Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes
Abstract
1. Introduction
2. MEN1
3. MEN2
4. MEN4
5. MEN5
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wermer, P. Genetic aspects of adenomatosis of endocrine glands. Am. J. Med. 1954, 16, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L.; et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1). Best. Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Carney, J.A. Familial multiple endocrine neoplasia: The first 100 years. Am. J. Surg. Pathol. 2005, 29, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Carney, J.A. Familial multiple endocrine neoplasia syndromes: Components, classification, and nomenclature. J. Intern. Med. 1998, 243, 425–432. [Google Scholar] [CrossRef]
- Callender, G.G.; Rich, T.A.; Perrier, N.D. Multiple endocrine neoplasia syndromes. Surg. Clin. N. Am. 2008, 88, 863–895, viii. [Google Scholar] [CrossRef]
- Pedraza-Arevalo, S.; Gahete, M.D.; Alors-Perez, E.; Luque, R.M.; Castano, J.P. Multilayered heterogeneity as an intrinsic hallmark of neuroendocrine tumors. Rev. Endocr. Metab. Disord. 2018, 19, 179–192. [Google Scholar] [CrossRef]
- Woodward, E.R.; Maher, E.R. Von Hippel-Lindau disease and endocrine tumour susceptibility. Endocr. Relat. Cancer 2006, 13, 415–425. [Google Scholar] [CrossRef]
- Kalkan, E.; Waguespack, S.G. Endocrine tumors associated with neurofibromatosis type 1, Peutz-Jeghers syndrome and other familial neoplasia syndromes. Front. Horm. Res. 2013, 41, 166–181. [Google Scholar] [CrossRef]
- Sauter, M.; Belousova, E.; Benedik, M.P.; Carter, T.; Cottin, V.; Curatolo, P.; Dahlin, M.; D’Amato, L.; d’Augeres, G.B.; de Vries, P.J.; et al. Rare manifestations and malignancies in tuberous sclerosis complex: Findings from the TuberOus SClerosis registry to increAse disease awareness (TOSCA). Orphanet J. Rare Dis. 2021, 16, 301. [Google Scholar] [CrossRef]
- Moline, J.; Eng, C. Multiple endocrine neoplasia type 2: An overview. Genet. Med. 2011, 13, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Amodru, V.; Taieb, D.; Guerin, C.; Romanet, P.; Paladino, N.; Brue, T.; Cuny, T.; Barlier, A.; Sebag, F.; Castinetti, F. MEN2-related pheochromocytoma: Current state of knowledge, specific characteristics in MEN2B, and perspectives. Endocrine 2020, 69, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Romei, C.; Pardi, E.; Cetani, F.; Elisei, R. Genetic and clinical features of multiple endocrine neoplasia types 1 and 2. J. Oncol. 2012, 2012, 705036. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, L.M.; Eng, C.; Healey, C.S.; Clayton, D.; Kwok, J.B.; Gardner, E.; Ponder, M.A.; Frilling, A.; Jackson, C.E.; Lehnert, H.; et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat. Genet. 1994, 6, 70–74. [Google Scholar] [CrossRef]
- Pellegata, N.S.; Quintanilla-Martinez, L.; Siggelkow, H.; Samson, E.; Bink, K.; Hofler, H.; Fend, F.; Graw, J.; Atkinson, M.J. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl. Acad. Sci. USA 2006, 103, 15558–15563. [Google Scholar] [CrossRef]
- Frederiksen, A.; Rossing, M.; Hermann, P.; Ejersted, C.; Thakker, R.V.; Frost, M. Clinical Features of Multiple Endocrine Neoplasia Type 4: Novel Pathogenic Variant and Review of Published Cases. J. Clin. Endocrinol. Metab. 2019, 104, 3637–3646. [Google Scholar] [CrossRef]
- Alrezk, R.; Hannah-Shmouni, F.; Stratakis, C.A. MEN4 and CDKN1B mutations: The latest of the MEN syndromes. Endocr. Relat. Cancer 2017, 24, T195–T208. [Google Scholar] [CrossRef]
- Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol. Cell Endocrinol. 2014, 386, 2–15. [Google Scholar] [CrossRef]
- Seabrook, A.J.; Harris, J.E.; Velosa, S.B.; Kim, E.; McInerney-Leo, A.M.; Dwight, T.; Hockings, J.I.; Hockings, N.G.; Kirk, J.; Leo, P.J.; et al. Multiple Endocrine Tumors Associated with Germline MAX Mutations: Multiple Endocrine Neoplasia Type 5? J. Clin. Endocrinol. Metab. 2021, 106, 1163–1182. [Google Scholar] [CrossRef]
- Sahakian, N.; Castinetti, F.; Romanet, P.; Reznik, Y.; Brue, T. Updates on the genetics of multiple endocrine neoplasia. Ann. Endocrinol. 2024, 85, 127–135. [Google Scholar] [CrossRef]
- Iyer, S.; Agarwal, S.K. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J. Mol. Endocrinol. 2018, 61, R13–R24. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Falchetti, A.; Del Monte, F.; Carbonell Sala, S.; Gozzini, A.; Luzi, E.; Brandi, M.L. Multiple endocrine neoplasia type 1. Orphanet J. Rare Dis. 2006, 1, 38. [Google Scholar] [CrossRef] [PubMed]
- Biancaniello, C.; D’Argenio, A.; Giordano, D.; Dotolo, S.; Scafuri, B.; Marabotti, A.; d’Acierno, A.; Tagliaferri, R.; Facchiano, A. Investigating the Effects of Amino Acid Variations in Human Menin. Molecules 2022, 27, 1747. [Google Scholar] [CrossRef] [PubMed]
- Mele, C.; Mencarelli, M.; Caputo, M.; Mai, S.; Pagano, L.; Aimaretti, G.; Scacchi, M.; Falchetti, A.; Marzullo, P. Phenotypes Associated With MEN1 Syndrome: A Focus on Genotype-Phenotype Correlations. Front. Endocrinol. 2020, 11, 591501. [Google Scholar] [CrossRef] [PubMed]
- Brandi, M.L.; Agarwal, S.K.; Perrier, N.D.; Lines, K.E.; Valk, G.D.; Thakker, R.V. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr. Rev. 2021, 42, 133–170. [Google Scholar] [CrossRef]
- Cuevas-Ocampo, A.K.; Bollen, A.W.; Goode, B.; Pajtler, K.W.; Chavez, L.; Sharma, T.; Dai, S.C.; McDermott, M.; Perry, A.; Korshunov, A.; et al. Genetic confirmation that ependymoma can arise as part of multiple endocrine neoplasia type 1 (MEN1) syndrome. Acta Neuropathol. 2017, 133, 661–663. [Google Scholar] [CrossRef]
- McKeeby, J.L.; Li, X.; Zhuang, Z.; Vortmeyer, A.O.; Huang, S.; Pirner, M.; Skarulis, M.C.; James-Newton, L.; Marx, S.J.; Lubensky, I.A. Multiple leiomyomas of the esophagus, lung, and uterus in multiple endocrine neoplasia type 1. Am. J. Pathol. 2001, 159, 1121–1127. [Google Scholar] [CrossRef]
