Cardiovascular Precision Medicine and Remote Intervention Trial Rationale and Design
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population and Eligibility Criteria
2.3. Intervention
2.4. Study Outcomes
2.5. Measurement of Blood Pressure
2.6. Statistical Analysis
2.7. Analysis of Outcomes
2.8. Sample Size Consideration
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Fact Sheet, Cardiovascular Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 20 September 2024).
- Knight, E.L.; Bohn, R.L.; Wang, P.S.; Glynn, R.J.; Mogun, H.; Avorn, J. Predictors of Uncontrolled Hypertension in Ambulatory Patients. Hypertension 2001, 38, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Galson, S.W.; Pesambili, M.; Vissoci, J.R.N.; Manavalan, P.; Hertz, J.T.; Temu, G.; Staton, C.A.; Stanifer, J.W. Hypertension in an Emergency Department Population in Moshi, Tanzania; A Qualitative Study of Barriers to Hypertension Control. PLoS ONE 2023, 18, e0279377. [Google Scholar] [CrossRef] [PubMed]
- Mezue, K.; Goyal, A.; Pressman, G.S.; Matthew, R.; Horrow, J.C.; Rangaswami, J. Blood Pressure Variability Predicts Adverse Events and Cardiovascular Outcomes in SPRINT. J. Clin. Hypertens. 2018, 20, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Castello, J.P.; Teo, K.C.; Abramson, J.R.; Keins, S.; Takahashi, C.E.; Leung, I.Y.H.; Leung, W.C.Y.; Wang, Y.; Kourkoulis, C.; Myserlis, E.P.; et al. Long-Term Blood Pressure Variability and Major Adverse Cardiovascular and Cerebrovascular Events After Intracerebral Hemorrhage. J. Am. Heart Assoc. 2022, 11, e024158. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.A.; Arnott, C.; Rockenschaub, P.; Schutte, A.E.; Carpenter, L.; Vaduganathan, M.; Agarwal, R.; Bakris, G.; Chang, T.I.; Heerspink, H.J.L.; et al. Canagliflozin, Blood Pressure Variability, and Risk of Cardiovascular, Kidney, and Mortality Outcomes: Pooled Individual Participant Data from the CANVAS and CREDENCE Trials. J. Am. Heart Assoc. 2023, 12, e028516. [Google Scholar] [CrossRef]
- Kim, M.; Cho, M.S.; Nam, G.B.; Do, U.; Kim, J.; Choi, K.J. Controlled Level and Variability of Systolic Blood Pressure on the Risk of Thromboembolic Events in Atrial Fibrillation and Hypertension. Am. J. Cardiol. 2022, 180, 37–43. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, H.W.; Joo, Y.S.; Park, J.T.; Chang, T.I.; Yoo, T.H.; Park, S.K.; Chae, D.W.; Chung, W.; Kim, Y.S.; et al. Association Between Systolic Blood Pressure Variability and Major Adverse Cardiovascular Events in Korean Patients with Chronic Kidney Disease: Findings from KNOW-CKD. J. Am. Heart Assoc. 2022, 11, e025513. [Google Scholar] [CrossRef]
- Sheikh, A.B.; Sobotka, P.A.; Garg, I.; Dunn, J.P.; Minhas, A.M.K.; Shandhi, M.M.H.; Molinger, J.; McDonnell, B.J.; Fudim, M. Blood Pressure Variability in Clinical Practice: Past, Present and the Future. J. Am. Heart Assoc. 2023, 12, e029297. [Google Scholar] [CrossRef]
- McAlister, F.A.; Lethebe, B.C.; Leung, A.A.; Padwal, R.S.; Williamson, T. Visit-to-Visit Blood Pressure Variability Is Common in Primary Care Patients: Retrospective Cohort Study of 221,803 Adults. PLoS ONE 2021, 16, e0248362. [Google Scholar] [CrossRef]
- Rosei, E.A.; Chiarini, G.; Rizzoni, D. How Important Is Blood Pressure Variability? Eur. Heart J. Suppl. 2020, 22, E1–E6. [Google Scholar] [CrossRef]
