Soluble ST2 as a Biomarker for Predicting Right Ventricular Dysfunction in Acute Pulmonary Embolism
Abstract
:1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
4. Discussion
Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raskob, G.E.; Angchaisuksiri, P.; Blanco, A.N.; Büller, H.; Gallus, A.; Hunt, B.J.; Hylek, E.M.; Kakkar, T.L.; Konstantinides, S.V.; McCumber, M.; et al. Thrombosis: A major contributor to global disease burden. Semin. Thromb. Hemost. 2014, 40, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Stein, P.D.; Kayali, F.; Olson, R.E. Estimated case fatality rate of pulmonary embolism, 1979 to 1998. Am. J. Cardiol. 2004, 93, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Bueno, H.; Galié, N.; Gibbs, J.S.R.; Ageno, W.; Agewall, S.; Almeida, A.G.; Andreotti, F.; Barbato, E.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X.; et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23, 479–490. [Google Scholar] [CrossRef]
- Homsak, E.; Gruson, D. Soluble ST2: A complex and diverse role in several diseases. Clin. Chim. Acta 2020, 507, 75–87. [Google Scholar] [CrossRef]
- Iwahana, H.; Yanagisawa, K.; Ito-Kosaka, A.; Kuroiwa, K.; Tago, K.; Komatsu, N.; Katashima, R.; Itakura, M.; Tominaga, S.I. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur. J. Biochem. 1999, 264, 397–406. [Google Scholar] [CrossRef]
- Jirak, P.; Mirna, M.; Wernly, B.; Paar, V.; Hoppe, U.C.; Lichtenauer, M. Assessment of Cardiac Remodeling—A Chance for Novel Cardiac Biomarkers? J. Clin. Med. 2020, 9, 2087. [Google Scholar] [CrossRef]
- Mildner, M.; Storka, A.; Lichtenauer, M.; Mlitz, V.; Ghannadan, M.; Hoetzenecker, K.; Nickl, S.; Dome, B.; Tschachler, E.; Ankersmit, H.J. Primary sources and immunological prerequisites for sST2 secretion in humans. Cardiovasc. Res. 2010, 87, 769–777. [Google Scholar] [CrossRef]
- Liew, F.Y.; Pitman, N.I.; McInnes, I.B. Disease-associated functions of IL-33: The new kid in the IL-1 family. Nat. Rev. Immunol. 2010, 10, 103–110. [Google Scholar] [CrossRef]
- Bajwa, E.K.; Mebazaa, A.; Januzzi, J.L. ST2 in pulmonary disease. Am. J. Cardiol. 2015, 115, 44B–47B. [Google Scholar] [CrossRef]
- Kotsiou, O.S.; Gourgoulianis, K.I.; Zarogiannis, S.G. IL-33/ST2 axis in organ fibrosis. Front. Immunol. 2018, 9, 2432. [Google Scholar] [CrossRef] [PubMed]
- Dattagupta, A.; Immaneni, S. ST2: Current status. Indian Heart J. 2018, 70, S96–S101. [Google Scholar] [CrossRef]
