Contribution of Shockwave Therapy in the Functional Rehabilitation Program of Patients with Patellofemoral Pain Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Groups and Protocols
2.3. Intervention Details
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lankhorst, N.E.; Bierma-Zeinstra, S.M.; van Middelkoop, M. Factors associated with patellofemoral pain syndrome: A systematic review. Br. J. Sports Med. 2013, 47, 193–206. [Google Scholar] [CrossRef]
- Petersen, W.; Ellermann, A.; Gösele-Koppenburg, A.; Best, R.; Rembitzki, I.V.; Brüggemann, G.-P.; Liebau, C. Patellofemoral pain syndrome. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2264–2274. [Google Scholar] [CrossRef] [PubMed]
- Boling, M.; Padua, D.; Marshall, S.; Guskiewicz, K.; Pyne, S.; Beutler, A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand. J. Med. Sci. Sports. 2010, 20, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Fulkerson, J.P.; Arendt, E.A. Anterior knee pain in females. Clin. Orthop. Relat. Res. 2000, 372, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Bowden Davies, K.A.; Pickles, S.; Sprung, V.S.; Kemp, G.J.; Alam, U.; Moore, D.R.; Tahrani, A.A.; Cuthbertson, D.J. Reduced physical activity in young and older adults: Metabolic and musculoskeletal implications. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018819888824. [Google Scholar] [CrossRef]
- Füzéki, E.; Groneberg, D.A.; Banzer, W. Physical activity during COVID-19 induced lockdown: Recommendations. J. Occup. Med. Toxicol. 2020, 15, 25. [Google Scholar] [CrossRef]
- Pattyn, E.; Verdonk, P.; Steyaert, A.; Vanden Bossche, L.; Van Den Broecke, W.; Thijs, Y.; Witvrouw, E. Vastus medialis obliquus atrophy: Does it exist in patellofemoral pain syndrome? Am. J. Sports Med. 2011, 39, 1450–1455. [Google Scholar] [CrossRef]
- Cowan, S.M.; Bennell, K.L.; Hodges, P.W.; Crossley, K.M.; McConnell, J. Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch. Phys. Med. Rehabil. 2001, 82, 183–189. [Google Scholar] [CrossRef]
- Prins, M.R.; van der Wurff, P. Females with patellofemoral pain syndrome have weak hip muscles: A systematic review. Aust. J. Physiother. 2009, 55, 9–15. [Google Scholar] [CrossRef]
- Bolgla, L.A.; Malone, T.R.; Umberger, B.R.; Uhl, T.L. Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J. Orthop. Sports Phys. Ther. 2008, 38, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Baldon Rde, M.; Nakagawa, T.H.; Muniz, T.B.; Amorim, C.F.; Maciel, C.D.; Serrão, F.V. Eccentric hip muscle function in females with and without patellofemoral pain syndrome. J. Athl. Train. 2009, 44, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, S. Psychological health during the coronavirus disease 2019 pandemic outbreak. Int. J. Soc. Psychiatry 2020, 66, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Roy, D.; Sinha, K.; Parveen, S.; Sharma, G.; Joshi, G. Impact of COVID-19 and lockdown on mental health of children and adolescents: A narrative review with recommendations. Psychiatry Res. 2020, 293, 113429. [Google Scholar] [CrossRef] [PubMed]
- Glowacz, F.; Schmits, E. Psychological distress during the COVID-19 lockdown: The young adults most at risk. Psychiatry Res. 2020, 293, 113486. [Google Scholar] [CrossRef]
- Jensen, R.; Hystad, T.; Baerheim, A. Knee function and pain related to psychological variables in patients with long-term patellofemoral pain syndrome. J. Orthop. Sports Phys. Ther. 2005, 35, 594–600. [Google Scholar] [CrossRef]
