The Co-Existence of Hypovitaminosis D and Diabetes Mellitus Triples the Incidence of Severe Coronary Artery Disease in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Sources
2.2. Definitions
2.3. Sample Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Population
3.2. Gender Differences in the Cohort
3.3. Vitamin D and CAD Severity in Female Gender
3.4. Vitamin D and CAD Severity in Male Gender
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
25(OH)D | 25-Hydroxyvitamin D |
AMI | Acute Myocardial Infarction |
BMI | Body Mass Index |
CAD | Coronary Artery Disease |
CKD | Chronic Kidney Disease |
DM | Diabetes Mellitus |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
NO | Nitric Oxide |
eNOS | Endothelial NO Synthase |
NSTEMI | Non-ST-Segment Elevation Myocardial Infarction |
NF-κB | Nuclear Factor Kappa Enhancer Of Light Chain |
RAS | Renin–Angiotensin System |
RCTs | Randomised Controlled Trials |
PTH | Parathyroid Hormone |
STEMI | ST-Segment Elevation Myocardial Infarction |
TNF-α | Tumour Necrosis Factor-α |
VDR | Vitamin D Receptor |
VSMCs | Vascular Smooth Muscle Cells |
References
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Verdoia, M.; Schaffer, A.; Barbieri, L.; Di Giovine, G.; Marino, P.; Suryapranata, H.; De Luca, G. Impact of gender difference on vitamin D status and its relationship with the extent of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 464–470. [Google Scholar] [CrossRef]
- Norouzi, H.; Ziaie, N.; Saravi, M.; Norouzi, A.; Noei, S.; Darzi, F.J.; Norouzi, F.; Fumashi, M.R.; Tajrishi, F.Z.; Norouzi, S. Association of vitamin D deficiency and premature coronary artery disease. Casp. J. Intern. Med. 2019, 10, 80–85. [Google Scholar] [CrossRef]
- Janjusevic, M.; Gagno, G.; Fluca, A.L.; Padoan, L.; Beltrami, A.P.; Sinagra, G.; Moretti, R.; Aleksova, A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci. 2022, 289, 120193. [Google Scholar] [CrossRef] [PubMed]
- Aleksova, A.; Ferro, F.; Gagno, G.; Padoan, L.; Saro, R.; Santon, D.; Stenner, E.; Barbati, G.; Cappelletto, C.; Rossi, M.; et al. Diabetes Mellitus and Vitamin D Deficiency:Comparable Effect on Survival and a DeadlyAssociation after a Myocardial Infarction. J. Clin. Med. 2020, 9, 2127. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Lazaretti-Castro, M.; Lips, P.; Marcocci, C.; Bilezikian, J.P. Vitamin D in the older population: A consensus statement. Endocrine 2023, 79, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar] [CrossRef]
- Ning, Z.; Song, S.; Miao, L.; Zhang, P.; Wang, X.; Liu, J.; Hu, Y.; Xu, Y.; Zhao, T.; Liang, Y.; et al. High prevalence of vitamin D deficiency in urban health checkup population. Clin. Nutr. 2016, 35, 859–863. [Google Scholar] [CrossRef]
- Gromova, O.; Doschanova, A.; Lokshin, V.; Tuletova, A.; Grebennikova, G.; Daniyarova, L.; Kaishibayeva, G.; Nurpeissov, T.; Khan, V.; Semenova, Y.; et al. Vitamin D deficiency in Kazakhstan: Cross-Sectional study. J. Steroid Biochem. Mol. Biol. 2020, 199, 105565. [Google Scholar] [CrossRef]