- Guru, S.C.; Goldsmith, P.K.; Burns, A.L.; Marx, S.J.; Spiegel, A.M.; Collins, F.S.; Chandrasekharappa, S.C. Menin, the product of the MEN1 gene, is a nuclear protein. Proc. Natl. Acad. Sci. USA 1998, 95, 1630–1634. [Google Scholar] [CrossRef]
- Giusti, F.; Cianferotti, L.; Boaretto, F.; Cetani, F.; Cioppi, F.; Colao, A.; Davi, M.V.; Faggiano, A.; Fanciulli, G.; Ferolla, P.; et al. Multiple endocrine neoplasia syndrome type 1: Institution, management, and data analysis of a nationwide multicenter patient database. Endocrine 2017, 58, 349–359. [Google Scholar] [CrossRef]
- Dreijerink, K.M.; Goudet, P.; Burgess, J.R.; Valk, G.D.; International Breast Cancer in MEN1 Study Group. Breast-cancer predisposition in multiple endocrine neoplasia type 1. N. Engl. J. Med. 2014, 371, 583–584. [Google Scholar] [CrossRef]
- Tepede, A.A.; Welch, J.; Lee, M.; Mandl, A.; Agarwal, S.K.; Nilubol, N.; Patel, D.; Cochran, C.; Simonds, W.F.; Weinstein, L.S.; et al. 18F-FDOPA PET/CT accurately identifies MEN1-associated pheochromocytoma. Endocrinol. Diabetes Metab. Case Rep. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K. The future: Genetics advances in MEN1 therapeutic approaches and management strategies. Endocr. Relat. Cancer 2017, 24, T119–T134. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Giusti, F.; Brandi, M.L. Multiple endocrine neoplasia type 1: Extensive analysis of a large database of Florentine patients. Orphanet J. Rare Dis. 2018, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Knudson, A.G., Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Lee Burns, A.; Sukhodolets, K.E.; Kennedy, P.A.; Obungu, V.H.; Hickman, A.B.; Mullendore, M.E.; Whitten, I.; Skarulis, M.C.; Simonds, W.F.; et al. Molecular pathology of the MEN1 gene. Ann. N. Y. Acad. Sci. 2004, 1014, 189–198. [Google Scholar] [CrossRef]
- Luzi, E.; Marini, F.; Giusti, F.; Galli, G.; Cavalli, L.; Brandi, M.L. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the “Knudson’s second hit”. PLoS ONE 2012, 7, e39767. [Google Scholar] [CrossRef]
- Lemos, M.C.; Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat. 2008, 29, 22–32. [Google Scholar] [CrossRef]
- de Laat, J.M.; van Leeuwaarde, R.S.; Valk, G.D. The Importance of an Early and Accurate MEN1 Diagnosis. Front. Endocrinol. 2018, 9, 533. [Google Scholar] [CrossRef]
- Goudet, P.; Dalac, A.; Le Bras, M.; Cardot-Bauters, C.; Niccoli, P.; Levy-Bohbot, N.; du Boullay, H.; Bertagna, X.; Ruszniewski, P.; Borson-Chazot, F.; et al. MEN1 disease occurring before 21 years old: A 160-patient cohort study from the Groupe d’etude des Tumeurs Endocrines. J. Clin. Endocrinol. Metab. 2015, 100, 1568–1577. [Google Scholar] [CrossRef]
- Brandi, M.L.; Gagel, R.F.; Angeli, A.; Bilezikian, J.P.; Beck-Peccoz, P.; Bordi, C.; Conte-Devolx, B.; Falchetti, A.; Gheri, R.G.; Libroia, A.; et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab. 2001, 86, 5658–5671. [Google Scholar] [CrossRef]
- Falchetti, A. Genetics of multiple endocrine neoplasia type 1 syndrome: What’s new and what’s old. F1000Research 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.A.; Saramago, A.; Cavaco, B.M.; Simoes-Pereira, J.; Leite, V. Familial parathyroid tumours-comparison of clinical profiles between syndromes. J. Endocrinol. Investig. 2023, 46, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Eller-Vainicher, C.; Chiodini, I.; Battista, C.; Viti, R.; Mascia, M.L.; Massironi, S.; Peracchi, M.; D’Agruma, L.; Minisola, S.; Corbetta, S.; et al. Sporadic and MEN1-related primary hyperparathyroidism: Differences in clinical expression and severity. J. Bone Miner. Res. 2009, 24, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Miyauchi, A.; Namihira, H.; Bhuiyan, M.M.; Imachi, H.; Murao, K.; Takahara, J. A newly recognized germline mutation of MEN1 gene identified in a patient with parathyroid adenoma and carcinoma. Endocrine 2000, 12, 223–226. [Google Scholar] [CrossRef]
- Dionisi, S.; Minisola, S.; Pepe, J.; De Geronimo, S.; Paglia, F.; Memeo, L.; Fitzpatrick, L.A. Concurrent parathyroid adenomas and carcinoma in the setting of multiple endocrine neoplasia type 1: Presentation as hypercalcemic crisis. Mayo Clin. Proc. 2002, 77, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Adikaram, P.R.; Welch, J.; Guan, B.; Weinstein, L.S.; Chen, H.; Simonds, W.F. Genotype of CDC73 germline mutation determines risk of parathyroid cancer. Endocr. Relat. Cancer 2020, 27, 483–494. [Google Scholar] [CrossRef]
- Krampitz, G.W.; Norton, J.A. Current management of the Zollinger-Ellison syndrome. Adv. Surg. 2013, 47, 59–79. [Google Scholar] [CrossRef]
- Norton, J.A. Surgical treatment and prognosis of gastrinoma. Best. Pract. Res. Clin. Gastroenterol. 2005, 19, 799–805. [Google Scholar] [CrossRef]
- Albers, M.B.; Manoharan, J.; Bartsch, D.K. Contemporary surgical management of the Zollinger-Ellison syndrome in multiple endocrine neoplasia type 1. Best. Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101318. [Google Scholar] [CrossRef]
- Kovac, S.; Smith, K.; Anderson, G.J.; Burgess, J.R.; Shulkes, A.; Baldwin, G.S. Interrelationships between circulating gastrin and iron status in mice and humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G855–G861. [Google Scholar] [CrossRef]
- Casale, M.; Borriello, A.; Scianguetta, S.; Roberti, D.; Caiazza, M.; Bencivenga, D.; Tartaglione, I.; Ladogana, S.; Maruzzi, M.; Della Ragione, F.; et al. Hereditary hypochromic microcytic anemia associated with loss-of-function DMT1 gene mutations and absence of liver iron overload. Am. J. Hematol. 2018, 93, E58–E60. [Google Scholar] [CrossRef] [PubMed]
