Predictive Value of Monocyte-To-Lymphocyte Ratio in Differentiating Heart Failure with Reduced Ejection Fraction in Patients with Severe Aortic Stenosis—A Retrospective Analysis
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Uni and Multivariable Analysis
3.3. MLR and NTproBNP Comparisons between Subgroups (Figure 3)
3.4. Sub-Analysis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akahori, H.; Tsujino, T.; Masuyama, T.; Ishihara, M. Mechanisms of aortic stenosis. J. Cardiol. 2018, 71, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Zerebiec, K.; Rożanowska, A.; Czestkowska, E.; Długosz, D.; Chyrchel, B.; Surdacki, A. Is left ventricular hypertrophy a friend or foe of patients with aortic stenosis? Postep. Kardiol Interwencyjne 2018, 14, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Protasiewicz, M. Transcatheter aortic valve replacement beneficial in patients with severely reduced left ventricle ejection fraction: Does the type of valve also matter? ESC Hear. Fail. 2024, 11, 1813–1815. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Orwat, S.; Kaleschke, G.; Kerckhoff, G.; Radke, R.; Baumgartner, H. Low flow, low gradient severe aortic stenosis: Diagnosis, treatment and prognosis. EuroIntervention 2013, 9, S38–S42. [Google Scholar] [CrossRef]
- Camarzana, A.; Annweiler, C.; Pinaud, F.; Abi-Khalil, W.; Rouleau, F.; Duval, G.; Prunier, F.; Furber, A.; Biere, L. Prognostic value of a comprehensive geriatric assessment for predicting one-year mortality in presumably frail patient with symptomatic aortic stenosis. Arch. Med Sci. 2021, 18, 1446–1452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanz, A.P.; Gómez, J.L.Z. How to improve patient outcomes following TAVI in 2024? Recent advances. Kardiologia Polska 2024, 82, 696–701. [Google Scholar] [CrossRef]
- Fraccaro, C.; Al-Lamee, R.; Tarantini, G.; Maisano, F.; Napodano, M.; Montorfano, M.; Frigo, A.C.; Iliceto, S.; Gerosa, G.; Isabella, G.; et al. Transcatheter aortic valve implantation in patients with severe left ventricular dysfunction: Immediate and mid-term results, a multicenter study. Circ. Cardiovasc. Interv. 2012, 5, 253–260. [Google Scholar] [CrossRef]
- Reichl, J.J.; Stolte, T.; Tang, S.; Boeddinghaus, J.; Wagener, M.; Leibundgut, G.; Kaiser, C.A.; Nestelberger, T. Prognostic Impact of Left Ventricular Ejection Fraction Improvement after Transcatheter Aortic Valve Replacement. J. Clin. Med. 2024, 13, 3639. [Google Scholar] [CrossRef]
- Spilias, N.; Martyn, T.; Denby, K.J.; Harb, S.C.; Popovic, Z.B.; Kapadia, S.R. Left Ventricular Systolic Dysfunction in Aortic Stenosis: Pathophysiology, Diagnosis, Management, and Future Directions. Struct. Hear. 2022, 6, 100089. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Apostolos, A.; Drakopoulou, M.; Simopoulou, C.; Karmpalioti, M.; Toskas, P.; Stathogiannis, K.; Xanthopoulou, M.; Ktenopoulos, N.; Latsios, G.; et al. Long-Term Outcomes of Aortic Stenosis Patients with Different Flow/Gradient Patterns Undergoing Transcatheter Aortic Valve Implantation. J. Clin. Med. 2024, 13, 1200. [Google Scholar] [CrossRef] [PubMed]
- Decotto, S.; Villar, G.F.; Knorre, M.E.; Bergier, M.; Orellano, A.; Vega, B.S.; Busnelli, G.; Rossi, E.; Del Castillo, S.; Falconi, M.; et al. Surgical aortic valve replacement in patients with reduced ejection fraction. Prevalence and follow-up. Curr. Probl. Cardiol. 2024, 49, 102725. [Google Scholar] [CrossRef] [PubMed]