- Schöttker, B.; Jorde, R.; Peasey, A.; Thorand, B.; Jansen, E.H.J.M.; de Groot, L.; Streppel, M.; Gardiner, J.; Ordóñez-Mena, J.M.; Perna, L.; et al. Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ 2014, 348, g3656. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Ortiz, A.; Wanner, C.; Gansevoort, R.; ERA Council. Chronic kidney disease as cardiovascular risk factor in routine clinical practice: A position statement by the Council of the European Renal Association. Eur. J. Prev. Cardiol. 2022, 29, 2211–2215. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Cowger, J.A. Cardiogenic shock. Crit. Care Clin. 2014, 30, 391–412. [Google Scholar] [CrossRef] [PubMed]
- Tscherny, K.; Kienbacher, C.; Fuhrmann, V.; van Tulder, R.; Schreiber, W.; Herkner, H.; Roth, D. Risk stratification in acute coronary syndrome: Evaluation of the GRACE and CRUSADE scores in the setting of a tertiary care centre. Int. J. Clin. Pract. 2020, 74, e13444. [Google Scholar] [CrossRef]
- Wang, T.J.; Pencina, M.J.; Booth, S.L.; Jacques, P.F.; Ingelsson, E.; Lanier, K.; Benjamin, E.J.; D’Agostino, R.B.; Wolf, M.; Vasan, R.S. Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008, 117, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Dobnig, H.; Pilz, S.; Scharnagl, H.; Renner, W.; Seelhorst, U.; Wellnitz, B.; Kinkeldei, J.; Boehm, B.O.; Weihrauch, G.; Maerz, W. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch. Intern. Med. 2008, 168, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Judd, S.E.; Tangpricha, V. Vitamin D deficiency and risk for cardiovascular disease. Am. J. Med. Sci. 2009, 338, 40–44. [Google Scholar] [CrossRef]
- Giovannucci, E.; Liu, Y.; Hollis, B.W.; Rimm, E.B. 25-hydroxyvitamin D and risk of myocardial infarction in men: A prospective study. Arch. Intern. Med. 2008, 168, 1174–1180. [Google Scholar] [CrossRef]
- Siadat, Z.D.; Kiani, K.; Sadeghi, M.; Shariat, A.S.; Farajzadegan, Z.; Kheirmand, M. Association of vitamin D deficiency and coronary artery disease with cardiovascular risk factors. J. Res. Med. Sci. 2012, 17, 1052–1055. [Google Scholar]
- Chen, Y.; Zhang, J.; Ge, X.; Du, J.; Deb, D.K.; Li, Y.C. Vitamin D receptor inhibits nuclear factor kappaB activation by interacting with IkappaB kinase beta protein. J. Biol. Chem. 2013, 288, 19450–19458. [Google Scholar] [CrossRef]
- Yan, G.; You, B.; Chen, S.-P.; Liao, J.K.; Sun, J. Tumor necrosis factor-alpha downregulates endothelial nitric oxide synthase mRNA stability via translation elongation factor 1-alpha 1. Circ. Res. 2008, 103, 591–597. [Google Scholar] [CrossRef]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shatil Shahriar, S.M.; Cordon, B.; Ma, B.; Xie, J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv. Sci. 2023, 10, e2303259. [Google Scholar] [CrossRef] [PubMed]
- Su, Y. Regulation of endothelial nitric oxide synthase activity by protein-protein interaction. Curr. Pharm. Des. 2014, 20, 3514–3520. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A.; Trummer, C.; Theiler-Schwetz, V.; Lerchbaum, E.; März, W.; Pilz, S. Vitamin D and Cardiovascular Disease: An Updated Narrative Review. Int. J. Mol. Sci. 2021, 22, 2896. [Google Scholar] [CrossRef]