- Kovac, S.; Anderson, G.J.; Baldwin, G.S. Gastrins, iron homeostasis and colorectal cancer. Biochim. Biophys. Acta 2011, 1813, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Marques, L.; Murat, A.; Delemer, B.; Penfornis, A.; Cardot-Bauters, C.; Baudin, E.; Niccoli-Sire, P.; Levoir, D.; Choplin Hdu, B.; Chabre, O.; et al. Prospective endoscopic ultrasonographic evaluation of the frequency of nonfunctioning pancreaticoduodenal endocrine tumors in patients with multiple endocrine neoplasia type 1. Am. J. Gastroenterol. 2006, 101, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, T.D.; Toledo, R.A.; Sekiya, T.; Matuguma, S.E.; Maluf Filho, F.; Rocha, M.S.; Siqueira, S.A.; Glezer, A.; Bronstein, M.D.; Pereira, M.A.; et al. Penetrance of functioning and nonfunctioning pancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1 in the second decade of life. J. Clin. Endocrinol. Metab. 2014, 99, E89–E96. [Google Scholar] [CrossRef]
- Gauger, P.G.; Scheiman, J.M.; Wamsteker, E.J.; Richards, M.L.; Doherty, G.M.; Thompson, N.W. Role of endoscopic ultrasonography in screening and treatment of pancreatic endocrine tumours in asymptomatic patients with multiple endocrine neoplasia type 1. Br. J. Surg. 2003, 90, 748–754. [Google Scholar] [CrossRef]
- Kann, P.H.; Balakina, E.; Ivan, D.; Bartsch, D.K.; Meyer, S.; Klose, K.J.; Behr, T.; Langer, P. Natural course of small, asymptomatic neuroendocrine pancreatic tumours in multiple endocrine neoplasia type 1: An endoscopic ultrasound imaging study. Endocr. Relat. Cancer 2006, 13, 1195–1202. [Google Scholar] [CrossRef]
- Tonelli, F.; Fratini, G.; Falchetti, A.; Nesi, G.; Brandi, M.L. Surgery for gastroenteropancreatic tumours in multiple endocrine neoplasia type 1: Review and personal experience. J. Intern. Med. 2005, 257, 38–49. [Google Scholar] [CrossRef]
- Vannucci, L.; Marini, F.; Giusti, F.; Ciuffi, S.; Tonelli, F.; Brandi, M.L. MEN1 in children and adolescents: Data from patients of a regional referral center for hereditary endocrine tumors. Endocrine 2018, 59, 438–448. [Google Scholar] [CrossRef]
- Stratakis, C.A.; Schussheim, D.H.; Freedman, S.M.; Keil, M.F.; Pack, S.D.; Agarwal, S.K.; Skarulis, M.C.; Weil, R.J.; Lubensky, I.A.; Zhuang, Z.; et al. Pituitary macroadenoma in a 5-year-old: An early expression of multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 2000, 85, 4776–4780. [Google Scholar] [CrossRef]
- Cuny, T.; Pertuit, M.; Sahnoun-Fathallah, M.; Daly, A.; Occhi, G.; Odou, M.F.; Tabarin, A.; Nunes, M.L.; Delemer, B.; Rohmer, V.; et al. Genetic analysis in young patients with sporadic pituitary macroadenomas: Besides AIP don’t forget MEN1 genetic analysis. Eur. J. Endocrinol. 2013, 168, 533–541. [Google Scholar] [CrossRef]
- Trivellin, G.; Daly, A.F.; Faucz, F.R.; Yuan, B.; Rostomyan, L.; Larco, D.O.; Schernthaner-Reiter, M.H.; Szarek, E.; Leal, L.F.; Caberg, J.H.; et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N. Engl. J. Med. 2014, 371, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Beckers, A.; Rostomyan, L.; Potorac, I.; Beckers, P.; Daly, A.F. X-LAG: How did they grow so tall? Ann. Endocrinol. 2017, 78, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Verges, B.; Boureille, F.; Goudet, P.; Murat, A.; Beckers, A.; Sassolas, G.; Cougard, P.; Chambe, B.; Montvernay, C.; Calender, A. Pituitary disease in MEN type 1 (MEN1): Data from the France-Belgium MEN1 multicenter study. J. Clin. Endocrinol. Metab. 2002, 87, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Benito, M.; Asa, S.L.; Livolsi, V.A.; West, V.A.; Snyder, P.J. Gonadotroph tumor associated with multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 2005, 90, 570–574. [Google Scholar] [CrossRef]
- Incandela, F.; Feraco, P.; Putorti, V.; Geraci, L.; Salvaggio, G.; Sarno, C.; La Tona, G.; Lasio, G.; Gagliardo, C. Malignancy course of pituitary adenoma in MEN1 syndrome: Clinical-Neuroradiological signs. Eur. J. Radiol. Open 2020, 7, 100242. [Google Scholar] [CrossRef]
- Philippon, M.; Morange, I.; Barrie, M.; Barlier, A.; Taieb, D.; Dufour, H.; Conte-Devolx, B.; Brue, T.; Castinetti, F. Long-term control of a MEN1 prolactin secreting pituitary carcinoma after temozolomide treatment. Ann. Endocrinol. 2012, 73, 225–229. [Google Scholar] [CrossRef]
- Mollard, P.; Vacher, P.; Rogawski, M.A.; Dufy, B. Vasopressin enhances a calcium current in human ACTH-secreting pituitary adenoma cells. FASEB J. 1988, 2, 2907–2912. [Google Scholar] [CrossRef]
- Kanda, M.; Omori, Y.; Shinoda, S.; Yamauchi, T.; Tamemoto, H.; Kawakami, M.; Ishikawa, S.E. SIADH closely associated with non-functioning pituitary adenoma. Endocr. J. 2004, 51, 435–438. [Google Scholar] [CrossRef]
- Murphy, D.; Bishop, A.; Rindi, G.; Murphy, M.N.; Stamp, G.W.; Hanson, J.; Polak, J.M.; Hogan, B. Mice transgenic for a vasopressin-SV40 hybrid oncogene develop tumors of the endocrine pancreas and the anterior pituitary. A possible model for human multiple endocrine neoplasia type 1. Am. J. Pathol. 1987, 129, 552–566. [Google Scholar]
- Patti, G.; Scianguetta, S.; Roberti, D.; Di Mascio, A.; Balsamo, A.; Brugnara, M.; Cappa, M.; Casale, M.; Cavarzere, P.; Cipriani, S.; et al. Familial neurohypophyseal diabetes insipidus in 13 kindreds and 2 novel mutations in the vasopressin gene. Eur. J. Endocrinol. 2019, 181, 233–244. [Google Scholar] [CrossRef]
- Karhu, A.; Aaltonen, L.A. Susceptibility to pituitary neoplasia related to MEN-1, CDKN1B and AIP mutations: An update. Hum. Mol. Genet. 2007, 16, R73–R79. [Google Scholar] [CrossRef] [PubMed]
