Eosinophilic Bronchiectasis: Prevalence, Severity, and Associated Features—A Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Bronchiectasis Diagnosis and Severity Assessment
2.4. Statistical Analysis
3. Results
3.1. Demographics and Clinical Characteristics of the Study Population
3.2. Relationship between BEC and BE Endotype
3.3. Correlation between BEC and the Clinical, Radiological, and Severity Features of BE
3.4. Multiple Logistic Regression Analysis to Predict the Odds Ratios of EB
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris, M.; Cantón, R.; Torres, A.; Dimakou, K.; et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017, 50, 1700629. [Google Scholar] [CrossRef] [PubMed]
- Tsikrika, S.; Dimakou, K.; Papaioannou, A.I.; Hillas, G.; Thanos, L.; Kostikas, K.; Loukides, S.; Papiris, S.; Koulouris, N.; Bakakos, P. The role of non-invasive modalities for assessing inflammation in patients with non-cystic fibrosis bronchiectasis. Cytokine 2017, 99, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Flume, P.A.; Chalmers, J.D.; Olivier, K.N. Advances in bronchiectasis: Endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018, 392, 880–890. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Chang, A.B.; Chotirmall, S.H.; Dhar, R.; McShane, P.J. Bronchiectasis. Nat. Rev. Dis. Prim. 2018, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Long, M.B.; Chotirmall, S.H.; Shteinberg, M.; Chalmers, J.D. Rethinking bronchiectasis as an inflammatory disease. Lancet Respir. Med. 2024. [Google Scholar] [CrossRef]
- Aliberti, S.; Sotgiu, G.; Lapi, F.; Gramegna, A.; Cricelli, C.; Blasi, F. Prevalence and incidence of bronchiectasis in Italy. BMC Pulm. Med. 2020, 20, 15. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Mac Aogáin, M.; Chalmers, J.D.; Elborn, S.J.; Chotirmall, S.H. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. BMC Pulm. Med. 2018, 18, 83. [Google Scholar] [CrossRef]
- Martínez-García, M.Á.; Oscullo, G.; Gomez-Olivas, J.D. Peripheral cellular biomarkers in bronchiectasis. Respir. Med. Res. 2023, 84, 101063. [Google Scholar] [CrossRef]
- O’Donnell, A.E. Bronchiectasis—A Clinical Review. N. Engl. J. Med. 2022, 387, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.A. Eosinophils in bronchiectasis: Searching for a new endotype. Int. J. Tuberc. Lung Dis. 2023, 27, 5–6. [Google Scholar] [CrossRef]
- Keir, H.R.; Chalmers, J.D. Bronchiectasis enters the inflammation era. Respirology 2022, 27, 488–489. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.; Goeminne, P.C. Eosinophils in Bronchiectasis. Chest 2023, 164, 561–563. [Google Scholar] [CrossRef]
- Shoemark, A.; Shteinberg, M.; De Soyza, A.; Haworth, C.S.; Richardson, H.; Gao, Y.; Perea, L.; Dicker, A.J.; Goeminne, P.C.; Cant, E.; et al. Characterization of Eosinophilic Bronchiectasis: A European Multicohort Study. Am. J. Respir. Crit. Care Med. 2022, 205, 894–902. [Google Scholar] [CrossRef]