- Benck, K.N.; Nesbitt, K.; Dranow, E.; Glotzbach, J.P.; Tandar, A.; Pereira, S.J. Transcatheter Aortic Valve Replacement Improves Quality of Life and Ventricular Function With Low-Flow/Low-Gradient Aortic Stenosis. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101266. [Google Scholar] [CrossRef] [PubMed]
- Bain, E.R.; George, B.; Jafri, S.H.; Rao, R.A.; Sinha, A.K.; Guglin, M.E. Outcomes in patients with aortic stenosis and severely reduced ejection fraction following surgical aortic valve replacement and transcatheter aortic valve replacement. J. Cardiothorac. Surg. 2024, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Elmariah, S.; Palacios, I.F.; McAndrew, T.; Hueter, I.; Inglessis, I.; Baker, J.N.; Kodali, S.; Leon, M.B.; Svensson, L.; Pibarot, P.; et al. Outcomes of Transcatheter and Surgical Aortic Valve Replacement in High-Risk Patients With Aortic Stenosis and Left Ventricular Dysfunction: Results from the Placement of Aortic Transcatheter Valves [PARTNER] trial [cohort A]. Circ. Cardiovasc. Interv. 2013, 6, 604–614. [Google Scholar] [CrossRef]
- Aronow, W.S.; Salahuddin, A.; Spevack, D.M. At what flow rate does aortic valve gradient become severely elevated? Implications for guideline recommendations on aortic valve area cutoffs. Arch. Med Sci. 2024, 20, 713–718. [Google Scholar] [CrossRef]
- Grodecki, K.; Olasińska-Wiśniewska, A.; Cyran, A.; Urbanowicz, T.; Kwieciński, J.; Geers, J.; Tamarappoo, B.K.; Perek, B.; Gocoł, R.; Nawara-Skipirzepa, J.; et al. Quantification of Aortic Valve Fibrotic and Calcific Tissue from CTA: Prospective Comparison with Histology. Radiology 2024, 312, e240229. [Google Scholar] [CrossRef]
- Ambrosino, P.; Marcuccio, G.; Manzo, F.; Mancusi, C.; Merola, C.; Maniscalco, M. The Clinical Application of Established and Emerging Biomarkers for Chronic Respiratory Diseases. J. Clin. Med. 2023, 12, 6125. [Google Scholar] [CrossRef]
- Shahim, B.; Redfors, B.; Lindman, B.R.; Chen, S.; Dahlen, T.; Nazif, T.; Kapadia, S.; Gertz, Z.M.; Crowley, A.C.; Li, D.; et al. Neutrophil-to-Lymphocyte Ratios in Patients Undergoing Aortic Valve Replacement: The PARTNER Trials and Registries. J. Am. Hear. Assoc. 2022, 11, e024091. [Google Scholar] [CrossRef]
- Curran, F.M.; Bhalraam, U.; Mohan, M.; Singh, J.S.; Anker, S.D.; Dickstein, K.; Doney, A.S.; Filippatos, G.; George, J.; Metra, M.; et al. Neutrophil-to-lymphocyte ratio and outcomes in patients with new-onset or worsening heart failure with reduced and preserved ejection fraction. ESC Hear. Fail. 2021, 8, 3168–3179. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Olasińska-Wiśniewska, A.; Michalak, M.; Perek, B.; Al-Imam, A.; Rodzki, M.; Witkowska, A.; Straburzyńska-Migaj, E.; Bociański, M.; Misterski, M.; et al. Pre-operative systemic inflammatory response index influences long-term survival rate in off-pump surgical revascularization. PLoS ONE 2022, 17, e0276138. [Google Scholar] [CrossRef] [PubMed]
- Olasińska-Wiśniewska, A.; Perek, B.; Grygier, M.; Urbanowicz, T.; Misterski, M.; Puślecki, M.; Stefaniak, S.; Stelmark, K.; Lesiak, M.; Jemielity, M. Increased neutrophil-to-lymphocyte ratio is associated with higher incidence of acute kidney injury and worse survival after transcatheter aortic valve implantation. Cardiol. J. 2021, 30, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Firut, A.; Margaritescu, D.N.; Turcu-Stiolica, A.; Bica, M.; Rotaru, I.; Patrascu, A.-M.; Radu, R.I.; Marinescu, D.; Patrascu, S.; Streba, C.T.; et al. Preoperative Immunocyte-Derived Ratios Predict Postoperative Recovery of Gastrointestinal Motility after Colorectal Cancer Surgery. J. Clin. Med. 2023, 12, 6338. [Google Scholar] [CrossRef]