- Somuncu, M.U.; Kalayci, B.; Avci, A.; Akgun, T.; Karakurt, H.; Demir, A.R.; Avci, Y.; Can, M. Predicting long-term cardiovascular outcomes of patients with acute myocardial infarction using soluble ST2. Horm. Mol. Biol. Clin. Investig. 2020, 41, 20190062. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, J.; Szymonifka, J.; Lavender, Z.; Deaño, R.C.; Zhou, Q.; Januzzi, J.L.; Singh, J.P.; Truong, Q.A. Relationship of soluble ST2 to pulmonary hypertension severity in patients undergoing cardiac resynchronization therapy. J. Thorac. Dis. 2019, 11, 5362–5371. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.A.; Sundquist, K.; PirouziFard, M.; Elf, J.L.; Strandberg, K.; Svensson, P.J.; Sundquist, J.; Zöller, B. Identification of novel diagnostic biomarkers for deep venous thrombosis. Br. J. Haematol. 2018, 181, 378–385. [Google Scholar] [CrossRef]
- Cabrera-Garcia, D.; Miltiades, A.; Yim, P.; Parsons, S.; Elisman, K.; Mansouri, M.T.; Wagener, G.; Harrison, N.L. Plasma biomarkers associated with survival and thrombosis in hospitalized COVID-19 patients. Int. J. Hematol. 2022, 116, 937–946. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, X.; Gao, H.; Yuan, H.; Hu, R.; Jia, L.; Zhu, J.; Sun, L.; Zhang, H.; Huang, L.; et al. Magnitude of Soluble ST2 as a Novel Biomarker for Acute Aortic Dissection. Circulation 2018, 137, 259–269. [Google Scholar] [CrossRef]
- Haider, T.; Simader, E.; Hacker, P.; Ankersmit, H.J.; Heinz, T.; Hajdu, S.; Negrin, L.L. Increased serum concentrations of soluble ST2 are associated with pulmonary complications and mortality in polytraumatized patients. Clin. Chem. Lab. Med. 2018, 56, 810–817. [Google Scholar] [CrossRef]
- Shimpo, M.; Morrow, D.A.; Weinberg, E.O.; Sabatine, M.S.; Murphy, S.A.; Antman, E.M.; Lee, R.T. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 2004, 109, 2186–2190. [Google Scholar] [CrossRef]
- Kohli, P.; Bonaca, M.P.; Kakkar, R.; Kudinova, A.Y.; Scirica, B.M.; Sabatine, M.S.; Murphy, S.A.; Braunwald, E.; Lee, R.T.; Morrow, D.A. Role of ST2 in Non–ST-Elevation Acute Coronary Syndrome in the MERLIN-TIMI 36 Trial. Clin. Chem. 2012, 58, 257–266. [Google Scholar] [CrossRef]
- Gaggin, H.K.; Szymonifka, J.; Bhardwaj, A.; Belcher, A.; De Berardinis, B.; Motiwala, S.; Wang, T.J.; Januzzi, J.L. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC. Heart Fail. 2014, 2, 65–72. [Google Scholar] [CrossRef]
- Ragusa, R.; Prontera, C.; Di Molfetta, A.; Cabiati, M.; Masotti, S.; Del Ry, S.; Amodeo, A.; Trivella, M.G.; Clerico, A.; Caselli, C. Time-course of circulating cardiac and inflammatory biomarkers after Ventricular Assist Device implantation: Comparison between paediatric and adult patients. Clin. Chim. Acta. 2018, 486, 88–93. [Google Scholar] [CrossRef]