- Konstantinidis, D.; Iliakis, P.; Tatakis, F.; Thomopoulos, K.; Dimitriadis, K.; Tousoulis, D.; Tsioufis, K. Wearable blood pressure measurement devices and new approaches in hypertension management: The digital era. J. Hum. Hypertens. 2022, 36, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, E.; Fine, R.N. Is Calculating the Standard Deviation of Tacrolimus Blood Levels the New Gold Standard for Evaluating Non-Adherence to Medications in Transplant Recipients? Pediatr. Transpl. 2010, 14, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, E.; Bucuvalas, J.C.; Anand, R.; Mazariegos, G.V.; Alonso, E.M.; Venick, R.S.; Reyes-Mugica, M.; Annunziato, R.A.; Shneider, B.L. The Medication Level Variability Index (MLVI) Predicts Poor Liver Transplant Outcomes: A Prospective Multi-Site Study. Am. J. Transpl. 2017, 17, 2668–2678. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, D.R.J. Intrapatient Variability of Tacrolimus Exposure in Solid Organ Transplantation: A Novel Marker for Clinical Outcome. Clin. Pharmacol. Ther. 2020, 107, 347–358. [Google Scholar] [CrossRef]
- Schumacher, L.; Leino, A.D.; Park, J.M. Tacrolimus Intrapatient Variability in Solid Organ Transplantation: A Multiorgan Perspective. Pharmacotherapy 2021, 41, 103–118. [Google Scholar] [CrossRef]
- Kim, M.K.; Han, K.; Park, Y.M.; Kwon, H.S.; Kang, G.; Yoon, K.H.; Lee, S.H. Associations of Variability in Blood Pressure, Glucose and Cholesterol Concentrations, and Body Mass Index with Mortality and Cardiovascular Outcomes in the General Population. Circulation 2018, 138, 2627–2637. [Google Scholar] [CrossRef]
- Bangalore, S.; Breazna, A.; Demicco, D.A.; Wun, C.C.; Messerli, F.H. Visit-to-Visit Low-Density Lipoprotein Cholesterol Variability and Risk of Cardiovascular Outcomes: Insights from the TNT Trial. J. Am. Coll. Cardiol. 2015, 65, 1539–1548. [Google Scholar] [CrossRef]
- Hong, K.; Muntner, P.; Kronish, I.; Shilane, D.; Chang, T.I. Medication Adherence and Visit-to-Visit Variability of Systolic Blood Pressure in African Americans with Chronic Kidney Disease in the AASK Trial. J. Hum. Hypertens. 2016, 30, 73–78. [Google Scholar] [CrossRef]
- Kumanan, T.; Sujanitha, V.; Guruparan, M.; Rajeshkannan, N. Factors Associated with Visit-to-Visit Variability of Blood Pressure Measured as Part of Routine Clinical Care among Patients Attending Cardiology Outpatient Department of a Tertiary Care Centre in Northern Sri Lanka. Int. J. Hypertens. 2019, 2019, 6450281. [Google Scholar] [CrossRef]
- Eguchi, K. Effects of Antihypertensive Therapy on Blood Pressure Variability. Curr. Hypertens. Rep. 2016, 18, 75. [Google Scholar] [CrossRef]
- Mann, D.M.; Glazer, N.L.; Winter, M.; Paasche-Orlow, M.K.; Muntner, P.; Shimbo, D.; Adams, W.G.; Kressin, N.R.; Zhang, Y.; Choi, H.; et al. A Pilot Study Identifying Statin Nonadherence with Visit-to-Visit Variability of Low-Density Lipoprotein Cholesterol. Am. J. Cardiol. 2013, 111, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.L.; Wood, S.; Koshiaris, C.; Law, K.; Glasziou, P.; Stevens, R.J.; McManus, R.J. Blood Pressure Variability and Cardiovascular Disease: Systematic Review and Meta-Analysis. BMJ 2016, 354, i4098. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Howard, S.C.; Dolan, E.; O’Brien, E.; Dobson, J.E.; Dahlöf, B.; Sever, P.S.; Poulter, N.R. Prognostic Significance of Visit-to-Visit Variability, Maximum Systolic Blood Pressure, and Episodic Hypertension. Lancet 2010, 375, 895–905. [Google Scholar] [CrossRef]