- Guan, W.; Oscullo, G.; He, M.; Xu, D.; Gómez-Olivas, J.D.; Martinez-Garcia, M.A. Significance and Potential Role of Eosinophils in Non-Cystic Fibrosis Bronchiectasis. J. Allergy Clin. Immunol. Pract. 2022, 11, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, M.Á.; Méndez, R.; Olveira, C.; Girón, R.; García-Clemente, M.; Máiz, L.; Sibila, O.; Golpe, R.; Rodríguez-Hermosa, J.L.; Barreiro, E.; et al. The U-Shaped Relationship Between Eosinophil Count and Bronchiectasis Severity. Chest 2023, 164, 606–613. [Google Scholar] [CrossRef]
- Chen, W.; Ran, S.; Li, C.; Li, Z.; Wei, N.; Li, J.; Li, N. Elevated Eosinophil Counts in Acute Exacerbations of Bronchiectasis: Unveiling a Distinct Clinical Phenotype. Lung 2024, 202, 53–61. [Google Scholar] [CrossRef]
- Oriano, M.; Gramegna, A.; Amati, F.; D’Adda, A.; Gaffuri, M.; Contoli, M.; Bindo, F.; Simonetta, E.; Di Francesco, C.; Santambrogio, M.; et al. T2-High Endotype and Response to Biological Treatments in Patients with Bronchiectasis. Biomedicines 2021, 9, 772. [Google Scholar] [CrossRef]
- Wang, X.; Villa, C.; Dobarganes, Y.; Olveira, C.; Girón, R.; García-Clemente, M.; Máiz, L.; Sibila, O.; Golpe, R.; Menéndez, R.; et al. Phenotypic Clustering in Non-Cystic Fibrosis Bronchiectasis Patients: The Role of Eosinophils in Disease Severity. Int. J. Environ. Res. Public Health 2021, 18, 8431. [Google Scholar] [CrossRef] [PubMed]
- Crimi, C.; Campisi, R.; Nolasco, S.; Cacopardo, G.; Intravaia, R.; Porto, M.; Impellizzeri, P.; Pelaia, C.; Crimi, N. Mepolizumab effectiveness in patients with severe eosinophilic asthma and co-presence of bronchiectasis: A real-world retrospective pilot study. Respir. Med. 2021, 185, 106491. [Google Scholar] [CrossRef]
- Campisi, R.; Nolasco, S.; Pelaia, C.; Impellizzeri, P.; D’Amato, M.; Portacci, A.; Ricciardi, L.; Scioscia, G.; Crimi, N.; Scichilone, N.; et al. Benralizumab Effectiveness in Severe Eosinophilic Asthma with Co-Presence of Bronchiectasis: A Real-World Multicentre Observational Study. J. Clin. Med. 2023, 12, 3953. [Google Scholar] [CrossRef] [PubMed]
- Ferri, S.; Crimi, C.; Campisi, R.; Cacopardo, G.; Paoletti, G.; Puggioni, F.; Crimi, N.; Heffler, E. Impact of asthma on bronchiectasis severity and risk of exacerbations. J. Asthma 2022, 59, 469–475. [Google Scholar] [CrossRef]
- Exhaled, N.O. ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. Am. J. Respir. Crit. Care Med. 2005, 171, 912–930. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, S.; Goeminne, P.C.; O’Donnell, A.E.; Aksamit, T.R.; Al-Jahdali, H.; Barker, A.F.; Blasi, F.; Boersma, W.G.; Crichton, M.L.; De Soyza, A.; et al. Criteria and definitions for the radiological and clinical diagnosis of bronchiectasis in adults for use in clinical trials: International consensus recommendations. Lancet Respir. Med. 2022, 10, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Reiff, D.B.; Wells, A.U.; Carr, D.H.; Cole, P.J.; Hansell, D.M. CT findings in bronchiectasis: Limited value in distinguishing between idiopathic and specific types. Am. J. Roentgenol. 