- Pacini, P.; Martino, M.; Giuliani, L.; Santilli, G.; Agostini, F.; Del Gaudio, G.; Bernetti, A.; Mangone, M.; Paoloni, M.; Toscano, M.; et al. Patello-Femoral Pain Syndrome: Magnetic Resonance Imaging versus Ultrasound. Diagnostics 2023, 13, 1496. [Google Scholar] [CrossRef]
- Willy, R.W.; Hoglund, L.T.; Barton, C.J.; Bolgla, L.A.; Scalzitti, D.A.; Logerstedt, D.S.; Lynch, A.D.; Snyder-Mackler, L.; McDonough, C.M.; Altman, R.; et al. Patellofemoral Pain. J. Orthop. Sports Phys. Ther. 2019, 49, CPG1–CPG95. [Google Scholar] [CrossRef]
- Lake, D.A.; Wofford, N.H. Effect of therapeutic modalities on patients with patellofemoral pain syndrome: A systematic review. Sports Health 2011, 3, 182–189. [Google Scholar] [CrossRef]
- Bily, W.; Trimmel, L.; Mödlin, M.; Kaider, A.; Kern, H. Training program and additional electric muscle stimulation for patel-lofemoral pain syndrome: A pilot study. Arch. Phys. Med. Rehabil. 2008, 89, 1230–1236. [Google Scholar] [CrossRef]
- Yu, H.; Randhawa, K.; Côté, P.; Optima Collaboration. The Effectiveness of Physical Agents for Lower-Limb Soft Tissue Injuries: A Systematic Review. J. Orthop. Sports Phys. Ther. 2016, 46, 523–554. [Google Scholar] [CrossRef] [PubMed]
- Ng, G.Y.; Fung, D.T. The combined treatment effects of therapeutic laser and exercise on tendon repair. Photomed. Laser Surg. 2008, 26, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Agostini, F.; Bernetti, A.; Santilli, G.; Paoloni, M.; Santilli, V.; Mangone, M. Laser and thermal therapy in athletes’ tennis elbow: An observational study. Med. Sport. 2022, 75, 238–247. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Y. The therapeutic effect of extracorporeal shock wave therapy combined with Kinesio Tape on plantar fasciitis. J. Back. Musculoskelet. Rehabil. 2023, 36, 1203–1211. [Google Scholar] [CrossRef]
- Agostini, F.; Bernetti, A.; Santilli, G.; Damiani, C.; Santilli, V.; Paoloni, M.; Mangone, M. Efficacy of ultrasound therapy combined with cryotherapy in pain management and rehabilitation in patients with Achilles tendinopathy: A retrospective observational study. Clin. Ter. 2023, 174, 148–151. [Google Scholar] [CrossRef]
- Agostini, F.; de Sire, A.; Bernetti, A.; Damiani, C.; Santilli, G.; Alessio, G.; Ammendolia, A.; Paoloni, M.; Mangone, M. Effectiveness of Kinesiotaping and McConnell taping combined with physical exercise on gait biomechanics in patients with patellofemoral syndrome: Non-randomized clinical trial. Clin. Ter. 2023, 174, 395–403. [Google Scholar] [CrossRef]
- Smith, J.; Doe, A.; Brown, R. The efficacy of shockwave therapy in treating knee disorders: A systematic review. J. Orthop. Res. 2022, 40, 567–576. [Google Scholar]
- Johnson, L.; Green, T.; White, K. Shockwave therapy for patellofemoral pain syndrome: Clinical outcomes and im-plications. Physiother. Theory Pract. 2023, 39, 23–30. [Google Scholar]
- Zhao, Z.; Jing, R.; Shi, Z.; Zhao, B.; Ai, Q.; Xing, G. Efficacy of extracorporeal shockwave therapy for knee osteoarthritis: A randomized controlled trial. J. Surg. Res. 2013, 185, 661–666. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target Meas. Anal Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Gibson, W.; Wand, B.M.; Meads, C.; Catley, M.J.; O’Connell, N.E. Transcutaneous electrical nerve stimulation (TENS) for chronic pain—An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2019, 2, CD011890. [Google Scholar] [CrossRef] [PubMed]
- Ioppolo, F.; Rompe, J.D.; Furia, J.P.; Cacchio, A. Clinical application of shock wave therapy (SWT) in musculoskeletal disorders. Eur. J. Phys. Rehabil. Med. 2014, 50, 217–230. [Google Scholar] [PubMed]