- Kawai, T.; Ohishi, M.; Ito, N.; Onishi, M.; Takeya, Y.; Yamamoto, K.; Kamide, K.; Rakugi, H. Alteration of Vascular Function Is an Important Factor in the Correlation between Visit-to-Visit Blood Pressure Variability and Cardiovascular Disease. J. Hypertens. 2013, 31, 1387–1395. [Google Scholar] [CrossRef]
- Suchy-Dicey, A.M.; Wallace, E.R.; Mitchell, S.V.E.; Aguilar, M.; Gottesman, R.F.; Rice, K.; Kronmal, R.; Psaty, B.M.; Longstreth, W.T. Blood Pressure Variability and the Risk of All-Cause Mortality, Incident Myocardial Infarction, and Incident Stroke in the Cardiovascular Health Study. Am. J. Hypertens. 2013, 26, 1210–1217. [Google Scholar] [CrossRef]
- Blacher, J.; Safar, M.E.; Ly, C.; Szabo De Edelenyi, F.; Hercberg, S.; Galan, P. Blood Pressure Variability: Cardiovascular Risk Integrator or Independent Risk Factor? J. Hum. Hypertens. 2015, 29, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Whittle, J.; Lynch, A.I.; Colantonio, L.D.; Simpson, L.M.; Einhorn, P.T.; Levitan, E.B.; Whelton, P.K.; Cushman, W.C.; Louis, G.T.; et al. Visit-to-Visit Variability of Blood Pressure and Coronary Heart Disease, Stroke, Heart Failure, and Mortality: A Cohort Study. Ann. Intern. Med. 2015, 163, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Basson, M.D.; Klug, M.G.; Hostetter, J.E.; Wynne, J. Visit-to-Visit Variability of Blood Pressure Is Associated with Hospitalization and Mortality in an Unselected Adult Population. Am. J. Hypertens. 2018, 31, 1113–1119. [Google Scholar] [CrossRef]
- The Demographic Statistical Atlas of the United States—Statistical Atlas. Available online: https://statisticalatlas.com/neighborhood/New-York/New-York/Elmhurst/National-Origin (accessed on 31 August 2023).
- Werman, M.; Galchen, R. Elmhurst Hospital in Queens, New York: A Medical Melting Pot. Available online: https://theworld.org/stories/2013/08/15/elmhurst-hospital-queens-new-york-medical-melting-pot (accessed on 31 August 2023).
- Hagopian, G.S.; Lieber, M.; Dottino, P.R.; Margaret Kemeny, M.; Li, X.; Overbey, J.; Clark, L.D.; Beddoe, A.M. The Impact of Nativity on Cervical Cancer Survival in the Public Hospital System of Queens, New York. Gynecol. Oncol. 2018, 149, 63–69. [Google Scholar] [CrossRef]
- Marcello, R.K.; Dolle, J.; Grami, S.; Adule, R.; Li, Z.; Tatem, K.; Anyaogu, C.; Apfelroth, S.; Ayinla, R.; Boma, N.; et al. Characteristics and Outcomes of COVID-19 Patients in New York City’s Public Hospital System. PLoS ONE 2020, 15, e0243027. [Google Scholar] [CrossRef]
- Shemesh, E.; Yehuda, R.; Milo, O.; Dinur, I.; Rudnick, A.; Vered, Z.; Cotter, G. Posttraumatic Stress, Nonadherence, and Adverse Outcome in Survivors of a Myocardial Infarction. Psychosom. Med. 2004, 66, 521–526. [Google Scholar] [CrossRef]
- Marshall, T.P. Blood Pressure Variability: The Challenge of Variation. Am. J. Hypertens. 2008, 21, 3–4. [Google Scholar] [CrossRef]
- Annunziato, R.A.; Rubinstein, D.; Murgueitio, M.; Santra, M.; Sultan, S.; Maurer, M.; Cotter, G.; Yehuda, R.; Shemesh, E. Psychiatric Symptom Presentation in Ethnically Diverse Cardiology Patients. Ethn. Dis. 2009, 19, 271–275. [Google Scholar] [PubMed]
- Khera, R.; Valero-Elizondo, J.; Das, S.R.; Virani, S.S.; Kash, B.A.; De Lemos, J.A.; Krumholz, H.M.; Nasir, K. Cost-Related Medication Nonadherence in Adults with Atherosclerotic Cardiovascular Disease in the United States, 2013 to 2017. Circulation 2019, 140, 2067–2075. [Google Scholar] [CrossRef]
