Therapeutic Strategies for Retinal Artery Occlusion—A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Conservative Treatment of Retinal Artery Occlusion
3.1.1. Mechanism: Increase in Erythrocyte Deformability
Pentoxifylline
3.1.2. Mechanism: Vasodilation
Rebreathing into a Bag
Inhalation of Carbogen
Isosorbide Dinitrate = Nitroglycerine
3.1.3. Mechanism: Increase of Partial Pressure of Oxygen in the Blood
Hyperbaric Oxygen Therapy
3.1.4. Mechanism: Intraocular Pressure Reduction Leading to Retinal Perfusion Pressure Increase
Eye Massage
Acetazolamide
Anterior Chamber Paracentesis
Topical Medications for IOP Lowering
3.1.5. Mechanism: Reduction of Retinal Edema
Methylprednisolone
3.2. Thrombolysis
3.2.1. Treatment Protocol for Central Retinal Artery Occlusion
3.2.2. Intravenous Thrombolysis with tPA
3.2.3. Intra-Arterial Thrombolysis
3.2.4. RAO as a Stroke Equivalent in the Context of Secondary Prevention
Assessed Element | Assessed Function | Reaction and Result |
---|---|---|
1A | State of consciousness | 0—Alert 1—Not alert, but arousable by minor stimulation 2—Not alert, obtunded 3—Unresponsive |
1B | Questions assessing consciousness (2) | 0—Both answers right 1—One answer right 2—Both answers wrong |
1C | Commands assessing consciousness | 0—Performs both tasks correctly 1—Performs one task correctly 2—Fails to perform either task |
2 | Conjugated gaze | 0—Normal 1—Partial gaze palsy 2—Complete gaze palsy |
3 | Visual field | 0—Correct visual field 1—Partial hemianopia 2—Complete hemianopia 3—Bilateral hemianopia |
4 | Facial palsy | 0—Normal 1—Minor paralysis 2—Partial paralysis 3—Complete paralysis |
5 | Arm motor drift (a) left (b) right | 0—No drift 1—Drift within 10 s 2—Falls within 10 s 3—No effort against gravity 4—No movement |
6 | Leg motor drift (a) left (b) right | 0—No drift 1—Drift within 5 seconds 2—Falls within 5 seconds 3—No effort against gravity 4—No movement |
7 | Limb ataxia | 0—No ataxia 1—In one limb 2—In two limbs |
8 | Sensation | s0—Normal 1—Mild sensory loss 2—Severe sensory loss |
9 | Language | 0—Normal 1—Mild aphasia 2—Severe aphasia 3—Mute, global aphasia |
10 | Dysarthria | 0—Normal 1—Mild dysarthria 2—Severe dysarthria |
11 | Extinction or inattention | 0—Normal 1—Mild (affecting a single sense) 2—Severe (affecting two senses) |
Score = 0–42 |
3.3. Nd:YAG Laser Embolysis or Embolectomy
3.4. Vitrectomy
3.5. KUS121
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayreh, S.S. Acute Retinal Arterial Occlusive Disorders. Prog. Retin. Eye Res. 2011, 30, 359–394. [Google Scholar] [CrossRef] [PubMed]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G. Retinal and Ophthalmic Artery Occlusions Preferred Practice Pattern®. Ophthalmology 2020, 127, P259–P287. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.O.; Shah, A.A.; Vail, R.S.; Nixon, P.A.; Ready, E.L.; Kimble, J.A. Branch Retinal Artery Occlusion: Visual Prognosis. Am. J. Ophthalmol. 2008, 146, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Choi, N.-K.; Seo, K.H.; Park, K.H.; Woo, S.J. Nationwide Incidence of Clinically Diagnosed Central Retinal Artery Occlusion in Korea, 2008 to 2011. Ophthalmology 2014, 121, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Dattilo, M.; Newman, N.J.; Biousse, V. Acute Retinal Arterial Ischemia. Ann. Eye Sci. 2018, 3, 28. [Google Scholar] [CrossRef]
- Tang, P.H.; Engel, K.; Parke, D.W. Early Onset of Ocular Neovascularization After Hyperbaric Oxygen Therapy in a Patient with Central Retinal Artery Occlusion. Ophthalmol. Ther. 2016, 5, 263–269. [Google Scholar] [CrossRef]
- Cugati, S.; Varma, D.D.; Chen, C.S.; Lee, A.W. Treatment Options for Central Retinal Artery Occlusion. Curr. Treat. Options Neurol. 2013, 15, 63–77. [Google Scholar] [CrossRef]