- Nord, K.H.; Magnusson, L.; Isaksson, M.; Nilsson, J.; Lilljebjorn, H.; Domanski, H.A.; Kindblom, L.G.; Mandahl, N.; Mertens, F. Concomitant deletions of tumor suppressor genes MEN1 and AIP are essential for the pathogenesis of the brown fat tumor hibernoma. Proc. Natl. Acad. Sci. USA 2010, 107, 21122–21127. [Google Scholar] [CrossRef] [PubMed]
- Trofimiuk-Muldner, M.; Domagala, B.; Sokolowski, G.; Skalniak, A.; Hubalewska-Dydejczyk, A. AIP gene germline variants in adult Polish patients with apparently sporadic pituitary macroadenomas. Front. Endocrinol. 2023, 14, 1098367. [Google Scholar] [CrossRef] [PubMed]
- Haworth, O.; Korbonits, M. AIP: A double agent? The tissue-specific role of AIP as a tumour suppressor or as an oncogene. Br. J. Cancer 2022, 127, 1175–1176. [Google Scholar] [CrossRef]
- Usategui-Martin, R.; De Luis-Roman, D.A.; Fernandez-Gomez, J.M.; Ruiz-Mambrilla, M.; Perez-Castrillon, J.L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef]
- Dreijerink, K.M.; Varier, R.A.; van Nuland, R.; Broekhuizen, R.; Valk, G.D.; van der Wal, J.E.; Lips, C.J.; Kummer, J.A.; Timmers, H.T. Regulation of vitamin D receptor function in MEN1-related parathyroid adenomas. Mol. Cell Endocrinol. 2009, 313, 1–8. [Google Scholar] [CrossRef]
- Longuini, V.C.; Lourenco, D.M., Jr.; Sekiya, T.; Meirelles, O.; Goncalves, T.D.; Coutinho, F.L.; Francisco, G.; Osaki, L.H.; Chammas, R.; Alves, V.A.; et al. Association between the p27 rs2066827 variant and tumor multiplicity in patients harboring MEN1 germline mutations. Eur. J. Endocrinol. 2014, 171, 335–342. [Google Scholar] [CrossRef]
- Circelli, L.; Ramundo, V.; Marotta, V.; Sciammarella, C.; Marciello, F.; Del Prete, M.; Sabatino, L.; Pasquali, D.; Izzo, F.; Scala, S.; et al. Prognostic role of the CDNK1B V109G polymorphism in multiple endocrine neoplasia type 1. J. Cell Mol. Med. 2015, 19, 1735–1741. [Google Scholar] [CrossRef]
- Takahashi, M. RET receptor signaling: Function in development, metabolic disease, and cancer. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2022, 98, 112–125. [Google Scholar] [CrossRef]
- Wagner, S.M.; Zhu, S.; Nicolescu, A.C.; Mulligan, L.M. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2. Clinics 2012, 67 (Suppl. S1), 77–84. [Google Scholar] [CrossRef]
- Regua, A.T.; Najjar, M.; Lo, H.W. RET signaling pathway and RET inhibitors in human cancer. Front. Oncol. 2022, 12, 932353. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N. Realizing the promise of cancer predisposition genes. Nature 2014, 505, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Garber, J.E.; Offit, K. Hereditary cancer predisposition syndromes. J. Clin. Oncol. 2005, 23, 276–292. [Google Scholar] [CrossRef] [PubMed]
- American Thyroid Association Guidelines Task, F.; Kloos, R.T.; Eng, C.; Evans, D.B.; Francis, G.L.; Gagel, R.F.; Gharib, H.; Moley, J.F.; Pacini, F.; Ringel, M.D.; et al. Medullary thyroid cancer: Management guidelines of the American Thyroid Association. Thyroid 2009, 19, 565–612. [Google Scholar] [CrossRef]
- Santoro, M.; Melillo, R.M.; Carlomagno, F.; Visconti, R.; De Vita, G.; Salvatore, G.; Lupoli, G.; Fusco, A.; Vecchio, G. Molecular biology of the MEN2 gene. J. Intern. Med. 1998, 243, 505–508. [Google Scholar] [CrossRef]
- Iwashita, T.; Murakami, H.; Kurokawa, K.; Kawai, K.; Miyauchi, A.; Futami, H.; Qiao, S.; Ichihara, M.; Takahashi, M. A two-hit model for development of multiple endocrine neoplasia type 2B by RET mutations. Biochem. Biophys. Res. Commun. 2000, 268, 804–808. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, S.Y.; Jo, K.H.; Mo, E.Y.; Kim, E.S.; Kim, H.S.; Han, J.H.; Moon, S.D. Clinical features and signaling effects of RET D631Y variant multiple endocrine neoplasia type 2 (MEN2). Korean J. Intern. Med. 2022, 37, 398–410. [Google Scholar] [CrossRef]
- Raue, F. German medullary thyroid carcinoma/multiple endocrine neoplasia registry. German MTC/MEN Study Group. Medullary Thyroid Carcinoma/Multiple Endocrine Neoplasia Type 2. Langenbecks Arch. Surg. 1998, 383, 334–336. [Google Scholar] [CrossRef]
- Wohllk, N.; Cote, G.J.; Bugalho, M.M.; Ordonez, N.; Evans, D.B.; Goepfert, H.; Khorana, S.; Schultz, P.; Richards, C.S.; Gagel, R.F. Relevance of RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 1996, 81, 3740–3745. [Google Scholar] [CrossRef]
- Opsahl, E.M.; Brauckhoff, M.; Schlichting, E.; Helset, K.; Svartberg, J.; Brauckhoff, K.; Maehle, L.; Engebretsen, L.F.; Sigstad, E.; Groholt, K.K.; et al. A Nationwide Study of Multiple Endocrine Neoplasia Type 2A in Norway: Predictive and Prognostic Factors for the Clinical Course of Medullary Thyroid Carcinoma. Thyroid 2016, 26, 1225–1238. [Google Scholar] [CrossRef]
- Nose, V. Familial thyroid cancer: A review. Mod. Pathol. 2011, 24 (Suppl. S2), S19–S33. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.A.; DeBenedetti, M.K.; Moley, J.F.; Norton, J.A.; Wells, S.A., Jr. Medullary thyroid carcinoma in children with multiple endocrine neoplasia types 2A and 2B. J. Pediatr. Surg. 1996, 31, 177–181, discussion 181–182. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Uchino, S.; Okamoto, T.; Suzuki, S.; Kosugi, S.; Kikumori, T.; Sakurai, A.; MEN Consortium of Japan. High penetrance of pheochromocytoma in multiple endocrine neoplasia 2 caused by germ line RET codon 634 mutation in Japanese patients. Eur. J. Endocrinol. 2013, 168, 683–687. [Google Scholar] [CrossRef]
- Frank-Raue, K.; Rybicki, L.A.; Erlic, Z.; Schweizer, H.; Winter, A.; Milos, I.; Toledo, S.P.; Toledo, R.A.; Tavares, M.R.; Alevizaki, M.; et al. Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum. Mutat. 2011, 32, 51–58. [Google Scholar] [CrossRef]
- Howe, J.R.; Norton, J.A.; Wells, S.A., Jr. Prevalence of pheochromocytoma and hyperparathyroidism in multiple endocrine neoplasia type 2A: Results of long-term follow-up. Surgery 1993, 114, 1070–1077. [Google Scholar]