- Goltzman, D.; Mannstadt, M.; Marcocci, C. Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. Front. Horm. Res. 2018, 50, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.-H.; Li, F.-X.; Xu, F.; Lin, X.; Wang, Y.; Xu, Q.-S.; Guo, B.; Yuan, L.-Q. The interplay between the renin-angiotensin-aldosterone system and parathyroid hormone. Front. Endocrinol. 2020, 11, 539. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Chapter 40—Vitamin d and the Renin-Angiotensin System, Vitamin D, 3rd ed.; Academic Press: San Diego, CA, USA, 2011; pp. 707–723. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Oczkowicz, M. Sex differences in vitamin D metabolism, serum levels and action. Br. J. Nutr. 2022, 128, 2115–2130. [Google Scholar] [CrossRef]
- Aleksova, A.; Janjusevic, M.; Zhou, X.N.O.; Zandonà, L.; Chicco, A.; Stenner, E.; Beltrami, A.P.; D’Errico, S.; Sinagra, G.; Marketou, M.; et al. Persistence of vitamin D deficiency among Italian patients with acute myocardial infarction. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1283–1294. [Google Scholar] [CrossRef]
- Nair, A.R.; Pillai, A.J.; Nair, N. Cardiovascular Changes in Menopause. Curr. Cardiol. Rev. 2021, 17, e230421187681. [Google Scholar] [CrossRef]
- Perez-Lopez, F.R.; Chedraui, P.; Pilz, S. Vitamin D supplementation after the menopause. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820931291. [Google Scholar] [CrossRef]
- Rohrmann, S.; Braun, J.; Bopp, M.; Faeh, D.; Swiss National Cohort (SNC). Inverse association between circulating vitamin D and mortality–dependent on sex and cause of death? Nutr. Metab. Cardiovasc. Dis. 2013, 23, 960–966. [Google Scholar] [CrossRef]
- Song, J.W.; Chung, K.C. Observational studies: Cohort and case-control studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.; Appel, L.J.; Michos, E.D. Vitamin D, Calcium, and Cardiovascular Disease: A”D”vantageous or “D”etrimental? An Era of Uncertainty. Curr. Atheroscler. Rep. 2017, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Scragg, R.; Stewart, A.W.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Sluyter, J.; Murphy, J.; Khaw, K.-T.; Camargo, C.A. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study: A Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Virtanen, J.K.; Nurmi, T.; Aro, A.; Bertone-Johnson, E.R.; Hyppönen, E.; Kröger, H.; Lamberg-Allardt, C.; Manson, E.J.; Mursu, J.; Mäntyselkä, P.; et al. Vitamin D supplementation and prevention of cardiovascular disease and cancer in the Finnish Vitamin D Trial: A randomized controlled trial. Am. J. Clin. Nutr. 2022, 115, 1300–1310. [Google Scholar] [CrossRef]
- Acharya, P.; Dalia, T.; Ranka, S.; Sethi, P.; Oni, A.O.; Safarova, M.S.; Parashara, D.; Gupta, K.; Barua, R.S. The Effects of Vitamin D Supplementation and 25-Hydroxyvitamin D Levels on the Risk of Myocardial Infarction and Mortality. J. Endocr. Soc. 2021, 5, bvab124. [Google Scholar] [CrossRef]
- Feuchtner, G.; Suppersberger, S.; Langer, C.; Beyer, C.; Rauch, S.; Thurner, T.; Friedrich, G.; Dichtl, W.; Widmann, G.; Plank, F.; et al. The Effect of Vitamin D on Coronary Atherosclerosis: A Propensity Score Matched Case-Control Coronary CTA Study. J. Cardiovasc. Dev. Dis. 2021, 8, 85. [Google Scholar] [CrossRef]