- Dziedzic, R.; Zaręba, L.; Iwaniec, T.; Kubicka-Trząska, A.; Romanowska-Dixon, B.; Bazan-Socha, S.; Dropiński, J. High prevalence of thrombophilic risk factors in patients with central retinal artery occlusion. Thromb. J. 2023, 21, 81. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Kolder, H.E.; Weingeist, T.A. Central Retinal Artery Occlusion and Retinal Tolerance Time. Ophthalmology 1980, 87, 75–78. [Google Scholar] [CrossRef]
- Roskal-Wałek, J.; Mackiewicz, J.; Wałek, P.; Sidło, J.; Biskup, M.; Wożakowska-Kapłon, B.; Odrobina, D. Long-Term Mortality after Retinal Artery Occlusion—A Single Centre Study. Ann. Agric. Environ. Med. 2023, 30, 252–258. [Google Scholar] [CrossRef]
- Roskal-Wałek, J.; Wałek, P.; Biskup, M.; Sidło, J.; Cieśla, E.; Odrobina, D.; Mackiewicz, J.; Wożakowska-Kapłon, B. Retinal Artery Occlusion and Its Impact on the Incidence of Stroke, Myocardial Infarction, and All-Cause Mortality during 12-Year Follow-Up. J. Clin. Med. 2022, 11, 4076. [Google Scholar] [CrossRef] [PubMed]
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.; Culebras, A.; Elkind, M.S.V.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An Updated Definition of Stroke for the 21st Century. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed]
- Biousse, V.; Nahab, F.; Newman, N.J. Management of Acute Retinal Ischemia. Ophthalmology 2018, 125, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Janská, K.; Bodnár, R.; Janský, P.; Vosko, M. Intravenous Thrombolytic Therapy for Acute Nonarteritic Central Retinal Artery Occlusion. A Review. Czech Slovak Ophthalmol. 2022, 78, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Mac Grory, B.; Schrag, M.; Biousse, V.; Furie, K.L.; Gerhard-Herman, M.; Lavin, P.J.; Sobrin, L.; Tjoumakaris, S.I.; Weyand, C.M.; Yaghi, S. Management of Central Retinal Artery Occlusion: A Scientific Statement from the American Heart Association. Stroke 2021, 52, 282–294. [Google Scholar] [CrossRef]
- Schrag, M.; Youn, T.; Schindler, J.; Kirshner, H.; Greer, D. Intravenous Fibrinolytic Therapy in Central Retinal Artery Occlusion. JAMA Neurol. 2015, 72, 1148–1154. [Google Scholar] [CrossRef]
- Madike, R.; Cugati, S.; Chen, C. A Review of the Management of Central Retinal Artery Occlusion. Taiwan J. Ophthalmol. 2022, 12, 273–281. [Google Scholar] [CrossRef]
- Schumacher, M.; Schmidt, D.; Jurklies, B.; Gall, C.; Wanke, I.; Schmoor, C.; Maier-Lenz, H.; Solymosi, L.; Brueckmann, H.; Neubauer, A.S.; et al. Central Retinal Artery Occlusion: Local Intra-Arterial Fibrinolysis versus Conservative Treatment, a Multicenter Randomized Trial. Ophthalmology 2010, 117, 1367–1375.e1. [Google Scholar] [CrossRef]
- Mac Grory, B.; Nackenoff, A.; Poli, S.; Spitzer, M.S.; Nedelmann, M.; Guillon, B.; Preterre, C.; Chen, C.S.; Lee, A.W.; Yaghi, S.; et al. Intravenous Fibrinolysis for Central Retinal Artery Occlusion: A Cohort Study and Updated Patient-Level Meta-Analysis. Stroke 2020, 51, 2018–2025. [Google Scholar] [CrossRef]
- Chen, C.S.; Lee, A.W.; Campbell, B.; Lee, T.; Paine, M.; Fraser, C.; Grigg, J.; Markus, R. Efficacy of Intravenous Tissue-Type Plasminogen Activator in Central Retinal Artery Occlusion. Stroke 2011, 42, 2229–2234. [Google Scholar] [CrossRef]
- Raber, F.P.; Gmeiner, F.V.; Dreyhaupt, J.; Wolf, A.; Ludolph, A.C.; Werner, J.U.; Kassubek, J.; Althaus, K. Thrombolysis in Central Retinal Artery Occlusion: A Retrospective Observational Study. J. Neurol. 2023, 270, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, P.; Kook, L.; Altersberger, V.L.; Gensicke, H.; Ardila-Jurado, E.; Kägi, G.; Salerno, A.; Michel, P.; Gopisingh, K.M.; Nederkoorn, P.J.; et al. Safety and Effectiveness of IV Thrombolysis in Retinal Artery Occlusion: A Multicenter Retrospective Cohort Study. Eur. Stroke J. 2023, 8, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Shahjouei, S.; Bavarsad Shahripour, R.; Dumitrascu, O.M. Thrombolysis for Central Retinal Artery Occlusion: An Individual Participant-Level Meta-Analysis. Int. J. Stroke 2024, 19, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Mac Grory, B.; Lavin, P.; Kirshner, H.; Schrag, M. Thrombolytic Therapy for Acute Central Retinal Artery Occlusion. Stroke 2020, 51, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Webb, Z. Intravenous Thrombolysis for Central Retinal Artery Occlusion: A Look at the Literature for the Emergency Medicine Physician. Cureus 2023, 15, e41878. [Google Scholar] [CrossRef] [PubMed]