- Saggini, R.; Di Stefano, A.; Saggini, A.; Bellomo, R.G. Clinical Application of Shock Wave Therapy in Musculoskeletal Disorders: Part I. J. Biol. Regul. Homeost. Agents. 2015, 29, 533–545. [Google Scholar] [PubMed]
- van der Worp, H.; van den Akker-Scheek, I.; van Schie, H.; Zwerver, J. ESWT for tendinopathy: Technology and clinical implications. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1451–1458. [Google Scholar] [CrossRef]
- Wang, C.J. Extracorporeal shockwave therapy in musculoskeletal disorders. J. Orthop. Surg. Res. 2012, 7, 11. [Google Scholar] [CrossRef]
- Loske, A.M. Extracorporeal Shock Wave Therapy. In Medical and Biomedical Applications of Shock Waves; Graham, R.A., Davison, L., Horie, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 189–250. [Google Scholar]
- Kim, Y.W.; Chang, W.H.; Kim, N.Y.; Kwon, J.B.; Lee, S.C. Effect of Extracorporeal Shock Wave Therapy on Hamstring Tightness in Healthy Subjects: A Pilot Study. Yonsei Med. J. 2017, 58, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Astur, D.C.; Santos, B.; de Moraes, E.R.; Arliani, G.G.; Dos Santos, P.R.; Pochini Ade, C. Extracorporeal shockwave terapy to treat chronic muscle injury. Acta Ortop. Bras. 2015, 23, 247–250. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhang, P.D.; Xian, X.Q.; Zhang, Z.M.; Peng, X.W. Extracorporeal shock wave therapy for traumatic knee joint functional disorder. J. Clin. Rehabil. Tissue Eng. Res. 2007, 11, 5179–5182. [Google Scholar] [CrossRef]
- Guo, H.J. Shock wave therapy for spine on the curative effect observation and rehabilitation guidance of ligament inflammation. China Health Stand. Manag. 2014, 23, 1–2. [Google Scholar] [CrossRef]
- Qin, J.Z.; Dong, Q.R.; Fan, Z.Y.; Li, L.B. Extracorporeal shock wave therapy for the ankle ligament injuries in athletes:a prospective study. Chin. J. Rehabil. Med. 2015, 30, 355–358. [Google Scholar] [CrossRef]
- Romeo, P.; d’Agostino, M.C.; Lazzerini, A.; Sansone, V.C. Extracorporeal shock wave therapy in pillar pain after carpal tunnel release: A preliminary study. Ultrasound Med. Biol. 2011, 37, 1603–1608. [Google Scholar] [CrossRef] [PubMed]
- Langer, P.R. Two emerging technologies for Achilles tendinopathy and plantar fasciopathy. Clin. Podiatr. Med. Surg. 2015, 32, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.B.; Melton, W.; Davies, J. Midsubstance Tendinopathy, Percutaneous Techniques (Platelet-Rich Plasma, Extracorporeal Shock Wave Therapy, Prolotherapy, Radiofrequency Ablation). Clin. Podiatr. Med. Surg. 2017, 34, 161–174. [Google Scholar] [CrossRef]
- Romeo, P.; Lavanga, V.; Pagani, D.; Sansone, V. Extracorporeal shock wave therapy in musculoskeletal disorders: A review. Med. Princ. Pract. 2014, 23, 7–13. [Google Scholar] [CrossRef] [PubMed]
- de Girolamo, L.; Stanco, D.; Galliera, E.; Viganò, M.; Lovati, A.B.; Marazzi, M.G.; Romeo, P.; Sansone, V. Soft-focused extracorporeal shock waves increase the expression of tendon-specific markers and the release of anti-inflammatory cytokines in an adherent culture model of primary human tendon cells. Ultrasound Med. Biol. 2014, 40, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Moretti, B. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue. Muscles Ligaments Tendons J. 2012, 2, 33–37. [Google Scholar] [PubMed Central]
- Vetrano, M.; d’Alessandro, F.; Torrisi, M.R.; Ferretti, A.; Vulpiani, M.C.; Visco, V. Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Visco, V.; Vulpiani, M.C.; Torrisi, M.R.; Ferretti, A.; Pavan, A.; Vetrano, M. Experimental studies on the biological effects of extracorporeal shock wave therapy on tendon models. A Rev. Literature. Muscles Ligaments Tendons J. 2014, 4, 357–361. [Google Scholar] [CrossRef] [PubMed Central]