- de Silva, T.; Cosentino, G.; Ganji, S.; Riera-Gonzalez, A.; Hsia, D.S. Endocrine Causes of Hypertension. Curr. Hypertens. Rep. 2020, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hamrahian, S.M.; Falkner, B. Hypertension in Chronic Kidney Disease. Adv. Exp. Med. Biol. 2017, 956, 307–325. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.J.; Fischer, U.; Mehta, Z.; Rothwell, P.M. Effects of Antihypertensive-Drug Class on Interindividual Variation in Blood Pressure and Risk of Stroke: A Systematic Review and Meta-Analysis. Lancet 2010, 375, 906–915. [Google Scholar] [CrossRef]
- Goldgrab, D.; Balakumaran, K.; Kim, M.J.; Tabtabai, S.R. Updates in Heart Failure 30-Day Readmission Prevention. Heart Fail Rev. 2019, 24, 177–187. [Google Scholar] [CrossRef]
- Shemesh, E.; Annunziato, R.A.; Weatherley, B.D.; Cotter, G.; Feaganes, J.R.; Santra, M.; Yehuda, R.; Rubinstein, D. A Randomized Controlled Trial of the Safety and Promise of Cognitive-Behavioral Therapy Using Imaginal Exposure in Patients with Posttraumatic Stress Disorder Resulting from Cardiovascular Illness. J. Clin. Psychiatry 2011, 72, 168–174. [Google Scholar] [CrossRef]
- Narita, K.; Shimbo, D.; Kario, K. Assessment of Blood Pressure Variability: Characteristics and Comparison of Blood Pressure Measurement Methods. Hypertens. Res. 2024. [Google Scholar] [CrossRef]
- Shuker, N.; Van Gelder, T.; Hesselink, D.A. Intra-Patient Variability in Tacrolimus Exposure: Causes, Consequences for Clinical Management. Transpl. Rev. 2015, 29, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Kronish, I.M.; Lynch, A.I.; Oparil, S.; Whittle, J.; Davis, B.R.; Simpson, L.M.; Krousel-Wood, M.; Cushman, W.C.; Chang, T.I.; Muntner, P. The Association between Antihypertensive Medication Nonadherence and Visit-to-Visit Variability of Blood Pressure: Findings from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension 2016, 68, 39. [Google Scholar] [CrossRef] [PubMed]
- Mebazaa, A.; Davison, B.; Chioncel, O.; Cohen-Solal, A.; Diaz, R.; Filippatos, G.; Metra, M.; Ponikowski, P.; Sliwa, K.; Voors, A.A.; et al. Safety, Tolerability and Efficacy of up-Titration of Guideline-Directed Medical Therapies for Acute Heart Failure (STRONG-HF): A Multinational, Open-Label, Randomised, Trial. Lancet 2022, 400, 1938–1952. [Google Scholar] [CrossRef] [PubMed]
- Hugtenburg, J.G.; Timmers, L.; Elders, P.J.M.; Vervloet, M.; van Dijk, L. Definitions, Variants, and Causes of Nonadherence with Medication: A Challenge for Tailored Interventions. Patient Prefer. Adherence 2013, 7, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Nieuwlaat, R.; Wilczynski, N.; Navarro, T.; Hobson, N.; Jeffery, R.; Keepanasseril, A.; Agoritsas, T.; Mistry, N.; Iorio, A.; Jack, S.; et al. Interventions for Enhancing Medication Adherence. Cochrane Database Syst. Rev. 2014, 2014, CD000011. [Google Scholar] [CrossRef]
- Duncan, S.; Annunziato, R.A.; Dunphy, C.; LaPointe Rudow, D.; Shneider, B.L.; Shemesh, E. A Systematic Review of Immunosuppressant Adherence Interventions in Transplant Recipients: Decoding the Streetlight Effect. Pediatr. Transpl. 2018, 22, e13086. [Google Scholar] [CrossRef]
- Mishra, K.; Edwards, B. Cardiac Outpatient Care in a Digital Age: Remote Cardiology Clinic Visits in the Era of COVID-19. Curr. Cardiol. Rep. 2022, 24, 1–6. [Google Scholar] [CrossRef]
Inclusion Criteria | |
---|---|
1 | The patient is >18 years of age at enrollment. |
2 | The patient is monitored at the cardiology clinic, was diagnosed with hypertension and hypercholesterolemia more than 12 months prior to EHR screening, and has been prescribed at least one antihypertensive medication and at least one lipid-lowering agent over the 6 months prior to EHR screening. |