- Lichtenauer, M.; Jirak, P.; Wernly, B.; Paar, V.; Rohm, I.; Jung, C.; Schernthaner, C.; Kraus, J.; Motloch, L.J.; Yilmaz, A.; et al. A comparative analysis of novel cardiovascular biomarkers in patients with chronic heart failure. Eur. J. Intern. Med. 2017, 44, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Mcginn, C.; Casey, F.A.; Watson, C.; Morrison, L. Paediatric heart failure—Understanding the pathophysiology and the current role of cardiac biomarkers in clinical practice. Cardiol. Young 2023, 33, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Clopton, P.; Iqbal, N.; Tran, K.; Maisel, A.S. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am. Heart J. 2010, 160, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Petramala, L.; Concistrè, A.; Sarlo, F.; Baroni, S.; Suppa, M.; Servello, A.; Circosta, F.; Galardo, G.; Gandini, O.; Marino, L.; et al. Assessment of sST2 Behaviors to Evaluate Severity/Clinical Impact of Acute Pulmonary Embolism. Int. J. Mol. Sci. 2023, 24, 4591. [Google Scholar] [CrossRef]
- Gunes, H.; Gunes, H.; Dagli, M.; Kirişçi, M.; Özbek, M.; Atilla, N.; Yılmaz, M.B. Association of soluble ST2 Level with 6-month Mortality and/or Recurrent Cardiovascular-Related Hospitalization in Pulmonary Embolism. Arq. Bras. Cardiol. 2024, 121, e20230040. [Google Scholar] [CrossRef]
- Kerkütlüoğlu, M.; Gunes, H.; Atilla, N.; Celik, E.; Dagli, M.; Seyithanoglu, M. Relationship Between Soluble ST2 Level and Chronic Thromboembolic Pulmonary Hypertension (CTEPH) in Acute Pulmonary Embolism (PE) Patients. Cureus 2023, 15, e42449. [Google Scholar] [CrossRef]
- Soyfoo, M.S.; Nicaise, C. Pathophysiologic role of Interleukin-33/ST2 in Sjögren’s syndrome. Autoimmun. Rev. 2021, 20, 102756. [Google Scholar] [CrossRef]
- Kriechbaum, S.D.; Wiedenroth, C.B.; Peters, K.; Barde, M.A.; Ajnwojner, R.; Wolter, J.S.; Haas, M.; Roller, F.C.; Guth, S.; Rieth, A.J.; et al. Galectin-3, GDF-15, and sST2 for the assessment of disease severity and therapy response in patients suffering from inoperable chronic thromboembolic pulmonary hypertension. Biomarkers 2020, 25, 578–586. [Google Scholar] [CrossRef]
PE (n = 66) | Control (n = 62) | p-Value | |
---|---|---|---|
Age (year) | 67.9 ± 13.7 (24–93) | 52.8 ± 15.7 (22–90) | <0.001 a,* |
Gender | |||
Male | 25 (37.9) | 35 (56.5) | 0.035 c,* |
Female | 41 (62.1) | 27 (43.5) | |
BMI (kg/m2) | 28.6 ± 3.6 (20.8–37.2) | 28.9 ± 3.8 (21.0–37.0) | 0.610 b |
Chronic disease | |||
Hypertension | 41 (62.1) | 15 (24.2) | <0.001 c,* |
Allergic asthma | 11 (16.7) | 5 (8.1) | 0.141 c |
Diabetes mellitus | 11 (16.7) | 4 (6.5) | 0.073 c |
Hyperlipidemia | 5 (7.6) | 5 (8.1) | 1.000 d |
Smoking | 14 (21.2) | 20 (32.3) | 0.157 c |
Beta blocker | 17 (25.8) | 10 (16.1) | 0.182 c |
CCB | 15 (22.7) | 3 (4.8) | 0.004 c,* |
ACE-I | 6 (9.1) | 10 (16.1) | 0.229 c |
ARB | 22 (33.3) | 4 (6.5) | <0.001 c,* |
Antithrombotic | 11 (16.7) | 2 (3.2) | 0.012 c,* |
EF, % | 56.6 ± 6.0 (25–70) | 57.4 ± 4.4 (45–70) | 0.854 a |
PASB by TRPG | 38.3 ± 17.6 (15–120) | 18.0 ± 4.4 (10–30) | <0.001 a,* |
RV diameter | 30.1 ± 5.5 (21–46) | 24.0 ± 3.7 (16–30) | <0.001 a,* |
TAPSE | 17 ± 4.1 | 21.9 ± 3.13 | <0.0002 |