- Rowland, K.J.; Chernock, R.D.; Moley, J.F. Pheochromocytoma in an 8-year-old patient with multiple endocrine neoplasia type 2A: Implications for screening. J. Surg. Oncol. 2013, 108, 203–206. [Google Scholar] [CrossRef]
- Pacak, K.; Ilias, I.; Adams, K.T.; Eisenhofer, G. Biochemical diagnosis, localization and management of pheochromocytoma: Focus on multiple endocrine neoplasia type 2 in relation to other hereditary syndromes and sporadic forms of the tumour. J. Intern. Med. 2005, 257, 60–68. [Google Scholar] [CrossRef]
- Ilias, I.; Pacak, K. Diagnosis, localization and treatment of pheochromocytoma in MEN 2 syndrome. Endocr. Regul. 2009, 43, 89–93. [Google Scholar]
- Carling, T.; Udelsman, R. Parathyroid surgery in familial hyperparathyroid disorders. J. Intern. Med. 2005, 257, 27–37. [Google Scholar] [CrossRef]
- Schuffenecker, I.; Virally-Monod, M.; Brohet, R.; Goldgar, D.; Conte-Devolx, B.; Leclerc, L.; Chabre, O.; Boneu, A.; Caron, J.; Houdent, C.; et al. Risk and penetrance of primary hyperparathyroidism in multiple endocrine neoplasia type 2A families with mutations at codon 634 of the RET proto-oncogene. Groupe D’etude des Tumeurs a Calcitonine. J. Clin. Endocrinol. Metab. 1998, 83, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Verga, U.; Fugazzola, L.; Cambiaghi, S.; Pritelli, C.; Alessi, E.; Cortelazzi, D.; Gangi, E.; Beck-Peccoz, P. Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clin. Endocrinol. 2003, 59, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Gagel, R.F.; Levy, M.L.; Donovan, D.T.; Alford, B.R.; Wheeler, T.; Tschen, J.A. Multiple endocrine neoplasia type 2a associated with cutaneous lichen amyloidosis. Ann. Intern. Med. 1989, 111, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Rothberg, A.E.; Raymond, V.M.; Gruber, S.B.; Sisson, J. Familial medullary thyroid carcinoma associated with cutaneous lichen amyloidosis. Thyroid 2009, 19, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Verdy, M.; Weber, A.M.; Roy, C.C.; Morin, C.L.; Cadotte, M.; Brochu, P. Hirschsprung’s disease in a family with multiple endocrine neoplasia type 2. J. Pediatr. Gastroenterol. Nutr. 1982, 1, 603–607. [Google Scholar] [CrossRef]
- Fuentes, C.; Menendez, E.; Pineda, J.; Martinez De Esteban, J.P.; Anda, E.; Goni, M.J.; Bausch, B.; Neumann, H.P. The malignant potential of a succinate dehydrogenase subunit B germline mutation. J. Endocrinol. Investig. 2006, 29, 350–352. [Google Scholar] [CrossRef]
- Eng, C.; Plitt, G. Multiple Endocrine Neoplasia Type 2. In GeneReviews((R)); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Her, Y.F.; Maher, L.J., 3rd. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics. Int. J. Endocrinol. 2015, 2015, 296167. [Google Scholar] [CrossRef]
- Lendvai, N.; Toth, M.; Valkusz, Z.; Beko, G.; Szucs, N.; Csajbok, E.; Igaz, P.; Kriszt, B.; Kovacs, B.; Racz, K.; et al. Over-representation of the G12S polymorphism of the SDHD gene in patients with MEN2A syndrome. Clinics 2012, 67 (Suppl. S1), 85–89. [Google Scholar] [CrossRef]
- Majewska, A.; Budny, B.; Ziemnicka, K.; Ruchala, M.; Wierzbicka, M. Head and Neck Paragangliomas—A Genetic Overview. Int. J. Mol. Sci. 2020, 21, 7669. [Google Scholar] [CrossRef]
- Deng, Y.; Qin, Y.; Srikantan, S.; Luo, A.; Cheng, Z.M.; Flores, S.K.; Vogel, K.S.; Wang, E.; Dahia, P.L.M. The TMEM127 human tumor suppressor is a component of the mTORC1 lysosomal nutrient-sensing complex. Hum. Mol. Genet. 2018, 27, 1794–1808. [Google Scholar] [CrossRef]
- Walker, T.J.; Reyes-Alvarez, E.; Hyndman, B.D.; Sugiyama, M.G.; Oliveira, L.C.B.; Rekab, A.N.; Crupi, M.J.F.; Cabral-Dias, R.; Guo, Q.; Dahia, P.L.M.; et al. Loss of tumor suppressor TMEM127 drives RET-mediated transformation through disrupted membrane dynamics. eLife 2024, 12, RP89100. [Google Scholar] [CrossRef] [PubMed]
- Larouche, V.; Akirov, A.; Thomas, C.M.; Krzyzanowska, M.K.; Ezzat, S. A primer on the genetics of medullary thyroid cancer. Curr. Oncol. 2019, 26, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Clayton, D.; Schuffenecker, I.; Lenoir, G.; Cote, G.; Gagel, R.F.; van Amstel, H.K.; Lips, C.J.; Nishisho, I.; Takai, S.I.; et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996, 276, 1575–1579. [Google Scholar] [CrossRef]
- Castinetti, F.; Moley, J.; Mulligan, L.; Waguespack, S.G. A comprehensive review on MEN2B. Endocr. Relat. Cancer 2018, 25, T29–T39. [Google Scholar] [CrossRef] [PubMed]
- Brauckhoff, M.; Machens, A.; Hess, S.; Lorenz, K.; Gimm, O.; Brauckhoff, K.; Sekulla, C.; Dralle, H. Premonitory symptoms preceding metastatic medullary thyroid cancer in MEN 2B: An exploratory analysis. Surgery 2008, 144, 1044–1050, discussion 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.A.; Moley, J.A.; Dilley, W.G.; Owzar, K.; Debenedetti, M.K.; Wells, S.A., Jr. Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A. N. Engl. J. Med. 2005, 353, 1105–1113. [Google Scholar] [CrossRef]
- Nguyen, L.; Niccoli-Sire, P.; Caron, P.; Bastie, D.; Maes, B.; Chabrier, G.; Chabre, O.; Rohmer, V.; Lecomte, P.; Henry, J.F.; et al. Pheochromocytoma in multiple endocrine neoplasia type 2: A prospective study. Eur. J. Endocrinol. 2001, 144, 37–44. [Google Scholar] [CrossRef]
- Thosani, S.; Ayala-Ramirez, M.; Palmer, L.; Hu, M.I.; Rich, T.; Gagel, R.F.; Cote, G.; Waguespack, S.G.; Habra, M.A.; Jimenez, C. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab. 2013, 98, E1813–E1819. [Google Scholar] [CrossRef]
- Makri, A.; Akshintala, S.; Derse-Anthony, C.; Del Rivero, J.; Widemann, B.; Stratakis, C.A.; Glod, J.; Lodish, M. Pheochromocytoma in Children and Adolescents with Multiple Endocrine Neoplasia Type 2B. J. Clin. Endocrinol. Metab. 2019, 104, 7–12. [Google Scholar] [CrossRef]