3 | The patient can be reached either by phone or via an internet-enabled device. |
4 | The patient speaks English or Spanish at a level that allows them to understand the study procedures and consent to the study. |
5 | The coefficient of variation (CoV) of at least three systolic blood pressure measurements present in the EHR over the 12 months prior to EHR screening is >10% [35]. |
Exclusion Criteria | |
1 | The patient is suffering from a psychiatric or developmental disorder that prevents him or her from understanding the protocol or engaging in the intervention (e.g., autistic disorder, psychosis). |
2 | The investigator determines that a remote intervention paradigm is not advisable because of specific patient or environmental characteristics (investigator discretion). |
3 | The patient is suffering from a medical disorder that makes control of blood pressure especially challenging or unlikely (e.g., end-stage renal disease, uncontrolled endocrine disorders) [38,39]. |
4 | Unstable blood pressure or hyperlipidemia that may require change in therapy in the 3 months after enrollment [40]. |
5 | Significant heart failure (NYHA > 2) or ejection fraction < 50% [41]. |
6 | Recent thromboembolic events such as a myocardial infarction, stroke, acute coronary syndrome, or transient ischemic attack in the 6 months prior to enrollment |
7 | Any arrhythmia requiring medical or device therapy within 6 months prior to enrollment. |
8 | The patient is hospitalized or was hospitalized in the last 6 months prior to enrollment. Patients hospitalized after enrollment are not excluded. |
Withdrawal Criteria | |
1 | The patient dies. |
2 | The patient becomes psychotic as defined in DSM-V or suffers from an event that makes him or her unable to participate in the intervention (e.g., loss of hearing, loss of cognitive ability). |
3 | The patient’s care is transferred to another center, and it is impossible to obtain the primary and secondary outcome data. |
4 | Patient decision. |
5 | Investigator decision. |
6 | DSMC or IRB determination related to the occurrence of an adverse event or for any other reason. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, D.; Annunziato, R.A.; Sidhu, J.; Cotter, G.; Davison, B.A.; Takagi, K.; Duncan-Park, S.; Rubinstein, D.; Shemesh, E. Cardiovascular Precision Medicine and Remote Intervention Trial Rationale and Design. J. Clin. Med. 2024, 13, 6274. https://doi.org/10.3390/jcm13206274
Reynolds D, Annunziato RA, Sidhu J, Cotter G, Davison BA, Takagi K, Duncan-Park S, Rubinstein D, Shemesh E. Cardiovascular Precision Medicine and Remote Intervention Trial Rationale and Design. Journal of Clinical Medicine. 2024; 13(20):6274. https://doi.org/10.3390/jcm13206274
Chicago/Turabian StyleReynolds, Deborah, Rachel A. Annunziato, Jasleen Sidhu, Gad Cotter, Beth A. Davison, Koji Takagi, Sarah Duncan-Park, David Rubinstein, and Eyal Shemesh. 2024. "Cardiovascular Precision Medicine and Remote Intervention Trial Rationale and Design" Journal of Clinical Medicine 13, no. 20: 6274. https://doi.org/10.3390/jcm13206274
APA StyleReynolds, D., Annunziato, R. A., Sidhu, J., Cotter, G., Davison, B. A., Takagi, K., Duncan-Park, S., Rubinstein, D., & Shemesh, E. (2024). Cardiovascular Precision Medicine and Remote Intervention Trial Rationale and Design. Journal of Clinical Medicine, 13(20), 6274. https://doi.org/10.3390/jcm13206274