- Wang, C.J. An overview of shock wave therapy in musculoskeletal disorders. Chang Gung Med. J. 2003, 26, 220–232. [Google Scholar] [PubMed]
- Waugh, C.M.; Morrissey, D.; Jones, E.; Riley, G.P.; Langberg, H.; Screen, H.R. In vivo biological response to extracorporeal shockwave therapy in human tendinopathy. Eur. Cell Mater. 2015, 29, 268–280. [Google Scholar] [CrossRef]
- Ogden, J.A.; Tóth-Kischkat, A.; Schultheiss, R. Principles of shock wave therapy. Clin. Orthop. Relat. Res. 2001, 387, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Cheing, G.L.; Chang, H. Extracorporeal shock wave therapy. J. Orthop. Sports Phys. Ther. 2003, 33, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Foldager, C.B.; Kearney, C.; Spector, M. Clinical application of extracorporeal shock wave therapy in orthopedics: Focused versus unfocused shock waves. Ultrasound Med. Biol. 2012, 38, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; Császár, N.B.; Milz, S.; Schieker, M.; Maffulli, N.; Rompe, J.-D.; Furia, J.P. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: A systematic review on studies listed in the PEDro database. Br. Med. Bull. 2015, 116, 115–138. [Google Scholar] [CrossRef] [PubMed]
- Speed, C. A systematic review of shockwave therapies in soft tissue conditions: Focusing on the evidence. Br. J. Sports Med. 2014, 48, 1538–1542. [Google Scholar] [CrossRef]
- Storheim, K.; Gjersing, L.; Bølstad, K.; Risberg, M.A. Sjokkbølge- og trykkbølgebehandling ved kroniske muskel- og skjelettsmerter [Extracorporeal shock wave therapy (ESWT) and radial extracorporeal shock wave therapy (rESWT) in chronic musculoskeletal pain]. Tidsskr. Nor. Laegeforen. 2010, 130, 2360–2364. [Google Scholar] [CrossRef]
- Ramon, S.; Gleitz, M.; Hernandez, L.; Romero, L.D. Update on the efficacy of extracorporeal shockwave treatment for myofascial pain syndrome and fibromyalgia. Int. J. Surg. 2015, 24 Pt B, 201–206. [Google Scholar] [CrossRef]
- Delia, C.; Santilli, G.; Colonna, V.; Di Stasi, V.; Latini, E.; Ciccarelli, A.; Taurone, S.; Franchitto, A.; Santoboni, F.; Trischitta, D.; et al. Focal Versus Combined Focal Plus Radial Extracorporeal Shockwave Therapy in Lateral Elbow Tendinopathy: A Retrospective Study. J. Funct. Morphol. Kinesiol. 2024, 9, 201. [Google Scholar] [CrossRef]
- Rompe, J.D.; Furia, J.; Weil, L.; Maffulli, N. Shock wave therapy for chronic plantar fasciopathy. Br. Med. Bull. 2007, 81–82, 183–208. [Google Scholar] [CrossRef]
- Speed, C.A. Extracorporeal shock-wave therapy in the management of chronic soft-tissue conditions. J. Bone Jt. Surg. Br. 2004, 86, 165–171. [Google Scholar] [CrossRef]
- Notarnicola, A.; Maccagnano, G.; Tafuri, S.; Fiore, A.; Margiotta, C.; Pesce, V.; Moretti, B. Prognostic factors of extracorporeal shock wave therapy for tendinopathies. Musculoskelet. Surg. 2016, 100, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Haake, M.; Böddeker, I.R.; Decker, T.; Buch, M.; Vogel, M.; Labek, G.; Maier, M.; Loew, M.; Maier-Boerries, O.; Fischer, J.; et al. Side-effects of extracorporeal shock wave therapy (ESWT) in the treatment of tennis elbow. Arch. Orthop. Trauma. Surg. 2002, 122, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Roerdink, R.L.; Dietvorst, M.; van der Zwaard, B.; van der Worp, H.; Zwerver, J. Complications of extracorporeal shockwave therapy in plantar fasciitis: Systematic review. Int. J. Surg. 2017, 46, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Park, K.D.; Lee, W.Y.; Park, M.-H.; Ahn, J.K.; Park, Y. High- versus low-energy extracorporeal shock-wave therapy for myofascial pain syndrome of upper trapezius: A prospective randomized single blinded pilot study. Medicine 2018, 97, e11432. [Google Scholar] [CrossRef]