- Mele, F.; Gendarini, C.; Pantoni, L. The Use of Dual Antiplatelet Therapy for Ischemic Cerebrovascular Events. Neurol. Sci. 2023, 44, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhang, L.; Marshall, I.; Wolfe, C.; Wang, Y. Statin Therapy for Preventing Recurrent Stroke in Patients with Ischemic Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Observational Cohort Studies. Neuroepidemiology 2022, 56, 240–249. [Google Scholar] [CrossRef]
- Yoo, J.; Jeon, J.; Shin, J.Y.; Baik, M.; Kim, J. Statin Treatment on Cardiovascular Risk After Retinal Artery Occlusion: A Historical Cohort Study. J. Epidemiol. Glob. Health 2023, 13, 685–695. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, S.; Zhao, Y.; Wu, T.; Wang, Q. Network Meta-Analysis of Different Thrombolytic Strategies for the Treatment of Central Retinal Artery Occlusion. Semin. Ophthalmol. 2024, 39, 129–138. [Google Scholar] [CrossRef]
- Lin, J.C.; Song, S.; Ng, S.M.; Scott, I.U. Greenberg PB. Interventions for acute non-arteritic central retinal artery occlusion. Cochrane Database Syst. Rev. 2023, 1, CD001989. [Google Scholar] [CrossRef]
- Ciba-Stemplewska, A.; Krzos, D.; Kaczmarczyk, A.; Dolecka-Ślusarczyk, M.; Pater, E.; Roskal-Wałek, J. Giant cell arteritis: Diagnostic difficulties. Rheumatol. Forum. 2023, 9, 149–153. [Google Scholar] [CrossRef]
- Venkatesh, R.; Joshi, A.; Maltsev, D.; Munk, M.; Prabhu, V.; Bavaskar, S.; Mangla, R.; Ruamviboonsuk, P.; Chhablani, J. Update on central retinal artery occlusion. Indian. J. Ophthalmol. 2024, 72, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Incandela, L.; Cesarone, M.R.; Belcaro, G.; Steigerwalt, R.; De Sanctis, M.T.; Nicolaides, A.N.; Griffin, M.; Geroulakos, G.; Ramaswami, G. Treatment of Vascular Retinal Disease with Pentoxifylline: A Controlled, Randomized Trial. Angiology 2002, 53, S31–S34. [Google Scholar] [PubMed]
- Iwafune, Y.; Yoshimoto, H. Clinical Use of Pentoxifylline in Haemorrhagic Disorders of the Retina. Pharmatherapeutica 1980, 2, 429–438. [Google Scholar] [PubMed]
- Harino, S.; Grunwald, J.E.; Petrig, B.J.; Riva, C.E. Rebreathing into a Bag Increases Human Retinal Macular Blood Velocity. Br. J. Ophthalmol. 1995, 79, 380–383. [Google Scholar] [CrossRef]
- Daxer, B.; Radner, W.; Fischer, F.; Cocoșilă, A.L.; Ettl, A. Aetiology, Diagnosis and Treatment of Arterial Occlusions of the Retina-A Narrative Review. Medicina 2024, 60, 526. [Google Scholar] [CrossRef]
- Atebara, N.H.; Brown, G.C.; Cater, J. Efficacy of Anterior Chamber Paracentesis and Carbogen in Treating Acute Nonarteritic Central Retinal Artery Occlusion. Ophthalmology 1995, 102, 2029–2035. [Google Scholar] [CrossRef]
- Arend, O.; Harris, A.; Martin, B.J.; Holin, M.; Wolf, S. Retinal Blood Velocities during Carbogen Breathing Using Scanning Laser Ophthalmoscopy. Acta Ophthalmol. 2009, 72, 332–336. [Google Scholar] [CrossRef]
- Rumelt, S.; Dorenboim, Y.; Rehany, U. Aggressive Systematic Treatment for Central Retinal Artery Occlusion. Am. J. Ophthalmol. 1999, 128, 733–738. [Google Scholar] [CrossRef]
- Rosignoli, L.; Chu, E.R.; Carter, J.E.; Johnson, D.A.; Sohn, J.H.; Bahadorani, S. The Effects of Hyperbaric Oxygen Therapy in Patients with Central Retinal Artery Occlusion: A Retrospective Study, Systematic Review, and Meta-analysis. Korean J. Ophthalmol. 2022, 36, 108–113. [Google Scholar] [CrossRef]