1995, 165, 261–267. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The Bronchiectasis Severity Index. An International Derivation and Validation Study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; de Gracia, J.; Vendrell Relat, M.; Giron, R.-M.; Maiz Carro, L.; de la Rosa Carrillo, D.; Olveira, C. Multidimensional approach to non-cystic fibrosis bronchiectasis: The FACED score. Eur. Respir. J. 2014, 43, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.C.; Machado, J.N.; Ferreira, C.; Gama, J.; Rodrigues, C. The Bronchiectasis Severity Index and FACED score for assessment of the severity of bronchiectasis. Pulmonology 2018, 24, 149–154. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Athanazio, R.A.; Girón, R.M.; Máiz-Carro, L.; de la Rosa, D.; Olveira, C.; de Gracia, J.; Vendrell, M.; Prados-Sánchez, C.; Gramblicka, G.; et al. Predicting high risk of exacerbations in bronchiectasis: The E-FACED score. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 275–284. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Aliberti, S.; Goeminne, P.C.; Restrepo, M.I.; Finch, S.; Pesci, A.; Dupont, L.J.; Fardon, T.C.; Wilson, R.; Loebinger, M.R.; et al. Comorbidities and the risk of mortality in patients with bronchiectasis: An international multicentre cohort study. Lancet Respir. Med. 2016, 4, 969–979. [Google Scholar] [CrossRef]
- Chessari, C.; Simonetta, E.; Amati, F.; Nigro, M.; Stainer, A.; Sotgiu, G.; Puci, M.; Gramegna, A.; Blasi, F.; Morlacchi, L.C.; et al. Diagnostic delay in bronchiectasis: An Italian perspective. ERJ Open Res. 2024, 10, 00713-2023. [Google Scholar] [CrossRef]
- Keir, H.R.; Chalmers, J.D. Pathophysiology of Bronchiectasis. Semin. Respir. Crit. Care Med. 2021, 42, 499–512. [Google Scholar] [CrossRef]
- Ferri, S.; Crimi, C.; Heffler, E.; Campisi, R.; Noto, A.; Crimi, N. Vitamin D and disease severity in bronchiectasis. Respir. Med. 2019, 148, 1–5. [Google Scholar] [CrossRef]
- Oscullo, G.; Gomez-Olivas, J.D.; Martínez-García, M.Á. Eosinophilic bronchiectasis and therapeutic opportunities. Ann. Allergy, Asthma Immunol. 2023, 131, 689–690. [Google Scholar] [CrossRef]
- Higham, A.; Beech, A.; Wolosianka, S.; Jackson, N.; Long, G.; Kolsum, U.; Southworth, T.; Pham, T.; Sridhar, S.; McCrae, C.; et al. Type 2 inflammation in eosinophilic chronic obstructive pulmonary disease. Allergy 2021, 76, 1861–1864. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Faner, R.; Oscullo, G.; de la Rosa, D.; Soler-Cataluña, J.-J.; Ballester, M.; Agusti, A. Inhaled Steroids, Circulating Eosinophils, Chronic Airway Infection, and Pneumonia Risk in Chronic Obstructive Pulmonary Disease. A Network Analysis. Am. J. Respir. Crit. Care Med. 2020, 201, 1078–1085. [Google Scholar] [CrossRef]
- Kuwabara, Y.; Kobayashi, T.; D’Alessandro-Gabazza, C.N.; Toda, M.; Yasuma, T.; Nishihama, K.; Takeshita, A.; Fujimoto, H.; Nagao, M.; Fujisawa, T.; et al. Role of Matrix Metalloproteinase-2 in Eosinophil-Mediated Airway Remodeling. Front. Immunol. 2018, 9, 2163. [Google Scholar] [CrossRef]