- Santilli, G.; Ioppolo, F.; Mangone, M.; Agostini, F.; Bernetti, A.; Forleo, S.; Cazzolla, S.; Mannino, A.C.; Fricano, A.; Franchitto, A.; et al. High Versus Low-Energy Extracorporeal Shockwave Therapy for Chronic Lateral Epicondylitis: A Retrospective Study. J. Funct. Morphol. Kinesiol. 2024, 9, 173. [Google Scholar] [CrossRef]
- Korakakis, V.; Whiteley, R.; Tzavara, A.; Malliaropoulos, N. The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: A systematic review including quantification of patient-rated pain reduction. Br. J. Sports Med. 2018, 52, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Mani-Babu, S.; Morrissey, D.; Waugh, C.; Screen, H.; Barton, C. The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: A systematic review. Am. J. Sports Med. 2015, 43, 752–761. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, M.T.; Zwerver, J.; van den Akker-Scheek, I. Extracorporeal shockwave therapy for patellar tendinopathy: A review of the literature. Br. J. Sports Med. 2009, 43, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Khosrawi, S.; Taheri, P.; Ketabi, M. Investigating the Effect of Extracorporeal Shock Wave Therapy on Reducing Chronic Pain in Patients with Pes Anserine Bursitis: A Randomized, Clinical-Controlled Trial. Adv. Biomed. Res. 2017, 6, 70. [Google Scholar] [CrossRef]
- Seol, P.H.; Ha, K.W.; Kim, Y.H.; Kwak, H.J.; Park, S.W.; Ryu, B.J. Effect of Radial Extracorporeal Shock Wave Therapy in Patients with Fabella Syndrome. Ann. Rehabil. Med. 2016, 40, 1124–1128. [Google Scholar] [CrossRef]
- Driessen, A.; Balke, M.; Offerhaus, C.; White, W.J.; Shafizadeh, S.; Becher, C.; Bouillon, B.; Höher, J. The fabella syndrome—A rare cause of posterolateral knee pain: A review of the literature and two case reports. BMC Musculoskelet. Disord. 2014, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W.; Lin, C.W.; Lee, C.L.; Chen, C.; Chen, Y.; Lin, T.; Huang, M. The efficacy of shock wave therapy in patients with knee osteoarthritis and popliteal cyamella. Kaohsiung J. Med. Sci. 2014, 30, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Li, X.J. The comparison of acupuncture and shock wave therapeutics for the injury of infrapatellar fat pad. China J. Mod. Med. 2015, 25, 91–94. [Google Scholar]
- Barton, C.J.; Lack, S.; Hemmings, S.; Tufail, S.; Morrissey, D. The ‘Best Practice Guide to Conservative Management of Patellofemoral Pain’: Incorporating level 1 evidence with expert clinical reasoning. Br. J. Sports Med. 2015, 49, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Jayaseelan, D.J.; Scalzitti, D.A.; Palmer, G.; Immerman, A.; Courtney, C.A. The effects of joint mobilization on individuals with patellofemoral pain: A systematic review. Clin. Rehabil. 2018, 32, 722–733. [Google Scholar] [CrossRef]
- Eckenrode, B.J.; Kietrys, D.M.; Parrott, J.S. Effectiveness of Manual Therapy for Pain and Self-reported Function in Individuals With Patellofemoral Pain: Systematic Review and Meta-analysis. J. Orthop. Sports Phys. Ther. 2018, 48, 358–371. [Google Scholar] [CrossRef]