- Li, H.K.; Dejean, B.J.; Tang, R.A. Reversal of Visual Loss with Hyperbaric Oxygen Treatment in a Patient with Susac Syndrome. Ophthalmology 1996, 103, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, S.; Cooper, J.S. Hyperbaric Treatment of Central Retinal Artery Occlusion [Internet]; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Beiran, I.; Goldenberg, I.; Adir, Y.; Tamir, A.; Shupak, A.; Miller, B. Early Hyperbaric Oxygen Therapy for Retinal Artery Occlusion. Eur. J. Ophthalmol. 2001, 11, 345–350. [Google Scholar] [CrossRef]
- Menzel-Severing, J.; Siekmann, U.; Weinberger, A.; Roessler, G.; Walter, P.; Mazinani, B. Early Hyperbaric Oxygen Treatment for Nonarteritic Central Retinal Artery Obstruction. Am. J. Ophthalmol. 2012, 153, 454–459.e2. [Google Scholar] [CrossRef] [PubMed]
- Cope, A.; Eggert, J.V.; O’Brien, E. Retinal Artery Occlusion: Visual Outcome after Treatment with Hyperbaric Oxygen. Diving Hyperb. Med. 2011, 41, 135–138. [Google Scholar] [PubMed]
- Olson, E.A.; Lentz, K. Central Retinal Artery Occlusion: A Literature Review and the Rationale for Hyperbaric Oxygen Therapy. Mo. Med. 2016, 113, 53–57. [Google Scholar] [PubMed]
- Sharma, R.; Newman, N.; Biousse, V. Conservative Treatments for Acute Nonarteritic Central Retinal Artery Occlusion: Do They Work? Taiwan. J. Ophthalmol. 2021, 11, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Beatty, S. Acute Occlusion of the Retinal Arteries: Current Concepts and Recent Advances in Diagnosis and Management. Emerg. Med. J. 2000, 17, 324–329. [Google Scholar] [CrossRef]
- Rassam, S.M.B.; Patel, V.; Kohner, E.M. The Effect of Acetazolamide on the Retinal Circulation. Eye 1993, 7, 697–702. [Google Scholar] [CrossRef]
- Fieß, A.; Cal, Ö.; Kehrein, S.; Halstenberg, S.; Frisch, I.; Steinhorst, U.H. Anterior Chamber Paracentesis after Central Retinal Artery Occlusion: A Tenable Therapy? BMC Ophthalmol. 2014, 14, 28. [Google Scholar] [CrossRef]
- Hausmann, N.; Richard, G. Effect of High Dose Steroid Bolus on Occlusion of Ocular Central Artery: Angiographic Study. BMJ 1991, 303, 1445–1446. [Google Scholar] [CrossRef]
- Pandit, J.C.; Tiamiyu, F. High Dose Steroid Bolus given for Occlusion of Central Retinal Artery. BMJ 1992, 304, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Stanca, H.; Petrovic, Z.; Munteanu, M. Transluminal Nd:YAG Laser Embolysis: A Reasonable Method to Reperfuse Occluded Branch Retinal Arteries. Vojnosanit. Pregl. 2014, 71, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Uslu, H.; Kanra, A.Y. Combined Treatment of Transluminal Nd:YAG Laser Embolysis and Hyperbaric Oxygen for Branch Retinal Artery Occlusion. GMS Ophthalmol. Cases 2020, 10, Doc36. [Google Scholar] [CrossRef] [PubMed]
- Man, V.; Hecht, I.; Talitman, M.; Hilely, A.; Midlij, M.; Burgansky-Eliash, Z.; Achiron, A. Treatment of Retinal Artery Occlusion Using Transluminal Nd:YAG Laser: A Systematic Review and Meta-Analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, M.A.; Khan, A.; Mukhtar, A. Efficacy of YAG Laser Embolysis in Retinal Artery Occlusion. Pak. J. Med. Sci. 2020, 37, 71–75. [Google Scholar] [CrossRef]
- Opremcak, E.; Rehmar, A.J.; Ridenour, C.D.; Borkowski, L.M.; Kelley, J.K. Restoration of retinal blood flow via translumenal Nd:YAG embolysis/embolectomy (TYL/E) for central and branch retinal artery occlusion. Retina 2008, 28, 226–235. [Google Scholar] [CrossRef]
- Much, M.M.; Hesse, L. Treatment of Retinal Arterial Branch Occlusion with Transluminal Nd:YAG Laser Embolectomy. Ophthalmologe 2014, 111, 144–150. [Google Scholar] [CrossRef]
- Chai, F.; Du, S.; Zhao, X.; Wang, R. Reperfusion of Occluded Branch Retinal Arteries by Transluminal Nd:YAG Laser Embolysis Combined with Intravenous Thrombolysis of Urokinase. Biosci. Rep. 2018, 38, BSR20170930. [Google Scholar] [CrossRef]
- Okonkwo, O.; Hassan, A.; Akanbi, T.; Umeh, V.; Ogunbekun, O. Vitrectomy and Manipulation of Intraocular and Arterial Pressures for the Treatment of Nonarteritic Central Retinal Artery Occlusion. Taiwan. J. Ophthalmol. 2021, 11, 305–311. [Google Scholar] [CrossRef]
- Garcia-Arumi, J. Surgical Embolus Removal in Retinal Artery Occlusion. Br. J. Ophthalmol. 2006, 90, 1252–1255. [Google Scholar] [CrossRef]