- Wray, C.J.; Rich, T.A.; Waguespack, S.G.; Lee, J.E.; Perrier, N.D.; Evans, D.B. Failure to recognize multiple endocrine neoplasia 2B: More common than we think? Ann. Surg. Oncol. 2008, 15, 293–301. [Google Scholar] [CrossRef]
- Bencivenga, D.; Stampone, E.; Roberti, D.; Della Ragione, F.; Borriello, A. p27(Kip1), an Intrinsically Unstructured Protein with Scaffold Properties. Cells 2021, 10, 2254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bergamaschi, D.; Jin, B.; Lu, X. Posttranslational modifications of p27kip1 determine its binding specificity to different cyclins and cyclin-dependent kinases in vivo. Blood 2005, 105, 3691–3698. [Google Scholar] [CrossRef] [PubMed]
- Bencivenga, D.; Stampone, E.; Aulitto, A.; Tramontano, A.; Barone, C.; Negri, A.; Roberti, D.; Perrotta, S.; Della Ragione, F.; Borriello, A. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue: A new mechanism for tumor suppressor loss-of-function. Mol. Oncol. 2021, 15, 915–941. [Google Scholar] [CrossRef] [PubMed]
- Cusan, M.; Mungo, G.; De Marco Zompit, M.; Segatto, I.; Belletti, B.; Baldassarre, G. Landscape of CDKN1B Mutations in Luminal Breast Cancer and Other Hormone-Driven Human Tumors. Front. Endocrinol. 2018, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Pellegata, N.S. Multiple endocrine neoplasia type 4. Front. Horm. Res. 2013, 41, 63–78. [Google Scholar] [CrossRef]
- Tonelli, F.; Giudici, F.; Giusti, F.; Marini, F.; Cianferotti, L.; Nesi, G.; Brandi, M.L. A heterozygous frameshift mutation in exon 1 of CDKN1B gene in a patient affected by MEN4 syndrome. Eur. J. Endocrinol. 2014, 171, K7–K17. [Google Scholar] [CrossRef]
- Zung, A.; Barash, G.; Banne, E.; Levine, M.A. Novel Calcium-Sensing Receptor (CASR) Mutation in a Family with Autosomal Dominant Hypocalcemia Type 1 (ADH1): Genetic Study over Three Generations and Clinical Characteristics. Horm. Res. Paediatr. 2023, 96, 473–482. [Google Scholar] [CrossRef]
- Hannan, F.M.; Kallay, E.; Chang, W.; Brandi, M.L.; Thakker, R.V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 2018, 15, 33–51. [Google Scholar] [CrossRef]
- Crona, J.; Gustavsson, T.; Norlen, O.; Edfeldt, K.; Akerstrom, T.; Westin, G.; Hellman, P.; Bjorklund, P.; Stalberg, P. Somatic Mutations and Genetic Heterogeneity at the CDKN1B Locus in Small Intestinal Neuroendocrine Tumors. Ann. Surg. Oncol. 2015, 22 (Suppl. S3), S1428–S1435. [Google Scholar] [CrossRef]
- Occhi, G.; Regazzo, D.; Trivellin, G.; Boaretto, F.; Ciato, D.; Bobisse, S.; Ferasin, S.; Cetani, F.; Pardi, E.; Korbonits, M.; et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet. 2013, 9, e1003350. [Google Scholar] [CrossRef]
- Sambugaro, S.; Di Ruvo, M.; Ambrosio, M.R.; Pellegata, N.S.; Bellio, M.; Guerra, A.; Buratto, M.; Foschini, M.P.; Tagliati, F.; degli Uberti, E.; et al. Early onset acromegaly associated with a novel deletion in CDKN1B 5′UTR region. Endocrine 2015, 49, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Schernthaner-Reiter, M.H.; Trivellin, G.; Stratakis, C.A. MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics. Neuroendocrinology 2016, 103, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, C.A.; Tichomirowa, M.A.; Boikos, S.; Azevedo, M.F.; Lodish, M.; Martari, M.; Verma, S.; Daly, A.F.; Raygada, M.; Keil, M.F.; et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin. Genet. 2010, 78, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Chasseloup, F.; Pankratz, N.; Lane, J.; Faucz, F.R.; Keil, M.F.; Chittiboina, P.; Kay, D.M.; Hussein Tayeb, T.; Stratakis, C.A.; Mills, J.L.; et al. Germline CDKN1B Loss-of-Function Variants Cause Pediatric Cushing’s Disease with or without an MEN4 Phenotype. J. Clin. Endocrinol. Metab. 2020, 105, 1983–2005. [Google Scholar] [CrossRef]
- Georgitsi, M.; Raitila, A.; Karhu, A.; van der Luijt, R.B.; Aalfs, C.M.; Sane, T.; Vierimaa, O.; Makinen, M.J.; Tuppurainen, K.; Paschke, R.; et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J. Clin. Endocrinol. Metab. 2007, 92, 3321–3325. [Google Scholar] [CrossRef]
- Ojeda, D.; Lakhal, B.; Fonseca, D.J.; Braham, R.; Landolsi, H.; Mateus, H.E.; Restrepo, C.M.; Elghezal, H.; Saad, A.; Laissue, P. Sequence analysis of the CDKN1B gene in patients with premature ovarian failure reveals a novel mutation potentially related to the phenotype. Fertil. Steril. 2011, 95, 2658–2660 e2651. [Google Scholar] [CrossRef]
- Charoenngam, N.; Mannstadt, M. Primary Hyperparathyroidism in a Patient with Bilateral Pheochromocytoma and a Mutation in the Tumor Suppressor MAX. JCEM Case Rep. 2023, 1, luad006. [Google Scholar] [CrossRef]
- Bausch, B.; Schiavi, F.; Ni, Y.; Welander, J.; Patocs, A.; Ngeow, J.; Wellner, U.; Malinoc, A.; Taschin, E.; Barbon, G.; et al. Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention. JAMA Oncol. 2017, 3, 1204–1212. [Google Scholar] [CrossRef]
- Burnichon, N.; Cascon, A.; Schiavi, F.; Morales, N.P.; Comino-Mendez, I.; Abermil, N.; Inglada-Perez, L.; de Cubas, A.A.; Amar, L.; Barontini, M.; et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin. Cancer Res. 2012, 18, 2828–2837. [Google Scholar] [CrossRef]
- Shibata, M.; Inaishi, T.; Miyajima, N.; Adachi, Y.; Takano, Y.; Nakanishi, K.; Takeuchi, D.; Noda, S.; Aita, Y.; Takekoshi, K.; et al. Synchronous bilateral pheochromocytomas and paraganglioma with novel germline mutation in MAX: A case report. Surg. Case Rep. 2017, 3, 131. [Google Scholar] [CrossRef]