- Cai, C.; Zeng, W.; Wang, H.; Ren, S. Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio [PLR] and Monocyte-to-Lymphocyte Ratio [MLR] as Biomarkers in Diagnosis Evaluation of Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Retrospective, Observational Study. Int. J. Chronic Obstr. Pulm. Dis. 2024, 19, 933–943. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Xing, Z.; Cao, Y.; Long, H.; Guo, Y. Predictive score for in-hospital mortality in patients with severe acute exacerbations of chronic obstructive pulmonary disease. Arch. Med Sci. 2024. [Google Scholar] [CrossRef]
- Olasińska-Wiśniewska, A.; Urbanowicz, T.; Grodecki, K.; Kübler, P.; Perek, B.; Grygier, M.; Misterski, M.; Walczak, M.; Szot, M.; Jemielity, M. Monocyte-to-lymphocyte ratio correlates with parathyroid hormone concentration in patients with severe symptomatic aortic stenosis. Adv. Med Sci. 2023, 68, 396–401. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.; Song, S.; Wei, H.; Li, Y.; Wu, Y. Neutrophil-to-lymphocyte ratio and prognostic nutritional index in predicting composite endpoint of early safety following transcatheter aortic valve replacement. Adv. Clin. Exp. Med. 2025, 34. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Michalak, M.; Olasińska-Wiśniewska, A.; Rodzki, M.; Krasińska, A.; Perek, B.; Krasiński, Z.; Jemielity, M. Monocyte/Lymphocyte Ratio and MCHC as Predictors of Collateral Carotid Artery Disease—Preliminary Report. J. Pers. Med. 2021, 11, 1266. [Google Scholar] [CrossRef]
- Hua, Y.; Sun, J.-Y.; Lou, Y.-X.; Sun, W.; Kong, X.-Q. Monocyte-to-lymphocyte ratio predicts mortality and cardiovascular mortality in the general population. Int. J. Cardiol. 2023, 379, 118–126. [Google Scholar] [CrossRef]
- Vakhshoori, M.; Nemati, S.; Sabouhi, S.; Shakarami, M.; Yavari, B.; Emami, S.A.; Bondariyan, N.; Shafie, D. Prognostic impact of monocyte-to-lymphocyte ratio in coronary heart disease: A systematic review and meta-analysis. J. Int. Med Res. 2023, 51, 03000605231204469. [Google Scholar] [CrossRef] [PubMed]
- Vakhshoori, M.; Nemati, S.; Sabouhi, S.; Tavakol, G.; Yavari, B.; Shakarami, M.; Bondariyan, N.; Emami, S.A.; Shafie, D. Selection of Monocyte-to-Lymphocyte Ratio [MLR] or Lymphocyte-to-Monocyte Ratio [LMR] as Best Prognostic Tool in Heart Failure: A Systematic Review. SN Compr. Clin. Med. 2023, 5, 227. [Google Scholar] [CrossRef]
- Shahid, F.; Lip, G.Y.; Shantsila, E. Role of Monocytes in Heart Failure and Atrial Fibrillation. J. Am. Hear. Assoc. 2018, 7, e007849. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.A.L.; Langnau, C.; Harm, T.; Sigle, M.; Mott, K.; Droppa, M.; Borst, O.; Rohlfing, A.-K.; Gekeler, S.; Günter, M.; et al. Macrophage Migration Inhibitory Factor Promotes Thromboinflammation and Predicts Fast Progression of Aortic Stenosis. Arter. Thromb. Vasc. Biol. 2024, 44, 2118–2135. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Xu, L. Pharmacological therapy targeting the immune response in atherosclerosis. Int. Immunopharmacol. 2024, 141, 112974. [Google Scholar] [CrossRef]
- Lassalle, F.; Rosa, M.; Staels, B.; Van Belle, E.; Susen, S.; Dupont, A. Circulating Monocyte Subsets and Transcatheter Aortic Valve Replacement. Int. J. Mol. Sci. 2022, 23, 5303. [Google Scholar] [CrossRef]
- Ley, K.; Miller, Y.I.; Hedrick, C.C. Monocyte and macrophage dynamics during atherogenesis. Arter. Thromb. Vasc. Biol. 2011, 31, 1506–1516. [Google Scholar] [CrossRef]