- Frøssing, L.; Von Bülow, A.; Porsbjerg, C. Bronchiectasis in severe asthma is associated with eosinophilic airway inflammation and activation. J. Allergy Clin. Immunol. Glob. 2023, 2, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Zeng, Z.; Chen, F.; Guo, Y.; Liu, Y. Eosinophilic bronchiectasis increases length and cost of hospitalization: A retrospective analysis in a hospital of southern China from 2012 to 2020. BMC Pulm. Med. 2024, 24, 98. [Google Scholar] [CrossRef]
- Kwok, W.C.; Ho, J.C.M.; Ma, T.F.; Lam, D.C.L.; Chan, J.W.M.; Ip, M.; Tam, T.C.C. Risk of hospitalised bronchiectasis exacerbation based on blood eosinophil counts. Int. J. Tuberc. Lung Dis. 2023, 27, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Chen, A.; Wang, J.; Chang, C.; Wang, J.; Sun, L.; Sun, Y. Association of blood total immunoglobulin E and eosinophils with radiological features of bronchiectasis. BMC Pulm. Med. 2023, 23, 316. [Google Scholar] [CrossRef]
- Martínez-García, M.A.; Olveira, C.; Girón, R.; García-Clemente, M.; Máiz, L.; Sibila, O.; Golpe, R.; Rodríguez-Hermosa, J.L.; Barreiro, E.; Méndez, R.; et al. Reliability of blood eosinophil count in steady-state bronchiectasis. Pulmonology 2024, in press. [Google Scholar] [CrossRef]
- Aliberti, S.; Sotgiu, G.; Blasi, F.; Saderi, L.; Posadas, T.; Martinez Garcia, M.A. Blood eosinophils predict inhaled fluticasone response in bronchiectasis. Eur. Respir. J. 2020, 56, 2000453. [Google Scholar] [CrossRef]
- Rademacher, J.; Konwert, S.; Fuge, J.; Dettmer, S.; Welte, T.; Ringshausen, F.C. Anti-IL5 and anti-IL5Rα therapy for clinically significant bronchiectasis with eosinophilic endotype: A case series. Eur. Respir. J. 2020, 55, 1901333. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Cole, J.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. N. Engl. J. Med. 2023, 389, 205–214. [Google Scholar] [CrossRef]
- Bendien, S.A.; Kroes, J.A.; van Hal, L.H.G.; Braunstahl, G.-J.; Broeders, M.E.A.C.; Oud, K.T.M.; Patberg, K.W.; Smeenk, F.W.J.M.; van Veen, I.H.P.A.A.; Weersink, E.J.M.; et al. Real-World Effectiveness of IL-5/5Ra Targeted Biologics in Severe Eosinophilic Asthma With Comorbid Bronchiectasis. J. Allergy Clin. Immunol. Pract. 2023, 11, 2724–2731.e2. [Google Scholar] [CrossRef]
- Crimi, C.; Ferri, S.; Crimi, N. Bronchiectasis and asthma: A dangerous liaison? Curr. Opin. Allergy Clin. Immunol. 2019, 19, 46–52. [Google Scholar] [CrossRef]
Clinical Features | Patients (n = 153) |
---|---|
Demographics | |
Sex (female), n (%) | 85 (55) |
Age, median (IQR) years | 65 (56–73.5) |
Former/Active smokers, n (%) | 85 (55) |
BMI [kg/m2], median (IQR) | 24 (21–27.7) |
Biomarkers | |
Eosinophils cells/µL, median (IQR) | 170 (100–325) |
FeNO, ppd, median (IQR) | 22 (11–31) |
Disease severity | |
BSI, mean (SD) | 6 ± 3 |
FACED, median (IQR) | 2 (1–3) |
E-FACED, median (IQR) | 3 (1–4) |
Radiology | |
Reiff score, median (IQR) | 5 (3–7) |
Number of Lobes with BE, mean (SD) | 3.6 (1.3) |