- Cisiecki, S.; Bonińska, K.; Bednarski, M. Vitrectomy with Arteriotomy and Neurotomy in Retinal Artery Occlusion—A Case Series. Indian. J. Ophthalmol. 2022, 70, 2072–2076. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Yuan, M.; Li, C.; Zeng, J.; Duan, F.; Lou, B.; Yang, Y.; Qian, X.; Lin, X. Effect of Vitrectomy with Intrasurgical Regulation of Intraocular Pressure in a Rabbit Model of Central Retinal Artery Occlusion. Exp. Eye Res. 2019, 189, 107779. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-J.; Su, C.-W.; Chen, H.-S.; Chen, W.-L.; Lin, J.-M.; Tsai, Y.-Y. Rescue Vitrectomy with Blocked Artery Massage and Bloodletting for Branch Retinal Artery Occlusion. Indian. J. Ophthalmol. 2017, 65, 323–325. [Google Scholar] [CrossRef] [PubMed]
- Nadal, J.; Ding Wu, A.; Canut, M. Vitrectomy with Intrasurgical Control of Ocular Hypotony as a Treatment for Central Retina Artery Occlusion. Retina 2015, 35, 1704–1705. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.O.; Muraoka, Y.; Hata, M.; Sumi, E.; Ikeda, T.; Nakagawa, T.; Abe, H.; Tada, H.; Morita, S.; Kakizuka, A.; et al. Safety and Effectiveness of a Novel Neuroprotectant, KUS121, in Patients with Non-Arteritic Central Retinal Artery Occlusion: An Open-Label, Non-Randomized, First-in-Humans, Phase 1/2 Trial. PLoS ONE 2020, 15, e0229068. [Google Scholar] [CrossRef]
- Jayasinghe, M.; Prathiraja, O.; Kayani, A.M.A.; Jena, R.; Singhal, M.; Silva, M.S. Central Retinal Artery Occlusion: Can We Effectively Manage This Ocular Emergency in a Hospital Setting? Cureus 2022, 14, e27840. [Google Scholar] [CrossRef]
- Schorr, E.M.; Rossi, K.C.; Stein, L.K.; Park, B.L.; Tuhrim, S.; Dhamoon, M.S. Characteristics and Outcomes of Retinal Artery Occlusion. Stroke 2020, 51, 800–807. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.W.; Lee, S.C.; Kwon, O.W.; Kim, Y.D.; Byeon, S.H. Co-Occurrence of Acute Retinal Artery Occlusion and Acute Ischemic Stroke: Diffusion-Weighted Magnetic Resonance Imaging Study. Am. J. Ophthalmol. 2014, 157, 1231–1238. [Google Scholar] [CrossRef]
- Okonkwo, O.N.; Agweye, C.T.; Akanbi, T. Neuroprotection for Nonarteritic Central Retinal Artery Occlusion: Lessons from Acute Ischemic Stroke. Clin. Ophthalmol. 2023, 17, 1531–1543. [Google Scholar] [CrossRef]
- Roskal-Wałek, J.; Mackiewicz, J.; Wałek, P.; Gregorczyk, M.; Biskup, M.; Wożakowska-Kapłon, B.; Odrobina, D. Retinal Artery Occlusion and Its Association with Stroke—Literature Review. Med. Stud. 2023, 39, 55–64. [Google Scholar] [CrossRef]
- Vestergaard, N.; Torp-Pedersen, C.; Vorum, H.; Aasbjerg, K. Risk of Stroke, Myocardial Infarction, and Death Among Patients With Retinal Artery Occlusion and the Effect of Antithrombotic Treatment. Transl. Vis. Sci. Technol. 2021, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Fallico, M.; Lotery, A.J.; Longo, A.; Avitabile, T.; Bonfiglio, V.; Russo, A.; Murabito, P.; Palmucci, S.; Pulvirenti, A.; Reibaldi, M. Risk of Acute Stroke in Patients with Retinal Artery Occlusion: A Systematic Review and Meta-Analysis. Eye 2020, 34, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, P.M.; Giles, M.F.; Chandratheva, A.; Marquardt, L.; Geraghty, O.; Redgrave, J.N.; Lovelock, C.E.; Binney, L.E.; Bull, L.M.; Cuthbertson, F.C.; et al. Effect of Urgent Treatment of Transient Ischaemic Attack and Minor Stroke on Early Recurrent Stroke (EXPRESS Study): A Prospective Population-Based Sequential Comparison. Lancet 2007, 370, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Lavallée, P.C.; Meseguer, E.; Abboud, H.; Cabrejo, L.; Olivot, J.-M.; Simon, O.; Mazighi, M.; Nifle, C.; Niclot, P.; Lapergue, B.; et al. A Transient Ischaemic Attack Clinic with Round-the-Clock Access (SOS-TIA): Feasibility and Effects. Lancet Neurol. 2007, 6, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Dropiński, J.; Dziedzic, R.; Kubicka-Trząska, A.; Romanowska-Dixon, B.; Iwaniec, T.; Zaręba, L.; Bazan, J.G.; Padjas, A.; Bazan-Socha, S. Central Retinal Artery Occlusion Is Related to Vascular Endothelial Injury and Left Ventricular Diastolic Dysfunction. J. Clin. Med. 2022, 11, 2263. [Google Scholar] [CrossRef]