- Sempos, C.T.; Durazo-Arvizu, R.A.; Dawson-Hughes, B.; Yetley, E.A.; Looker, A.C.; Schleicher, R.L.; Cao, G.; Burt, V.; Kramer, H.; Bailey, R.L.; et al. Is there a reverse J-shaped association between 25-hydroxyvitamin D and all-cause mortality? Results from the US nationally representative NHANES. J. Clin. Endocrinol. Metab. 2013, 98, 3001–3009. [Google Scholar] [CrossRef]
- Durup, D.; Jørgensen, H.L.; Christensen, J.; Tjønneland, A.; Olsen, A.; Halkjær, J.; Lind, B.; Heegaard, A.-M.; Schwarz, P. A reverse J-shaped association between serum 25-hydroxyvitamin D and cardiovascular disease mortality: The CopD study. J. Clin. Endocrinol. Metab. 2015, 100, 2339–2346. [Google Scholar] [CrossRef]
- Kojima, G.; Iliffe, S.; Tanabe, M. Vitamin D supplementation as a potential cause of U-shaped associations between vitamin D levels and negative health outcomes: A decision tree analysis for risk of frailty. BMC Geriatr. 2017, 17, 236. [Google Scholar] [CrossRef]
- Aleksova, A.; Beltrami, A.P.; Belfiore, R.; Barbati, G.; Di Nucci, M.; Scapol, S.; De Paris, V.; Carriere, C.; Sinagra, G. U-shaped relationship between vitamin D levels and long-term outcome in large cohort of survivors of acute myocardial infarction. Int. J. Cardiol. 2016, 223, 962–966. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 1484) | Female (n = 419) | Male (n = 1065) | p-Value | |
---|---|---|---|---|
Age (years) | 66.3 (11.5) | 70.1 (11.4) | 64.7 (11.2) | <0.01 |
BMI (kg/m2) | 26.2 [24–29] | 25.5 [22.2–29.2] | 26.5 [24.3–29.4] | <0.01 |
SBP/DBP on admission (mmHg) | 135.3 (24.1)/80 [70–85] | 135 (24.2)/80 [70–80] | 135.4 (24.1)/80 [70–90] | 0.77/<0.01 |
Heart rate on admission (bpm) | 75 [65–85] | 75 [66–85] | 74 [64–84.5] | 0.03 |
Atrial fibrillation (%) | 7.2 | 7 | 7.3 | 0.85 |
Left bundle branch block (%) | 4.2 | 4.4 | 4.1 | 0.77 |
Diagnosis (%) | 0.23 | |||
NSTEMI | 36.1 | 38.4 | 35.1 | |
STEMI | 63.9 | 61.6 | 64.9 | |
Killip > 1 (%) | 18.6 | 22.2 | 17.2 | 0.03 |
Hypertension (%) | 65.5 | 67.3 | 64.4 | 0.33 |
Diabetes mellitus (%) | 24.5 | 20.3 | 25.8 | 0.03 |
Smoking (%) | 45.5 | 31.5 | 51 | <0.01 |
Dyslipidemia (%) | 55.1 | 57.3 | 54.3 | 0.30 |
Positive family history (%) | 24.9 | 26.6 | 24.3 | 0.39 |
Chronic kidney disease (%) | 8.7 | 6.2 | 9.7 | 0.03 |
Peripheral artery disease/Carotid vasculopathy (%) | 7.1/8.2 | 6.4/9.1 | 7.4/7.8 | 0.51/0.53 |
History of AMI/PCI/CABG (%) | 17.5 | 12.6 | 19.3 | <0.01 |
History of stroke/TIA (%) | 5.6 | 6.4 | 5.3 | 0.38 |
Anaemia (%) | 29.4 | 31 | 28.8 | 0.39 |
Uric acid (mg/dL) | 5.8 [4.8–6.9] | 5.1 [4.2–6.4] | 6 [5.1–7.1] | <0.01 |
Fibrinogen (mg/dL) | 328 [275–399] | 342 [283–400] | 322 [271.8–398.3] | 0.04 |
Total cholesterol (mg/dL) | 184 [154–218] | 199 [158–230] | 181 [151–213] | <0.01 |
HDL cholesterol (mg/dL) | 43 [36–51] | 49 [41–58] | 41 [35–49] | <0.01 |
LDL cholesterol (mg/dL) | 119.4 (40.5) | 124.51 (43.6) | 117.5 (39.1) | 0.01 |
Triglycerides (mg/dL) | 111 [83–150] | 110 [83.75–143] | 112 [82–153] | 0.29 |
hs-TnI (ng/L) | 15,685 [3595–56,580] | 9132 [1927.5–44,642.5] | 19,671 [4836.8–62,141] | <0.01 |
HbA1c (%) | 5.9 [5.6–6.5] | 5.9 [5.6–6.4] | 5.9 [5.6–6.6] | 0.67 |
GFR (mL/min/1.73 m2) on admission | 81.4 [64.1–99.4] | 76.4 [58–94.3] | 83.9 [66.4–101.1] | <0.01 |
GFR < 60 mL/min/1.73 m2 on admission (%) | 20.4 | 26 | 18.1 | <0.01 |