Etiology | |
Idiopathic, n (%) | 79 (51) |
Post-infective, n (%) | 40 (26) |
Secondary, n (%) | 34 (22) |
● COPD | 22 (64) |
● Immunodeficiency | 3 (9) |
● Ciliary dysfunction | 3 (9) |
● Congenital malformation | 1 (3) |
● Aspiration/oesophageal reflux | 5 (15) |
Pulmonary Function | |
FEV1, %, median (IQR) predict. | 91 (93–110) |
FEV1, L, median (IQR) | 2.16 (1.5–2.7) |
FVC, %, mean (SD) predict. | 90.5 ± 24.4 |
FVC, L, median (IQR) | 3.2 (2.4–4.6) |
FEF25–75, %, median (IQR) predict. | 62 (31–98) |
FEF25–75, L, median (IQR) | 1.5 (0.8–2.5) |
Comorbidities | |
COPD, n (%) | 54 (35) |
GERD, n (%) | 59 (38) |
Sleep Disorder Breathing, n (%) | 15 (9) |
Chronic Rhinosinusitis, n (%) | 26 (17) |
Arterial Hypertension, n (%) | 68 (44) |
Chronic Ischemic Heart Disease, n (%) | 49 (32) |
Atrial Fibrillation, n (%) | 5 (3) |
Diabetes, n (%) | 14 (9) |
Anxiety, n (%) | 31 (20) |
Depression, n (%) | 13 (8) |
Clinical Status | |
Exacerbations/year, median (IQR) | 3 (1–4) |
Hospitalizations/year, media (IQR) | 0 (0–0) |
BACI, median (IQR) | 2 (0–5) |
Symptoms | |
Dyspnea (mMRC), mean (SD) | 2 ± 1 |
Chronic Mucus Hypersecretion, n (%) | 25 (16) |
Hemoptysis, n (%) | 17 (11) |
Cough, n (%) | 135 (88) |
Coughing sputum, n (%) | 113 (73) |
Chest pain, n (%) | 22 (14) |
Microbiology | |
Pseudomonas aeruginosa, n (%) | 36 (23) |
NTM infections, n (%) | 7 (4.5) |
Other infections, n (%) | 46 (30) |
Total Population (n = 153) | Blood Eosinophils Count | p Value | |
---|---|---|---|
<300 cells/µL (n = 111 non-EB) | ≥300 cells/µL (n = 42 EB) | ||
Demographics | |||
Sex (female), n (%) | 61 (54.9) | 24 (57.1) | 0.85 |
Age, median (IQR) years | 65 (54–73.0) | 67 (59–76) | 0.16 |
Former/Active smokers, n (%) | 58 (52.2) | 27 (65.1) | 0.79 |
BMI [kg/m2], median (IQR) | 24 (21–27.7) | 25.1 (21–27.8) | 0.69 |
Biomarkers | |||
Eosinophils cells/µL, median (IQR) | 120 (70–190) | 455 (300–615) | <0.0001 |
FeNO, ppd, median (IQR) | 16.5 (8.75–23.25) | 32 (25–43) | <0.0001 |
Disease severity | |||
BSI, median (IQR) | 5 (3–9) | 7.5 (5–8) | 0.001 |
FACED, median (IQR) | 2 (1–3) | 3 (2–4) | 0.002 |
E-FACED, median (IQR) | 2 (1–4) | 4 (1–6) | 0.02 |
Radiology | |||
Reiff score, median (IQR) | 4 (3–7) | 6 (5–7) | 0.008 |
Number of Lobes with BE, median (IQR) | 3 (2–5) | 4 (3–5) | 0.007 |
Etiology | |||
Idiopathic, n (%) | 62 (56) | 17 (40.4) | 0.10 |
Post-infective, n (%) | 30 (27) | 10 (24) | 0.54 |
Secondary, n (%) | 19 (17) | 15 (35) | 0.01 |
Pulmonary Function | |||
FEV1, %, median (IQR) predict. | 96 (65–114) | 78 (50–99.7) | 0.01 |
FEV1, L, median (IQR) | 2.23 (1.50–2.92) | 2 (1.64–2.75) | 0.51 |
FVC, %, median (IQR) predict. | 95 (75.5–107) | 80.5 (62.5–105.5) | 0.06 |
FVC, L, median (IQR) | 3.44 (2.5–5.3) | 2.70 (2.2–3.7) | 0.008 |
FEF25–75, %, median (IQR) predict. | 69 (38–106) | 41 (15.5–78) | 0.001 |
FEF25–75, L, median (IQR) | 1.87 (1.02–3.57) | 1.26 (0.59–1.75) | 0.001 |
Comorbidities | |||
COPD, n (%) | 32 (28.8) | 22 (52.3) | 0.008 |