- Lyden, P.; Brott, T.; Tilley, B.; Welch, K.M.; Mascha, E.J.; Levine, S.; Haley, E.C.; Grotta, J.; Marler, J. Improved Reliability of the NIH Stroke Scale Using Video Training. NINDS TPA Stroke Study Group. Stroke 1994, 25, 2220–2226. [Google Scholar] [CrossRef]
- Lu, W.-Z.; Lin, H.-A.; Hou, S.-K.; Lin, S.-F. ABCD2-I Score Predicts Unplanned Emergency Department Revisits within 72 Hours Due to Recurrent Acute Ischemic Stroke. Diagnostics 2024, 14, 1118. [Google Scholar] [CrossRef]
- Zafar, M.; McCafferty, Y.; Sarwar, A.; Thielemans, L.; Davies, B. A Stroke of Vision as One-and-a-Half Syndrome: Is It Time to Update the FAST Criteria and ABCD2 Score? Cureus 2022, 14, e29370. [Google Scholar] [CrossRef]
- Roskal-Wałek, J.; Wałek, P.; Sidło, J.; Biskup, J.; Mackiewicz, J.; Wożakowska-Kapłon, B. Relationship between Atrial Fibrillation and Retinal Artery Occlusion: What We Know Now and How We Can Use It in Clinical Practice? Folia Cardiol. 2021, 16, 311–317. [Google Scholar] [CrossRef]
- Kernan, W.N.; Ovbiagele, B.; Black, H.R.; Bravata, D.M.; Chimowitz, M.I.; Ezekowitz, M.D.; Fang, M.C.; Fisher, M.; Furie, K.L.; Heck, D.V.; et al. Guidelines for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack. Stroke 2014, 45, 2160–2236. [Google Scholar] [CrossRef]
- Hankey, G.J.; Slattery, J.M.; Warlow, C.P. Prognosis and Prognostic Factors of Retinal Infarction: A Prospective Cohort Study. BMJ 1991, 302, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.Y.-C.; Lin, Y.-H.; Wang, N.-K.; Yeung, L.; Luo, C.; Wu, W.-C.; Sun, C.-C.; Kang, J.-H.; Hung, M.-J.; Chen, T.-H. Aspirin Use in Central Retinal Arterial Occlusion to Prevent Ischaemic Stroke: A Retrospective Cohort Study in Taiwan. BMJ Open 2019, 9, e025455. [Google Scholar] [CrossRef] [PubMed]
Method | Mechanism | Best Time for the Implementation of Treatment After the Onset of Symptoms | Efficacy | Complications | Limitations |
---|---|---|---|---|---|
PXF [7,33,34,47] | Decreased red blood cell rigidity, reduced blood viscosity, reduced potential for thrombus formation | No data | VA deterioration despite therapy, increased PSF and EDF | Dehydration, constipation, anorexia, cholecystitis, aseptic meningitis, seizures, confusion, depressive symptoms, hypotension, edema, dyspnea, epistaxis, respiratory distress, dermatitis, angioedema, urticaria, pruritus, otalgia, scotomas, conjunctivitis, and blurred vision | Allergy to theophylline or caffeine |
Rebreathing into a bag [17,35,36] | Vasodilation | No data | Induction of hypercapnia and hypoxia—increase in ocular perfusion pressure—displacement of embolus | Systemic risk and the risk of more severe retinal hypoxia, blood pressure lowering | Only for young people with no history of cardiovascular disease |
Carbogen [17,36,37,38] | Within 24 h after the onset of symptoms [37] | Unconfirmed; no change in arterial diameter and a significant increase in the vascular flow rate and arteriovenous passage time were observed | Blood pressure lowering | No data | |
Nitroglycerine [7,17,39] | No data | Cannot be established; only used in combined treatment | Blood pressure lowering | Severe anemia, recent use of phosphodiesterase inhibitors | |
HBOT [6,40,41,42,43,44,45,46] | Increased oxygen concentration in the blood | 24 h | May meet 100% of the retina’s demand for oxygen | Barotrauma, ear pain, ruptured eardrum, and generalized seizures | No data |
Eye massage [18,39,46,47,48] | IOP reduction leading to retinal perfusion pressure increase | No data | No studies available; used in combination with other methods; lacks significant efficacy | No data | No data |
