% (12) | 21% (9) | |
Type 2 | 29% (12) | 40% (17) | |
Type 3 | 43% (18) | 40% (17) | |
Bovine arch | 10% (4) | 14% (6) | 0.53 |
TFA-First Period (n = 42) | TRA-First Period (n = 43) | p-Value | |
---|---|---|---|
Anesthesia, local | 88% (37) | 93% (40) | 0.44 |
Access | <0.01 * | ||
TFA | 88% (37) | 23% (10) | |
TBA | 12% (5) | 16% (7) | |
TRA | 0% (0) | 60% (26) | |
Success of access to the target lesion | 0.37 | ||
Success | 98% (41) | 98% (42) | |
Conversion to TFA | 2% (1) | 0% (0) | |
Conversion to TBA | 0% (0) | 2% (1) | |
Sheath/guiding catheter (puncutre size, mm) | <0.01 * | ||
9Fr sheath BGC (3.7) | 40% (17) | 7% (3) | |
8Fr sheath BGC (3.5) | 2% (1) | 14% (6) | |
8Fr sheath GC (3.5) | 5% (2) | 0% (0) | |
7Fr GS (3.1) | 5% (2) | 0% (0) | |
Sheathless 8Fr BGC (2.7) | 0% (0) | 70% (30) | |
6Fr GS (2.7) | 48% (20) | 9% (4) | |
Puncutre size | 3.1 (2.7–3.7) | 2.7 (2.7–2.7) | <0.01 * |
Distal protection | 0.02 * | ||
Filter | 64% (27) | 79% (34) | |
Balloon | 36% (15) | 14% (6) | |
Proximal protection only | 0% (0) | 7% (3) | |
Stent | 0.03 * | ||
Casper | 0% (0) | 2% (1) | |
Precise | 31% (13) | 9% (4) | |
Wallstent | 69% (28) | 88% (38) | |
Procedural time, min | 121 (104–142) | 81 (57–95) | <0.01 * |
TFA-First Period (n = 42) | TRA-First Period (n = 43) | p-Value | |
---|---|---|---|
Success of CAS procedure | 100% (42) | 100% (43) | 1.00 |
Primary endpoint (the composite of access-related and post-CAS procedure complication) | 10% (4) | 0% (0) | 0.04 * |
Access-related complication | |||
The following composite | 7% (3) | 0% (0) | 0.07 |
Severe hematoma | 2% (1) | 0% (0) | 0.30 |
Pseudoaneurysm formation | 2% (1) | 0% (0) | 0.30 |
Symptomatic artery occlusion | 2% (1) | 0% (0) | 0.30 |
Post-CAS procedure complication | |||
The following composite | 2% (1) | 0% (0) | 0.31 |
Major cerebrovascular events | 2% (1) | 0% (0) | 0.31 |
Minor cerebrovascular events | 0% (0) | 0% (0) | 1.00 |
Myocardial infarction | 0% (0) | 0% (0) | 1.00 |
Mortality | 0% (0) | 0% (0) | 1.00 |
Hospital stay, days | 10 (9–12) | 6 (4–12) | 0.02 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imahori, T.; Miyake, S.; Maeda, I.; Goto, H.; Nishii, R.; Enami, H.; Yamamoto, D.; Harada, T.; Tanaka, J.; Sakata, J.; et al. Clinical Outcomes of Shifting from Transfemoral-First to Transradial-First Approach in Carotid Artery Stenting: A Retrospective Two-Timeframe Comparison at a Single Center. J. Clin. Med. 2024, 13, 7432. https://doi.org/10.3390/jcm13237432
Imahori T, Miyake S, Maeda I, Goto H, Nishii R, Enami H, Yamamoto D, Harada T, Tanaka J, Sakata J, et al. Clinical Outcomes of Shifting from Transfemoral-First to Transradial-First Approach in Carotid Artery Stenting: A Retrospective Two-Timeframe Comparison at a Single Center. Journal of Clinical Medicine. 2024; 13(23):7432. https://doi.org/10.3390/jcm13237432
Chicago/Turabian StyleImahori, Taichiro, Shigeru Miyake, Ichiro Maeda, Hiroki Goto, Rikuo Nishii, Haruka Enami, Daisuke Yamamoto, Tomoaki Harada, Jun Tanaka, Junichi Sakata, and et al. 2024. "Clinical Outcomes of Shifting from Transfemoral-First to Transradial-First Approach in Carotid Artery Stenting: A Retrospective Two-Timeframe Comparison at a Single Center" Journal of Clinical Medicine 13, no. 23: 7432. https://doi.org/10.3390/jcm13237432
APA StyleImahori, T., Miyake, S., Maeda, I., Goto, H., Nishii, R., Enami, H., Yamamoto, D., Harada, T., Tanaka, J., Sakata, J., Hamaguchi, H., Sakai, N., Sasayama, T., & Hosoda, K. (2024). Clinical Outcomes of Shifting from Transfemoral-First to Transradial-First Approach in Carotid Artery Stenting: A Retrospective Two-Timeframe Comparison at a Single Center. Journal of Clinical Medicine, 13(23), 7432. https://doi.org/10.3390/jcm13237432