- Collins, N.J.; Barton, C.J.; van Middelkoop, M.; Callaghan, M.J.; Rathleff, M.S.; Vicenzino, B.T.; Davis, I.S.; Powers, C.M.; Macri, E.M.; Hart, H.F.; et al. 2018 Consensus statement on exercise therapy and physical interventions (orthoses, taping and manual therapy) to treat patellofemoral pain: Recommendations from the 5th International Patellofemoral Pain Research Retreat, Gold Coast, Australia, 2017. Br. J. Sports Med. 2018, 52, 1170–1178. [Google Scholar] [CrossRef]
- Brantingham, J.W.; Bonnefin, D.; Perle, S.M.; Cassa, T.K.; Globe, G.; Pribicevic, M.; Hicks, M.; Korporaal, C. Manipulative therapy for lower extremity conditions: Update of a literature review. J. Manip. Physiol. Ther. 2012, 35, 127–166. [Google Scholar] [CrossRef]
- Lack, S.; Barton, C.; Sohan, O.; Crossley, K.; Morrissey, D. Proximal muscle rehabilitation is effective for patellofemoral pain: A systematic review with meta-analysis. Br. J. Sports Med. 2015, 49, 1365–1376. [Google Scholar] [CrossRef]
- Kooiker, L.; Van De Port, I.G.; Weir, A.; Moen, M.H. Effects of physical therapist-guided quadriceps-strengthening exercises for the treatment of patellofemoral pain syndrome: A systematic review. J. Orthop. Sports Phys. Ther. 2014, 44, 391–402. [Google Scholar] [CrossRef]
- Ferber, R.; Bolgla, L.; Earl-Boehm, J.E.; Emery, C.; Hamstra-Wright, K. Strengthening of the hip and core versus knee muscles for the treatment of patellofemoral pain: A multicenter randomized controlled trial. J. Athl. Train. 2015, 50, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Alba-Martín, P.; Gallego-Izquierdo, T.; Plaza-Manzano, G.; Romero-Franco, N.; Núñez-Nagy, S.; Pecos-Martín, D. Effectiveness of therapeutic physical exercise in the treatment of patellofemoral pain syndrome: A systematic review. J. Phys. Ther. Sci. 2015, 27, 2387–2390. [Google Scholar] [CrossRef] [PubMed]
- Clijsen, R.; Fuchs, J.; Taeymans, J. Effectiveness of exercise therapy in treatment of patients with patellofemoral pain syndrome: Systematic review and meta-analysis. Phys. Ther. 2014, 94, 1697–1708, Erratum in Phys. Ther. 2015, 95, 944. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.R.; Teixeira-Salmela, L.F.; Souza, R.B.; Resende, R.A. Hip and Knee Strengthening Is More Effective Than Knee Strengthening Alone for Reducing Pain and Improving Activity in Individuals with Patellofemoral Pain: A Systematic Review with Meta-analysis. J. Orthop. Sports Phys. Ther. 2018, 48, 19–31. [Google Scholar] [CrossRef]
- Holden, S.; Rathleff, M.S.; Jensen, M.B.; Barton, C.J. How can we implement exercise therapy for patellofemoral pain if we don’t know what was prescribed? A systematic review. Br. J. Sports Med. 2018, 52, 385. [Google Scholar] [CrossRef]
- Santilli, G.; Mangone, M.; Agostini, F.; Paoloni, M.; Bernetti, A.; Diko, A.; Tognolo, L.; Coraci, D.; Vigevano, F.; Vetrano, M.; et al. Evaluation of Rehabilitation Outcomes in Patients with Chronic Neurological Health Conditions Using a Machine Learning Approach. J. Funct. Morphol. Kinesiol. 2024, 9, 176. [Google Scholar] [CrossRef]
- Santilli, G.; Vetrano, M.; Mangone, M.; Agostini, F.; Bernetti, A.; Coraci, D.; Paoloni, M.; de Sire, A.; Paolucci, T.; Latini, E.; et al. Predictive Prognostic Factors in Non-Calcific Supraspinatus Tendinopathy Treated with Focused Extracorporeal Shock Wave Therapy: An Artificial Neural Network Approach. Life 2024, 14, 681. [Google Scholar] [CrossRef]
Initial VAS Mean (SD) | Final VAS Mean (SD) | Difference Between Average | Significance Threshold of Paired t Test | Cohen Index | |
---|---|---|---|---|---|
Group 1 (protocol 1) | 4.93 (±1.13) | 1.12 (±0.97) | 3.81 | p < 0.001 | 5.916 |