Acetazolamide [18,39,47,48,49] | No data | Increased blood flow in the retina | Paraesthesia, metallic/bitter taste in the mouth, fatigue, anaphylaxis, metabolic acidosis, Stevens–Johnson syndrome, and blood dyscrasia | No data | |
Anterior chamber paracentesis [17,37,46,47,48,50] | Within 24 h after the onset of symptoms [36] | No significant VA improvement was observed | Trauma to intraocular structures, corneal decompensation due to the iridocorneal touch, intraocular hypotony, hemorrhage, and intraocular infection | It may potentially work only in cases of embolic CRAO and not arterial occlusion caused by thrombi, vasospasm, arteritis, or dissecting aneurysm | |
Methylprednisolone [51,52] | Decrease in vascular endothelial edema | Not determined | Data based on a study of a series of 4 clinical cases; high efficacy in cases of vasospasm or CRAO secondary to vasculitis | Rare, but may be serious, including anaphylactic reactions, tetraplegia, cardiac arrhythmia, and sudden death | Lack of efficacy in RAO other than caused by vasculitis |
IVT [7,14,15,16,19,20,21,22,23,25] | Dissolving the clot causing CRA stenosis with an intravenous thrombolytic agent | Within 4.5 h after the onset of symptoms | The percentage of patients with significant VA improvement varies in respective studies, but it is generally in the 40–50% range | Intracerebral and systemic hemorrhage Anaphylactic reaction, laryngeal edema, angioedema, rash, urticaria | Ophthalmic contraindications: elevated IOP > 30 mmHg, VA > 0.1, temporal arteritis, combined arteriovenous occlusion, CRA branch occlusion, CRAO without foveal ischemia, choroidal neovascularisation, proliferative diabetic retinopathy, or other severe retinopathy. Other contraindications: intracranial hemorrhage or other significant acute or recent bleeding, uncontrolled hypertension, anticoagulation therapy, hemorrhagic diathesis, aneurysm or arterial dissection, infective endocarditis, peripartum period |
IAT [15,17,18,24] | Dissolving the clot causing CRA stenosis with an intravenous thrombolytic agent administered directly to the ocular circulation | 12.78 ± 5.77 h | VA improvement in as many as 60–70% of patients | Intracerebral hemorrhage, cerebellar hemorrhage with paralysis, right hemiparesis, disturbances of consciousness, headache, dizziness, internal carotid artery spasm, eyelid edema, corneal erosion, hematoma at the vessel puncture site, increased IOP, increased troponin levels, tinnitus, oral hemorrhage, post-procedural hemorrhage, epistaxis, and facial hyperaesthesia | Availability of qualified personnel, time for the implementation of treatment limited to 6 h |
TYL/TYE [53,54,55,56,57,58,59] | Extravascular laser application to obtain embolysis or embolectomy | 6 h | Significant VA improvement in most cases | Vitreous hemorrhage, need for vitrectomy | Location and visibility of the embolus |
Vitrectomy [60,61,62,63,64,65] | Manipulation with ocular perfusion pressure, retinal artery massage, CRA cannulation with microneedle, bloodletting, embolectomy, and vitrectomy with arteriotomy and neurotomy | No clinical data; animal model showed minimal retinal cellular damage 2 h after successful reperfusion | No validated randomized clinical trials; case studies demonstrated the potential effectiveness of this method | Hemorrhage to vitreous cavity | The location and structure of the embolus may affect the outcome of the procedure. The presence of infectious disease within the eye adnexa, poor general condition, allergy to anesthetics |
KUS121 [66] | Inhibits the decrease in intracellular ATP concentration | Ongoing studies | Ongoing studies | Adverse events not defined as complications: IOP increase, subconjunctival hemorrhage and corneal epithelial damage, neovascularisation of the iris | Ongoing studies |
Abbreviation (Mnemonic: ABCD2) | Parameters | Score |
---|---|---|
A | Age (years) >60 | 1 |
B | Blood pressure (mmHg) SBP > 140 or DBP > 90 | 1 |
C | Clinical features: Unilateral weakness Speech disturbance without weakness | 2 1 |