- Chang, X.; Li, Z.; Ma, X.; Cui, Y.; Chen, S.; Tong, A. A Novel Phenotype of Germline Pathogenic Variants in MAX: Concurrence of Pheochromocytoma and Ganglioneuroma in a Chinese Family and Literature Review. Front. Endocrinol. 2020, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Comino-Mendez, I.; Gracia-Aznarez, F.J.; Schiavi, F.; Landa, I.; Leandro-Garcia, L.J.; Leton, R.; Honrado, E.; Ramos-Medina, R.; Caronia, D.; Pita, G.; et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat. Genet. 2011, 43, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Nezu, M.; Hirotsu, Y.; Amemiya, K.; Katsumata, M.; Watanabe, T.; Takizawa, S.; Inoue, M.; Mochizuki, H.; Hosaka, K.; Oyama, T.; et al. A case of juvenile-onset pheochromocytoma with KIF1B p.V1529M germline mutation. Endocr. J. 2022, 69, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.B.; Ferreira, L.; Santos, A.P.; Costa, C.; Lima, J.; Santos, C.; Afonso, M.; Teixeira, M.R.; Carvalho, R.; Cardoso, M.H. Case Report: Pheochromocytoma and Synchronous Neuroblastoma in a Family with Hereditary Pheochromocytoma Associated with a MAX Deleterious Variant. Front. Endocrinol. 2021, 12, 609263. [Google Scholar] [CrossRef]
- Richter, J.E., Jr.; Hines, S.; Selvam, P.; Atwal, H.; Farres, H.; Caulfield, T.R.; Atwal, P.S. Clinical description & molecular modeling of novel MAX pathogenic variant causing pheochromocytoma in family, supports paternal parent-of-origin effect. Cancer Genet. 2021, 252–253, 107–110. [Google Scholar] [CrossRef]
- Mamedova, E.; Vasilyev, E.; Petrov, V.; Buryakina, S.; Tiulpakov, A.; Belaya, Z. Familial Acromegaly and Bilateral Asynchronous Pheochromocytomas in a Female Patient with a MAX Mutation: A Case Report. Front. Endocrinol. 2021, 12, 683492. [Google Scholar] [CrossRef]
- Romanet, P.; Guerin, C.; Pedini, P.; Essamet, W.; Castinetti, F.; Sebag, F.; Roche, P.; Cascon, A.; Tischler, A.S.; Pacak, K.; et al. Pathological and Genetic Characterization of Bilateral Adrenomedullary Hyperplasia in a Patient with Germline MAX Mutation. Endocr. Pathol. 2017, 28, 302–307. [Google Scholar] [CrossRef]
- Augert, A.; Mathsyaraja, H.; Ibrahim, A.H.; Freie, B.; Geuenich, M.J.; Cheng, P.F.; Alibeckoff, S.P.; Wu, N.; Hiatt, J.B.; Basom, R.; et al. MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer. Cancer Cell 2020, 38, 97–114.e117. [Google Scholar] [CrossRef]
- Loughrey, P.B.; Roncaroli, F.; Healy, E.; Weir, P.; Basetti, M.; Casey, R.T.; Hunter, S.J.; Korbonits, M. Succinate dehydrogenase and MYC-associated factor X mutations in pituitary neuroendocrine tumours. Endocr. Relat. Cancer 2022, 29, R157–R172. [Google Scholar] [CrossRef]
- Crona, J.; Maharjan, R.; Delgado Verdugo, A.; Stalberg, P.; Granberg, D.; Hellman, P.; Bjorklund, P. MAX mutations status in Swedish patients with pheochromocytoma and paraganglioma tumours. Fam. Cancer 2014, 13, 121–125. [Google Scholar] [CrossRef]
- Korpershoek, E.; Koffy, D.; Eussen, B.H.; Oudijk, L.; Papathomas, T.G.; van Nederveen, F.H.; Belt, E.J.; Franssen, G.J.; Restuccia, D.F.; Krol, N.M.; et al. Complex MAX Rearrangement in a Family with Malignant Pheochromocytoma, Renal Oncocytoma, and Erythrocytosis. J. Clin. Endocrinol. Metab. 2016, 101, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Pozza, C.; Sesti, F.; Di Dato, C.; Sbardella, E.; Pofi, R.; Schiavi, F.; Bonifacio, V.; Isidori, A.M.; Faggiano, A.; Lenzi, A.; et al. A Novel MAX Gene Mutation Variant in a Patient with Multiple and “Composite” Neuroendocrine-Neuroblastic Tumors. Front. Endocrinol. 2020, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Araujo, P.B.; Carvallo, M.S.; Vidal, A.P.; Nascimento, J.B.; Wo, J.M.; Naliato, E.O.; Cunha Neto, S.H.; Conceicao, F.L.; Fontes, R.; de Lima, V.V.; et al. Case Report: Composite pheochromocytoma with ganglioneuroma component: A report of three cases. Front. Endocrinol. 2022, 13, 903085. [Google Scholar] [CrossRef]
- Maltais, L.; Montagne, M.; Bedard, M.; Tremblay, C.; Soucek, L.; Lavigne, P. Biophysical characterization of the b-HLH-LZ of DeltaMax, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers. PLoS ONE 2017, 12, e0174413. [Google Scholar] [CrossRef] [PubMed]
Syndrome | Clinical Features | Incidence | Onset |
---|---|---|---|
MEN1 | Parathyroid hyperplasia with primary hyperparathyroidism | >90% | 20–25 y.o. |
Neuroendocrinal tumors:
| 30–80% | >40 y.o. | |
Pituitary adenoma:
| 30–50% in adult and 34% in children | ||
Other manifestations: pheochromocytomas, facial angiofibromas, collagenomas, meningiomas, ependymomas, lipomas, carcinoid tumors, breast cancer | |||
MEN2 | |||
| FMTC/Medullary thyroid carcinoma Or | 100% | |
Medullary thyroid carcinoma associated with | 100% | Third decade | |
Pheochromocytoma | 50% | Second decade | |
Primary hyperparathyroidism | 10–30% | 34 y.o. | |
Other: Cutaneous lichen amyloidosis | |||
| Medullary thyroid carcinoma | 100% | Earlier than MEN2A |
Pheochromocytoma | 50% | ||
Marfanoid habitus | 75% | ||
Other: Mucosal neuromas of the lips and tongue, ganglioneuromatosis of the gastrointestinal tract | |||
MEN4 | Primary hyperparathyroidism | 80–90% | |
Pituitary adenomas | 30–79 y.o. | ||
Other: Neuroendocrinal tumors; tumors of the adrenals, kidneys, and testicular and cervical organs | |||
MEN5 | Unilateral or bilateral pheochromocytoma | 20 y.o | |
Paraganglioma | 30–40 y.o. |
GENE | LOCUS | FUNCTION | MUTATION | PHENOTYPES |
---|---|---|---|---|
MEN1 | Chromosome 11 (11q13) | Gene transcription and epigenetic regulation | Autosomal dominant: 50% of mutations are insertions and deletions causing frame shifts, 20% are missense mutations, 20% are nonsense mutations and approximately 7% are splice site defects | MEN 1 syndrome: mainly parathyroid glands, pancreatic islets, and anterior pituitary |