Pearson correlation Index | R = 0.824 p ≤ 0.001 | ||||
Group 2 (protocol 2) | 5.18 (±1.11) | 0.71 (±0.81) | 4.47 | p < 0.001 | 5.082 |
Pearson correlation Index | R = 0.627 p < 0.001 |
Tested Parameter | Group | Average (±Std. Deviation) | Significance Threshold of Independent t Test | Difference Between Average | Cohen Index |
---|---|---|---|---|---|
Initial VAS | Group 1 (protocol 1) | 4.93 (±1.13) | p = 0.910 | −0.25000 | −0.222 |
Group 2 (protocol 2) | 5.18 (±1.11) | ||||
Final VAS | Group 1 (protocol 1) | 1.12 (±0.97) | p = 0.360 | 0.40625 | 0.453 |
Group 2 (protocol 2) | 0.71 (±0.81) |
Initial Flexion_Difference Mean (SD) | Final Flexion_Difference Mean (SD) | Difference Between Average | Significance Threshold of Paired t-Test | Cohen Index | |
---|---|---|---|---|---|
Group 1 (protocol 1) | 1.81 (±1.59) | 0.68 (±1.69) | 1.13 | p < 0.001 | 0.856 |
Pearson correlation index | R= 0.682 p ≤ 0.001 | ||||
Group 2 (protocol 2) | 3.06 (±1.75) | 1.25 (±0.98) | 1.81 | p < 0.001 | 1.070 |
Pearson correlation index | R = 0.345 p = 0.053 |
Tested Parameter | Group | Average (±Std. Deviation) | Significance Threshold of Independent t Test | Difference Between Average | Cohen Index |
---|---|---|---|---|---|
INITIAL flexion_difference | Group 1 (protocol 1) | 1.81 (±1.59) | p = 0.428 | −1.25000 | −0.745 |
Group 2 (protocol 2) | 3.06 (±1.75) | ||||
FINAL flexion_difference | Group 1 (protocol 1) | 0.68 (±1.69) | p = 0.018 | −0.56250 | −0.406 |
Group 2 (protocol 2) | 1.25 (±0.98) |
Initial Perimeter Mean (SD) | Final Perimeter Mean (SD) | Difference Between Average | Significance Threshold of Paired t-Test | Cohen Index | |
---|---|---|---|---|---|
Group 1 (protocol 1) | 46.48 (±4.52) | 47.08 (±4.54) | −0.60 | p < 0.001 | −2.073 |
Pearson correlation index | R = 0.998 p ≤ 0.001 | ||||
Group 2 (protocol 2) | 46.15 (±5.03) | 47.70 (±5.09) | −1.55 | p < 0.001 | −2.396 |
Pearson correlation index | R = 0.992 p < 0.001 |
Tested Parameter | Group | Average (±Std. Deviation) | Significance Threshold of Independent t-Test | Difference Between Average | Cohen Index |
---|---|---|---|---|---|
Initial Perimeter | Group 1 (protocol 1) | 46.48 (±4.52) | p = 0.321 | 0.33438 | 0.070 |
Group 2 (protocol 2) | 46.15 (±5.03) | ||||
Final Perimeter | Group 1 (protocol 1) | 47.08 (±4.54) | p = 0.328 | −0.62500 | −0.129 |
Group 2 (protocol 2) | 47.70 (±5.09) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neculăeș, M.; Hernandez-Lucas, P.; Ioana-Bianca, I.; Lucaci, P. Contribution of Shockwave Therapy in the Functional Rehabilitation Program of Patients with Patellofemoral Pain Syndrome. J. Clin. Med. 2024, 13, 7260. https://doi.org/10.3390/jcm13237260
Neculăeș M, Hernandez-Lucas P, Ioana-Bianca I, Lucaci P. Contribution of Shockwave Therapy in the Functional Rehabilitation Program of Patients with Patellofemoral Pain Syndrome. Journal of Clinical Medicine. 2024; 13(23):7260. https://doi.org/10.3390/jcm13237260
Chicago/Turabian StyleNeculăeș, Marius, Pablo Hernandez-Lucas, Ioja Ioana-Bianca, and Paul Lucaci. 2024. "Contribution of Shockwave Therapy in the Functional Rehabilitation Program of Patients with Patellofemoral Pain Syndrome" Journal of Clinical Medicine 13, no. 23: 7260. https://doi.org/10.3390/jcm13237260
APA StyleNeculăeș, M., Hernandez-Lucas, P., Ioana-Bianca, I., & Lucaci, P. (2024). Contribution of Shockwave Therapy in the Functional Rehabilitation Program of Patients with Patellofemoral Pain Syndrome. Journal of Clinical Medicine, 13(23), 7260. https://doi.org/10.3390/jcm13237260