- Radzyukevich, Y.V.; Kosyakova, N.I.; Prokhorenko, I.R. Participation of Monocyte Subpopulations in Progression of Experimental Endotoxemia [EE] and Systemic Inflammation. J. Immunol. Res. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Williams, H.; Mack, C.D.; Li, S.C.H.; Fletcher, J.P.; Medbury, H.J. Nature versus Number: Monocytes in Cardiovascular Disease. Int. J. Mol. Sci. 2021, 22, 9119. [Google Scholar] [CrossRef]
- Suthahar, S.S.A.; Nettersheim, F.S.; Alimadadi, A.; Wang, E.; Billitti, M.; Resto-Trujillo, N.; Roy, P.; Hedrick, C.C.; Ley, K.; Orecchioni, M.; et al. Olfr2-positive macrophages originate from monocytes proliferate in situ and present a pro-inflammatory foamy-like phenotype. Cardiovasc. Res. 2024, cvae153. [Google Scholar] [CrossRef]
- Patel, V.K.; Williams, H.; Li, S.C.H.; Fletcher, J.P.; Medbury, H.J. Monocyte Subset Recruitment Marker Profile Is Inversely Associated With Blood ApoA1 Levels. Front. Immunol. 2021, 12, 616305. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Xia, Y.; Shi, D.; Yang, L.; Xie, M.; Wang, Z.; Gao, F.; Shao, Q.; Ma, X.; Zhou, Y. Relation of Monocyte Number to Progression of Aortic Stenosis. Am. J. Cardiol. 2022, 171, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Navani, R.V.; Dayawansa, N.H.; Nanayakkara, S.; Palmer, S.; Noaman, S.; Htun, N.M.; Walton, A.S.; Peter, K.; Stub, D. Post-Procedure Monocyte Count Levels Predict Major Adverse Cardiovascular Events [MACE] Following Transcatheter Aortic Valve Implantation (TAVI) for Aortic Stenosis. Hear. Lung Circ. 2024, 33, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, G.G.; Stortecky, S.; Meier, B.; Windecker, S.; Wenaweser, P. Severe aortic stenosis and coronary artery disease. EuroIntervention 2013, 9, S63–S68. [Google Scholar] [CrossRef]
- Lunardi, M.; Bianchini, F.; Aurigemma, C.; Romagnoli, E.; Paraggio, L.; Bianchini, E.; Zito, A.; Trani, C.; Burzotta, F. When to perform percutaneous coronary interventions in TAVI patients? Recent advances. Kardiologia Polska 2024, 82, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Castrichini, M.; Vitrella, G.; De Luca, A.; Altinier, A.; Korcova, R.; Pagura, L.; Radesich, C.; Sinagra, G. Clinical impact of myocardial fibrosis in severe aortic stenosis. Eur. Hear. J. Suppl. 2021, 23, E147–E150. [Google Scholar] [CrossRef]
Group 1 LVEF ≤ 40% n = 57 | Group 2 LVEF > 40% n = 244 | p Value | |
---|---|---|---|
Age [years] [median, Q1–Q3] | 78 [71–82] | 80 [76–83] | 0.013 |
Female sex [n, %] BMI [median, Q1–Q3] | 19 [33] 26.8 [22.8–28.7] | 149 [61.1] 27.2 [24.3–30.5] | <0.001 0.097 |
EuroScore II [median, Q1–Q3] | 8.34 [5.77–16.11] | 4.57 [2.87–7.75] | 0.001 |
DM [n, %] | 29 [50.9] | 95 [38.9] | 0.103 |
HA [n, %] | 38 [66.7] | 189 [77.5] | 0.123 |
COPD [n, %] | 11 [19.3] | 40 [16.4] | 0.563 |
AF [n, %] | 20 [35.1] | 98 [40.2] | 0.548 |
Coronary artery disease [n, %] | 36 [63.2] | 111 [45.5] | 0.019 |
Previous myocardial infarction [n, %] | 31 [54.4] | 71 [29.1] | <0.001 |
Previous PCI [n, %] | 13 [50] | 53 [42.7] | 0.522 |
Previous CABG [n, %] | 19 [33.3] | 41 [16.8] | 0.009 |
Previous stroke or TIA [n, %] | 8 [14] | 46 [18.9] | 0.449 |
NYHA III–IV [n, %] | 54 [94.7] | 215 [88.1] | 0.230 |
Mean transvalvular gradient [mmHg] [median, Q1–Q3] | 41 [35–52] | 58 [49–68] | <0.001 |
Peak transvalvular gradient [mmHg] [median, Q1–Q3] | 70 [58–86] | 92 [81.5–109.1] | <0.001 |
LVEF [%] [median, Q1–Q3] | 35 [25–40] | 60 [50–60] | <0.001 |