GRACE score at 6 months | 132 [110–154] | 139 [114.3–161] | 130 [109–153] | <0.01 |
Left ventricular ejection fraction (%) | 51.6 (10.9) | 52.27 (11.4) | 51.4 (10.6) | 0.19 |
Mitral insufficiency (%) | 57.8 | 65.1 | 55.1 | <0.01 |
Therapy at admission (%) | <0.01 | |||
Medical therapy | 19.1 | 29.8 | 14.8 | <0.01 |
PCI | 70.7 | 62.8 | 73.8 | <0.01 |
CABG | 9.6 | 7.2 | 10.6 | 0.04 |
First PCI and then CABG | 0.6 | 0.2 | 0.8 | 0.46 |
Right coronary artery (RCA) > 50% (%) | 54.9 | 50.1 | 56.7 | 0.02 |
Left anterior descending artery (LAD) > 50% (%) | 65.5 | 57.8 | 68.5 | <0.01 |
Left main coronary artery > 50% (%) | 23.2 | 20.5 | 24.3 | 0.11 |
Circumflex artery (LCx) > 50% (%) | 35.8 | 28.9 | 61.5 | <0.01 |
Ellis C (%) | 17.1 | 15.3 | 17.8 | 0.27 |
Bifurcation (%) | 0.7 | 0.5 | 0.8 | 0.46 |
CAD (%) | 86.2 | 77.6 | 89.6 | <0.01 |
Severe CAD (%) | 32.9 | 27.7 | 34.9 | <0.01 |
No. of vessels > 50% (%) | ||||
0 | 13.8 | 22.4 | 10.4 | <0.01 |
1 | 30.9 | 29.6 | 31.4 | 0.51 |
2 | 27.4 | 25.1 | 28.4 | 0.2 |
3 | 17.9 | 14.1 | 19.4 | 0.02 |
4 | 10 | 8.8 | 10.4 | 0.36 |
Vitamin D (ng/mL) | 17.3 [10.3–24.7] | 15.7 [8.4–25.4] | 17.9 [11–24.3] | 0.01 |
Hypovitaminosis D (%) | 59.7 | 62.5 | 58.6 | 0.16 |
Severe hypovitaminosis D (%) | 23.6 | 30.3 | 20.9 | <0.01 |
NYHA class on discharge (%) | 0.62 | |||
I | 85.9 | 84.7 | 86.4 | 0.40 |
II | 12.2 | 12.9 | 11.8 | 0.56 |
III | 2 | 2.4 | 1.8 | 0.46 |
Predictors of Severe CAD | OR (95% CI) | p-Value |
---|---|---|
Hypovitaminosis D (Yes vs. No) | 1.85 (1.14–3.01) | 0.013 |
Diabetes mellitus (Yes vs. No) | 1.88 (1.13–3.17) | 0.016 |
CKD (Yes vs. No) | 1.99 (1.24–3.22) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksova, A.; Janjusevic, M.; Pani, B.; Hiche, C.; Chicco, A.; Derin, A.; Zandonà, L.; Stenner, E.; Beltrame, D.; Gabrielli, M.; et al. The Co-Existence of Hypovitaminosis D and Diabetes Mellitus Triples the Incidence of Severe Coronary Artery Disease in Women. J. Clin. Med. 2024, 13, 6792. https://doi.org/10.3390/jcm13226792
Aleksova A, Janjusevic M, Pani B, Hiche C, Chicco A, Derin A, Zandonà L, Stenner E, Beltrame D, Gabrielli M, et al. The Co-Existence of Hypovitaminosis D and Diabetes Mellitus Triples the Incidence of Severe Coronary Artery Disease in Women. Journal of Clinical Medicine. 2024; 13(22):6792. https://doi.org/10.3390/jcm13226792
Chicago/Turabian StyleAleksova, Aneta, Milijana Janjusevic, Beatrice Pani, Cristina Hiche, Andrea Chicco, Agnese Derin, Lorenzo Zandonà, Elisabetta Stenner, Daria Beltrame, Marco Gabrielli, and et al. 2024. "The Co-Existence of Hypovitaminosis D and Diabetes Mellitus Triples the Incidence of Severe Coronary Artery Disease in Women" Journal of Clinical Medicine 13, no. 22: 6792. https://doi.org/10.3390/jcm13226792
APA StyleAleksova, A., Janjusevic, M., Pani, B., Hiche, C., Chicco, A., Derin, A., Zandonà, L., Stenner, E., Beltrame, D., Gabrielli, M., Lovadina, S., Corgosinho, F. C., D’Errico, S., Marketou, M., Zwas, D. R., Sinagra, G., & Fluca, A. L. (2024). The Co-Existence of Hypovitaminosis D and Diabetes Mellitus Triples the Incidence of Severe Coronary Artery Disease in Women. Journal of Clinical Medicine, 13(22), 6792. https://doi.org/10.3390/jcm13226792