RV overload | 42 (63.6%) | ||
Heart rate | 100 (85–122) | 75 (52–109) | <0.001 |
Respiratory rate | 20 | 14 | <0.001 |
Systolic blood pressure | 138 | 130 | 0.47 |
Diastolic blood pressure | 84 | 80 | 0.51 |
PESI | 88.7 ± 35.4 (24–223) |
APE | Control | p | |
---|---|---|---|
Creatinine | 1.09 ± 0.52 (0.39–3.61) | 0.95 ± 0.48 (0.58–4.00) | 0.022 a,* |
ALT | 25.3 ± 27.5 (4.4–140.0) | 27.2 ± 19.5 (2.5–120.0) | 0.011 a,* |
AST | 27.3 ± 20.2 (5.0–107.0) | 24.8 ± 10.7 (11.2–73.0) | 0.288 a |
Hemoglobin | 12.0 ± 2.0 (7.3–17.1) | 13.7 ± 2.0 (8.1–17.3) | <0.001 b,* |
WBC | 10.6 ± 3.6 (4.0–19.5) | 7.2 ± 2.7 (4.0–17.0) | <0.001 a,* |
Neutrophil (mm3) | 8.0 ± 3.4 (2.9–18.5) | 4.3 ± 2.2 (1.7–13.1) | <0.001 a,* |
Neutrophil, % | 73.3 ± 10.0 (42.3–94.9) | 58.0 ± 13.3 (31–90) | <0.001 b,* |
Lymphocytes (mm3) | 1.72 ± 0.85 (0.30–4.04) | 2.23 ± 1.14 (0.50–7.94) | 0.006 a,* |
Lymphocytes, % | 17.2 ± 7.6 (1.8–47.2) | 31.0 ± 11.3 (5.3–60.9) | <0.001 b,* |
Thrombocyte | 260.6 ± 128.3 (101–801) | 248.9 ± 81.3 (120–552) | 0.574 a,* |
CRP | 66.8 ± 57.3 (0.6–185.0) | 3.31 ± 2.38 (0.6–14.9) | <0.001 a,* |
PaO2 (mmHg) | 80.2 ± 6.09 (74–95) | 96.2 ± 8.1 (94–105) | <0.001 b,* |
PaCO2 (mmHg) | 35.5 ± 3.9 (28–42) | 38.3 ± 3.9 (34–45) | 0.002 b,* |
FiO2 (%) | 35 ± 4.8 (28–45) | 21 ± 2.60 | <0.001 b,* |
SpO2 (%) | 92 ± 3.7 (85–97) | 97.1 ± 1.5 (95–99) | <0.001 b,* |
P/F ratio | 230 ± 38 (150–350) | 452 ± 40 (400–500) | <0.001 b,* |
Lactate (mmol/L) | 2.2 ± 0.6 (1.5–4.0) | 1.0 ± 0.3 (0.7–1.5) | <0.001 b,* |
D-Dimer | 4977.6 ± 3826.2 (123–10,000) | 594.1 ± 887.4 (92.9–4126.0) | <0.001 a,* |
Troponin-I (ng/mL) | 241.9 ± 491.5 (0.1–2613.0) | 10.1 ± 7.4 | <0.001 a,* |
sST2 | 162.1 ± 182.4 (37.1–704.7) | 10.1 ± 6.6 (1.0–21.6) | <0.001 a,* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uyanik, M.; Cinar, A.; Gedikli, O.; Tuna, T.; Avci, B. Soluble ST2 as a Biomarker for Predicting Right Ventricular Dysfunction in Acute Pulmonary Embolism. J. Clin. Med. 2024, 13, 7211. https://doi.org/10.3390/jcm13237211
Uyanik M, Cinar A, Gedikli O, Tuna T, Avci B. Soluble ST2 as a Biomarker for Predicting Right Ventricular Dysfunction in Acute Pulmonary Embolism. Journal of Clinical Medicine. 2024; 13(23):7211. https://doi.org/10.3390/jcm13237211
Chicago/Turabian StyleUyanik, Muhammet, Ahmet Cinar, Omer Gedikli, Tibel Tuna, and Bahattin Avci. 2024. "Soluble ST2 as a Biomarker for Predicting Right Ventricular Dysfunction in Acute Pulmonary Embolism" Journal of Clinical Medicine 13, no. 23: 7211. https://doi.org/10.3390/jcm13237211
APA StyleUyanik, M., Cinar, A., Gedikli, O., Tuna, T., & Avci, B. (2024). Soluble ST2 as a Biomarker for Predicting Right Ventricular Dysfunction in Acute Pulmonary Embolism. Journal of Clinical Medicine, 13(23), 7211. https://doi.org/10.3390/jcm13237211