PASP [mmHg] [median, Q1–Q3] | 46 [40–60] | 42 [35–50] | 0.003 |
AVA [cm2] [median, Q1–Q3] | 0.7 [0.6–0.78] | 0.6 [0.5–0.7] | 0.193 |
Group 1 LVEF ≤ 40% n = 57 | Group 2 LVEF > 40% n = 244 | p Value | |
---|---|---|---|
NTproBNP pg/mL | 6425 [3434–10,200] | 2080 [1015–4357.8] | <0.001 |
GFR [ml/min/1.73 m2] [median, Q1–Q3] | 55 [38–66] | 55 [45–67] | 0.299 |
Neu [10 × 9/L] [median, Q1–Q3] | 4.94 [4.31–6.15] | 4.7 [3.67–5.93] | 0.157 |
Lymp [10 × 9/L] [median, Q1–Q3] | 1.48 [1.05–1.76] | 1.39 [1.08–1.82] | 0.736 |
Mono [10 × 9/L] [median, Q1–Q3] | 0.52 [0.36–0.65] | 0.41 [0.33–0.53] | 0.003 |
MLR [median, Q1–Q3] | 0.37 [0.29–0.47] | 0.30 [0.23–0.41] | 0.004 |
NLR [median, Q1–Q3] | 3.68 [2.77–4.93] | 3.39 [2.39–4.54] | 0.132 |
PLR [median, Q1–Q3] | 109 [99–123.9] | 128.6 [98.2–194.6] | 0.521 |
Hemoglobin [mmol/L] [median, Q1–Q3] | 8.1 [7.6–8.9] | 7.9 [7.2–8.5] | 0.053 |
Univariable Analysis | p | Multivariable Analysis | p | |
---|---|---|---|---|
Age | OR 0.95 [95%CI 0.91–0.99] | 0.014 | ||
Female sex | OR 0.32 [95%CI 0.17–0.59] | <0.001 | OR 0.308, 95%CI 0.160–0.593 | <0.001 |
BMI | OR 0.94 [95%CI 0.88–1.01] | 0.079 | ||
AF | OR 0.81 [95%CI 0.44–1.47] | 0.48 | ||
Coronary artery disease | OR 2.05 [95%CI 1.13–3.72] | 0.018 | ||
Previous myocardial infarction | OR 2.9 [95%CI 1.61–5.24] | <0.001 | ||
Previous CABG | OR 2.48 [95%CI 1.30–4.72] | 0.006 | ||
HA | OR 0.32 [95%CI 0.31–1.09] | 0.091 | ||
DM | OR 1.62 [95%CI 0.91–2.90] | 0.101 | ||
COPD | OR 1.22 [95%CI 0.58–2.56] | 0.60 | ||
NTproBNP | OR 1.00 [95%CI 1.00–1.00] | <0.001 | OR 1.000, 95%CI 1.000–1.000 | <0.001 |
GFR | OR 0.99 [95%CI 0.98–1.01] | 0.26 | ||
NLR | OR 1.08 [95%CI 0.95–1.22] | 0.25 | ||
MLR | OR 14.35 [95%CI 2.88–71.45] | 0.001 | OR 7.393, 95%CI 1.363–40.091 | 0.020 |
PLR | OR 1.00 [0.99–1.01] | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olasińska-Wiśniewska, A.; Urbanowicz, T.; Perek, B.; Misterski, M.; Grodecki, K.; Grygier, M.; Straburzyńska-Migaj, E.; Jemielity, M. Predictive Value of Monocyte-To-Lymphocyte Ratio in Differentiating Heart Failure with Reduced Ejection Fraction in Patients with Severe Aortic Stenosis—A Retrospective Analysis. J. Clin. Med. 2024, 13, 6249. https://doi.org/10.3390/jcm13206249
Olasińska-Wiśniewska A, Urbanowicz T, Perek B, Misterski M, Grodecki K, Grygier M, Straburzyńska-Migaj E, Jemielity M. Predictive Value of Monocyte-To-Lymphocyte Ratio in Differentiating Heart Failure with Reduced Ejection Fraction in Patients with Severe Aortic Stenosis—A Retrospective Analysis. Journal of Clinical Medicine. 2024; 13(20):6249. https://doi.org/10.3390/jcm13206249
Chicago/Turabian StyleOlasińska-Wiśniewska, Anna, Tomasz Urbanowicz, Bartłomiej Perek, Marcin Misterski, Kajetan Grodecki, Marek Grygier, Ewa Straburzyńska-Migaj, and Marek Jemielity. 2024. "Predictive Value of Monocyte-To-Lymphocyte Ratio in Differentiating Heart Failure with Reduced Ejection Fraction in Patients with Severe Aortic Stenosis—A Retrospective Analysis" Journal of Clinical Medicine 13, no. 20: 6249. https://doi.org/10.3390/jcm13206249
APA StyleOlasińska-Wiśniewska, A., Urbanowicz, T., Perek, B., Misterski, M., Grodecki, K., Grygier, M., Straburzyńska-Migaj, E., & Jemielity, M. (2024). Predictive Value of Monocyte-To-Lymphocyte Ratio in Differentiating Heart Failure with Reduced Ejection Fraction in Patients with Severe Aortic Stenosis—A Retrospective Analysis. Journal of Clinical Medicine, 13(20), 6249. https://doi.org/10.3390/jcm13206249