GERD, n (%) | 39 (35.1) | 20 (47.6) | 0.19 |
Sleep Disorder Breathing, n (%) | 8 (67.2) | 7 (16.7) | 0.12 |
Chronic Rhinosinusitis, n (%) | 22 (19.8) | 4 (9.5) | 0.15 |
Arterial Hypertension, n (%) | 46 (41.4) | 22 (52.3) | 0.27 |
Chronic Ischemic Heart Disease, n (%) | 33 (29.7) | 16 (38) | 0.33 |
Atrial Fibrillation, n (%) | 2 (1.8) | 3 (7.3) | 0.12 |
Diabetes, n (%) | 6 (5.41) | 8 (19) | 0.02 |
Anxiety, n (%) | 23 (20.7) | 8 (19) | >0.99 |
Depression, n (%) | 10 (9) | 3 (7) | >0.99 |
Clinical Status | |||
Exacerbations/year, median (IQR) | 2 (1–4) | 4 (2–5) | 0.0002 |
Hospitalizations/year, media (IQR) | 0 (0–0) | 0 (0–1) | 0.01 |
BACI, median (IQR) | 0 (0–5) | 5 (0–7) | 0.001 |
Symptoms | |||
Dyspnea (mMRC), median (IQR) | 2 (1–2) | 2.5 (2–3) | <0.0001 |
Chronic Mucus Hypersecretion, n (%) | 12 (11.8) | 13 (30.2) | 0.07 |
Hemoptysis, n (%) | 9 (8.1) | 8 (19) | 0.08 |
Cough, n (%) | 99 (89.1) | 36 (85.7) | 0.57 |
Coughing sputum, n (%) | 81 (71.6) | 32 (76.1) | 0.83 |
Chest pain, n (%) | 12 (10.8) | 10 (23.8) | 0.06 |
Microbiology | |||
Pseudomonas aeruginosa, n (%) | 25 (22.5) | 11 (26.1) | 0.67 |
NTM infections, n (%) | 5 (4) | 2 (6.5) | 0.63 |
Other infections, n (%) | 28 (25) | 18 (42.8) | 0.04 |
Total Population (n = 153) | Non-T2-High EB (n = 122) | T2-High EB (n = 31) | p Value |
---|---|---|---|
Demographics | |||
Sex (female), n (%) | 68 (55) | 19 (61) | 0.68 |
Age, median (IQR) years | 65 (55–73.0) | 67 (59–77) | 0.24 |
Former/Active smokers, n (%) | 66 (54) | 20 (64.5) | 0.31 |
BMI [kg/m2], median (IQR) | 24 (21.5–27.6) | 25 (21–28) | 0.77 |
Biomarkers | |||
Eosinophils cells/µL, median (IQR) | 140 (80–210) | 450 (350–610) | <0.0001 |
FeNO, ppd, median (IQR) | 18 (9.5–25) | 39 (31–45) | <0.0001 |
Disease severity | |||
BSI, median (IQR) | 5 (3–9) | 8 (5–8) | 0.01 |
FACED, median (IQR) | 2 (1–3) | 3 (2–4) | 0.004 |
E-FACED, median (IQR) | 2 (1–4) | 4 (1–5) | 0.03 |
Radiology | |||
Reiff score, median (IQR) | 4 (3–7) | 4 (3–5) | 0.03 |
Number of Lobes with BE, median (IQR) | 3 (2–5) | 4 (3–5) | 0.04 |
Etiology | |||
Idiopathic, n (%) | 64 (52) | 15 (48) | 0.69 |
Post-infective, n (%) | 35 (28.5) | 5 (16) | 0.17 |
Secondary, n (%) | 22 (18) | 12 (39) | 0.02 |
Pulmonary Function | |||
FEV1, %, median (IQR) predict. | 95 (65–112) | 77 (50–100) | 0.03 |
FEV1, L, median (IQR) | 2.05 (1.68–2.78) | 2.2 (1.50–2.80) | 0.59 |
FVC, %, mean (SD) predict. | 92 ± 24 | 81.6 ± 23 | 0.02 |
FVC, L, median (IQR) | 3.2 (2.4–5.2) | 2.7 (2.1–3.7) | 0.009 |
FEF25–75, %, median (IQR) predict. | 66 (35–101) | 44 (15–78) | 0.02 |
FEF25–75, L, median (IQR) | 1.78 (0.91–3.39) | 1.30 (0.68–1.75) | 0.01 |
Comorbidities | |||
COPD, n (%) | 37 (30) | 17 (54) | 0.01 |
GERD, n (%) | 42 (34) | 17 (53) | 0.06 |
Sleep Disorder Breathing, n (%) | 8 (6.5) | 7 (21.8) | 0.01 |
Chronic Rhinosinusitis, n (%) | 23 (18.8) | 2 (6) | 0.10 |
Arterial Hypertension, n (%) | 55 (45) | 13 (40) | 0.69 |
Chronic Ischemic Heart Disease, n (%) | 39 (32) | 10 (31) | >0.99 |