RET (REarranged during Transfection) | Chromosome 10 (10q11.2) | Receptor tyrosine kinase protein; serves as a receptor for a series of proteins of the GDNF (glial cell line-derived neurotrophic factor) family | Substitutions; mainly 95% of RET mutations occur in the cysteine-rich extracellular domain (with 85% of these mutations located at codon Cys634) or in methionine 918 (methionine 918 → threonine) or alanine 883 in the kinase domain | MEN 2A: medullary thyroid carcinoma, hyperparathyroidism and pheochromocytoma MEN 2B: medullary thyroid carcinoma (more aggressive than MEN type A), pheochromocytoma and diffuse gastrointestinal ganglioneuromatosis FMTC: familiar medullary carcinoma. |
CDKN1B/p27 | Chromose 12 (12p13) | Inhibitor of cyclin-dependent kinase (CDKI), regulates cell cycle progression and arrest with inhibitory functions on various cyclin/CDK complexes, particularly at the transition from G1 to S phase, but many new functions have been discovered depending on its subcellular localization | Mainly missense mutations located within the coding sequence (for example: c.678 C>T (p.P69L) e c.283 C>T (p.P95S)) or germline mutations altering untranslated regions (UTRs) | Hyperparathyroidism and pituitary adenomas, with a more indolent course compared to MEN 1 |
MAX (Factor X associated with Myc) | Chromose 14 (14q23.3) | Tumor suppressor, transcription factor, which is a cofactor of the MYC proto-oncogene and plays an important role in the regulation of cell proliferation, differentiation and death | Inactivating mutations (truncating frameshift mutation, for example c.160C in exon 3 of the MYC-associated factor) | MEN 5: neuroendocrine tumors (PitNETs), pheochromocytomas and paragangliomas |
AIP (Aryl hydrocarbon receptor-interacting protein) | Chromosome 11 (11q13) | Co-chaperone of HSP90 and HSC70 involved in the cAMP-phosphodiesterases pathway | Nonsense and missense mutations; deletions; insertions; splice-site and promoter mutations | Pituitary adenomas at a younger age, larger in size and more aggressive |
CaSR (Calcium-sensing receptor) | Chromosome 3 (3q13.3-21) | Regulation of extracellular calcium homeostasis; apoptosis; cell proliferation | Inactivating mutations as missense mutations Hotspots cluster in exons 3, 4 and 7. | Primary hyperparathyroidism and familiar hypocalciuric hypercalcemia |
CDC73 (Parafibromin) | Chromosome 1 (1q31.2) | It participates in transcriptional processes important for chromatin remodeling, histone modification, initiation and elongation, and activates the wnt/ b-catenin and hedgehog signaling pathways | Mutations truncating the protein prematurely result in the loss of parafibromin function, especially with damage to the C-terminal | Parathyroid adenomas |
The VDR | Chromosome 12 (12q13.11) | The transcription process of genes involved in the signaling pathway of vitamin D, calcium and phosphorus; cellular proliferation processes and the control of the immune system | Fokl (rs10735810), BsmI (rs1544410), Taql (rs731236) and Apal (rs7975232) | Parathyroid gland hyperplasia and adenomas; cardiovascular alterations, rheumatic arthritis and metabolic bone diseases, type 2 diabetes, cancer and autoimmune diseases |
SDHB, SDHC, SDHD, SDH5 e TMEM127 | Chromosome 1-2-11 | SDH(B-C-D-5) encode the succinate dehydrogenase (SDH) comples, which are necessary for the mitochondrial electron transport chain and for the generation of ATP; TMEM127 is a tumor-suppressor gene that encodes a transmembrane protein of unknown function | Amino acid substitutions, truncating mutations, rearrangements, missense mutations, which all cause the inactivation of TMEM127 and SDH | Pheochromocytomas, renal cancers, gastrointestinal stromal tumor, papillary thyroid carcinoma and paragangliomas |
Xq26.3 (GPR101) | Chromosome X | An orphane G-protein coupled receptor, the role of which is not yet known but it is able to influence GH levels at the pituitary and hypothalamic levels | Microduplications | Development of mixed GH and/or prolactin adenomas |
AVP (vasopressin gene) | Chromosome 20 (20p12) | Receptor V1a—vasoconstriction, gluconeogenesis, platelet aggregation, release of factor VIII and von Willebrand factor; Repector V1b—secretion of adrenocorticotropin (ACTH) in response to stress; V2—insertion of aquaporin-2 (AQP2) (channels for the passage of water) | Missense mutations c.173 G>C (p.Cys58Ser) e c.215 C>A (p.Ala72Glu) | Pituitary adenomas |
SLC11A2 (DMT-1) | Chromosome 12 | It allows the uptake of iron in the kidneys and intestines and allows iron to be recovered from the recycling of endosomes | Splicing c.762 + 35A>G; substitution 223G>A | Tumors of the gastrointestinal system (colorectal cancer) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanzaro, F.; De Biasio, D.; Cesaro, F.G.; Stampone, E.; Tartaglione, I.; Casale, M.; Bencivenga, D.; Marzuillo, P.; Roberti, D. Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes. J. Clin. Med. 2024, 13, 5510. https://doi.org/10.3390/jcm13185510
Lanzaro F, De Biasio D, Cesaro FG, Stampone E, Tartaglione I, Casale M, Bencivenga D, Marzuillo P, Roberti D. Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes. Journal of Clinical Medicine. 2024; 13(18):5510. https://doi.org/10.3390/jcm13185510
Chicago/Turabian StyleLanzaro, Francesca, Delia De Biasio, Francesco Giustino Cesaro, Emanuela Stampone, Immacolata Tartaglione, Maddalena Casale, Debora Bencivenga, Pierluigi Marzuillo, and Domenico Roberti. 2024. "Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes" Journal of Clinical Medicine 13, no. 18: 5510. https://doi.org/10.3390/jcm13185510
APA StyleLanzaro, F., De Biasio, D., Cesaro, F. G., Stampone, E., Tartaglione, I., Casale, M., Bencivenga, D., Marzuillo, P., & Roberti, D. (2024). Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes. Journal of Clinical Medicine, 13(18), 5510. https://doi.org/10.3390/jcm13185510