D | Duration of symptoms (minutes): ≥60 <10–59 min | 2 1 |
D2 | Diabetes | 1 |
Guidelines | DAPT in Non-Cardioembolic Ischemic Stroke and High-Risk TIA | DAPT in Stroke and TIA Due to Intracranial Stenosis | ||
---|---|---|---|---|
AHA/ASA | aspirin + clopidogrel | aspirin + ticagrelor | aspirin + clopidogrel | |
Patients | minor ischemic stroke (NIHSS ≤ 3) | minor to moderate stroke (NIHSS ≤ 5) | stroke or TIA attributable to severe stenosis (70–99%) of a major intracranial artery | |
high-risk TIA (ABCD2 ≥ 4) | high-risk TIA (ABCD2 ≥ 6 or symptomatic intracranial or extracranial ≥ 30% stenosis of an artery that could account for the event) | |||
interval between the event and the introduction of therapy | ideally 12–24 h, at least 7 days | 24 h | 30 days | |
duration of DAPT | 21–90 days | 30 days | 90 days | |
strength of recommendation | strong | weak | moderate | |
ESO | aspirin + clopidogrel | aspirin + ticagrelor | aspirin + cilostazol or clopidogrel or ticagrelor | |
Patients | minor ischemic stroke (NIHSS ≤ 3) | mild to moderate ischemic stroke (NIHSS ≤ 5) | ischemic stroke or TIA related to intracranial stenosis due to ICAD | |
high-risk TIA (ABCD2 ≥ 4) | high-risk TIA (ABCD2 ≥ 6) or intracranial atherosclerotic disease or at least 50% stenosis in an internal carotid artery that could account for the presentation | |||
interval between the event and the introduction of therapy | 24 h | 24 h | no specific indication | |
duration of DAPT | 21 days | 30 days | 90 days | |
strength of recommendation | strong | weak | weak |
Risk Factor | Description | Score | |
---|---|---|---|
C | Congestive HF, clinical HF, moderate or severe LV dysfunction or HCM | Recent decompensated HF, irrespective of LVEF (HFrEF or HFpEF) or presence of moderate or severe LV systolic function impairment (also asymptomatic) in cardiac imaging | 1 |
H | Hypertension | Resting blood pressure > 140/90 mm Hg ≥ 2 measurements taken on different occasions or appropriate hypotensive treatment | 1 |
A2 | Age >75 years | - | 2 |
D | Diabetes | (1) Random venous blood glucose ≥ 200 mg/dL (≥11.1 mmol/L) + symptoms of diabetes (2) Double measurement of fasting blood glucose ≥ 126 mg/dL (≥7 mmol/L) (3) OGTT ≥ 200 mg/dL (≥11.1 mmol/L) | 1 |
S2 | History of stroke/TIA/ /thromboembolic event | History of stroke, TIA or peripheral embolism (including RAO) | 2 |
V | Vascular disease | History of myocardial infarction, atherosclerotic peripheral artery disease, atherosclerotic plaque in the aorta | 1 |
A | Age 65–74 years | - | 1 |
Sc | Female gender | Increases the risk if ≥ 1 other risk factor is present | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roskal-Wałek, J.; Ruzik, A.; Kubiś, N.; Teper, M.; Wesołowski, M.; Wujec, Z.; Wałek, P.; Odrobina, D.; Mackiewicz, J.; Wożakowska-Kapłon, B. Therapeutic Strategies for Retinal Artery Occlusion—A Literature Review. J. Clin. Med. 2024, 13, 6813. https://doi.org/10.3390/jcm13226813
Roskal-Wałek J, Ruzik A, Kubiś N, Teper M, Wesołowski M, Wujec Z, Wałek P, Odrobina D, Mackiewicz J, Wożakowska-Kapłon B. Therapeutic Strategies for Retinal Artery Occlusion—A Literature Review. Journal of Clinical Medicine. 2024; 13(22):6813. https://doi.org/10.3390/jcm13226813
Chicago/Turabian StyleRoskal-Wałek, Joanna, Alicja Ruzik, Natalia Kubiś, Maria Teper, Michał Wesołowski, Zuzanna Wujec, Paweł Wałek, Dominik Odrobina, Jerzy Mackiewicz, and Beata Wożakowska-Kapłon. 2024. "Therapeutic Strategies for Retinal Artery Occlusion—A Literature Review" Journal of Clinical Medicine 13, no. 22: 6813. https://doi.org/10.3390/jcm13226813
APA StyleRoskal-Wałek, J., Ruzik, A., Kubiś, N., Teper, M., Wesołowski, M., Wujec, Z., Wałek, P., Odrobina, D., Mackiewicz, J., & Wożakowska-Kapłon, B. (2024). Therapeutic Strategies for Retinal Artery Occlusion—A Literature Review. Journal of Clinical Medicine, 13(22), 6813. https://doi.org/10.3390/jcm13226813