Atrial Fibrillation, n (%) | 3 (2.4) | 4 (12) | 0.03 |
Diabetes, n (%) | 8 (6.5) | 7 (22) | 0.01 |
Anxiety, n (%) | 25 (20.4) | 6 (18.7) | >0.99 |
Depression, n (%) | 10 (8.2) | 3 (9) | 0.73 |
Clinical Status | |||
Exacerbations/year, median (IQR) | 2 (1–4) | 4 (2–5) | 0.06 |
Hospitalizations/year, media (IQR) | 0 (0–0) | 0 (0–0.25) | 0.60 |
BACI, median (IQR) | 2 (0–5) | 5 (0–5) | 0.04 |
Symptoms | |||
Dyspnea (mMRC), median (IQR) | 2 (1–2) | 2 (2–3) | 0.008 |
Chronic Mucus Hypersecretion, n (%) | 12 (10) | 6 (19) | 0.21 |
Hemoptysis, n (%) | 9 (7.3) | 8 (25) | 0.01 |
Cough, n (%) | 108 (88.5) | 27 (87) | 0.76 |
Coughing sputum, n (%) | 89 (73) | 24 (77) | 0.81 |
Chest pain, n (%) | 16 (13) | 6 (19) | 0.39 |
Microbiology | |||
Pseudomonas aeruginosa, n (%) | 27 (22) | 9 (29) | 0.47 |
NTM infections, n (%) | 6 (5.51) | 1 (2.38) | 0.67 |
Other infections, n (%) | 33 (27) | 13 (42) | 0.07 |
Variable | b | S.E. | Adj. Odd Ratio | 95% CI | p Value |
---|---|---|---|---|---|
Age (Y) | −0.004 | 2.202 | 0.9952 | 0.9547 to 1.038 | 0.81 |
Sex (F) | −0.383 | 0.021 | 0.6816 | 0.2361 to 1.927 | 0.47 |
BMI (kg/m2) | −0.016 | 0.531 | 0.9833 | 0.8840 to 1.090 | 0.74 |
COPD | 0.094 | 0.052 | 1.099 | 0.2002 to 5.651 | 0.91 |
Chronic rhinosinusitis | −0.177 | 0.842 | 0.8372 | 0.1703 to 3.453 | 0.81 |
BACI | 0.302 | 0.752 | 1.354 | 1.002 to 1.894 | 0.06 |
Dyspnea–mMRC | 0.930 | 0.161 | 2.535 | 1.269 to 5.645 | 0.01 |
Hemoptysis | 0.385 | 0.376 | 1.470 | 0.3202 to 6.321 | 0.60 |
BSI (n) | −0.176 | 0.750 | 0.8382 | 0.6261 to 1.096 | 0.21 |
FACED (n) | −0.128 | 0.141 | 0.8798 | 0.5607 to 1.338 | 0.56 |
Exacerbations (n/year) | 0.244 | 0.219 | 1.276 | 1.009 to 1.639 | 0.04 |
Chronic Pseudomonas infection | 1.367 | 0.122 | 3.925 | 1.058 to 15.81 | 0.04 |
FEV1 % pred. | 0.002 | 0.681 | 1.002 | 0.9799 to 1.026 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campisi, R.; Nolasco, S.; Mancuso, M.; Spinella, M.; Vignera, F.; Crimi, N.; Vancheri, C.; Crimi, C. Eosinophilic Bronchiectasis: Prevalence, Severity, and Associated Features—A Cohort Study. J. Clin. Med. 2024, 13, 4932. https://doi.org/10.3390/jcm13164932
Campisi R, Nolasco S, Mancuso M, Spinella M, Vignera F, Crimi N, Vancheri C, Crimi C. Eosinophilic Bronchiectasis: Prevalence, Severity, and Associated Features—A Cohort Study. Journal of Clinical Medicine. 2024; 13(16):4932. https://doi.org/10.3390/jcm13164932
Chicago/Turabian StyleCampisi, Raffaele, Santi Nolasco, Manuel Mancuso, Miriam Spinella, Fabio Vignera, Nunzio Crimi, Carlo Vancheri, and Claudia Crimi. 2024. "Eosinophilic Bronchiectasis: Prevalence, Severity, and Associated Features—A Cohort Study" Journal of Clinical Medicine 13, no. 16: 4932. https://doi.org/10.3390/jcm13164932
APA StyleCampisi, R., Nolasco, S., Mancuso, M., Spinella, M., Vignera, F., Crimi, N., Vancheri, C., & Crimi, C. (2024). Eosinophilic Bronchiectasis: Prevalence, Severity, and Associated Features—A Cohort Study. Journal of Clinical Medicine, 13(16), 4932. https://doi.org/10.3390/jcm13164932