Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. IL-6
IL-6 Inhibitor
3.2. IL-15
IL-15 Inhibitors
3.3. TNF-α
TNF-α Inhibitors
3.4. IL-1β
3.5. IL-22
IL-22 Inhibitor
3.6. IL-17
IL-17A Inhibitors
3.7. IL-23
3.7.1. IL-23 Inhibitor
3.7.2. IL-12 and IL-23 Inhibitor
3.8. IFN-γ
3.8.1. JAK Inhibitors
Ruxolitinib
Tofacitinib
Baricitinib
Ritlecitinib
Ifidancitinib
Brepocitinib
Upadacitinib
Cerdulatinib
Delgocitinib
4. Other Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bergqvist, C.; Ezzedine, K. Vitiligo: A Review. Dermatology 2020, 236, 571–592. Available online: https://pubmed.ncbi.nlm.nih.gov/32155629/ (accessed on 5 November 2023). [CrossRef] [PubMed]
- Ezzedine, K.; Grimes, P.E.; Meurant, J.M.; Seneschal, J.; Léauté-Labrèze, C.; Ballanger, F.; Jouary, T.; Taïeb, C.; Taïeb, A. Living with Vitiligo: Results from a National Survey Indicate Differences between Skin Phototypes. Br. J. Dermatol. 2015, 173, 607–609. Available online: https://pubmed.ncbi.nlm.nih.gov/25892476/ (accessed on 5 November 2023). [CrossRef]
- Marchioro, H.Z.; Silva de Castro, C.C.; Fava, V.M.; Sakiyama, P.H.; Dellatorre, G.; Miot, H.A. Update on the Pathogenesis of Vitiligo. An. Bras. Dermatol. 2022, 97, 478. Available online: https://pubmed.ncbi.nlm.nih.gov/35643735/ (accessed on 7 November 2023). [CrossRef] [PubMed]
- Jan, N.A.; Masood, S. Vitiligo. StatPearls. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559149/ (accessed on 9 August 2024).
- Zhang, X.; Lei, L.; Jiang, L.; Fu, C.; Huang, J.; Hu, Y.; Zhu, L.; Zhang, F.; Chen, J.; Zeng, Q. Characteristics and Pathogenesis of Koebner Phenomenon. Exp. Dermatol. 2023, 32, 310–323. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/exd.14709 (accessed on 9 August 2024). [CrossRef]
- Karampinis, E.; Georgopoulou, K.-E.; Goudouras, G.; Lianou, V.; Kampra, E.; Roussaki Schulze, A.V.; Zafiriou, E. Laser-Induced Koebner-Related Skin Reactions: A Clinical Overview. Medicina 2024, 60, 1177. Available online: https://www.mdpi.com/1648-9144/60/7/1177/htm (accessed on 9 August 2024). [CrossRef] [PubMed]
- Dutta, R.R.; Kumar, T.; Ingole, N. Diet and Vitiligo: The Story So Far. Cureus 2022, 14, e28516. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515252/ (accessed on 9 August 2024). [CrossRef] [PubMed]
- Iwanowski, T.; Kołkowski, K.; Nowicki, R.J.; Sokołowska-Wojdyło, M. Etiopathogenesis and Emerging Methods for Treatment of Vitiligo. Int. J. Mol. Sci. 2023, 24, 9749. [Google Scholar] [CrossRef]
- Bergqvist, C.; Ezzedine, K. Vitiligo: A Focus on Pathogenesis and Its Therapeutic Implications. J. Dermatol. 2021, 48, 252–270. Available online: https://pubmed.ncbi.nlm.nih.gov/33404102/ (accessed on 25 October 2023). [CrossRef] [PubMed]
- Ezzedine, K.; Eleftheriadou, V.; Whitton, M.; van Geel, N. Vitiligo. Lancet 2015, 386, 74–84. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25596811 (accessed on 8 February 2023). [CrossRef] [PubMed]
- Afzali, B.; Lombardi, G.; Lechler, R.I.; Lord, G.M. The Role of T Helper 17 (Th17) and Regulatory T Cells (Treg) in Human Organ Transplantation and Autoimmune Disease. 2007. Available online: https://academic.oup.com/cei/article/148/1/32/6457759 (accessed on 15 November 2023).
- Mosenson, J.A.; Zloza, A.; Nieland, J.D.; Garrett-Mayer, E.; Eby, J.M.; Huelsmann, E.J.; Kumar, P.; Denman, C.J.; Lacek, A.T.; Kohlhapp, F.J.; et al. Mutant HSP70 Reverses Autoimmune Depigmentation in Vitiligo. Sci. Transl. Med. 2013, 5, 174. Available online: https://pubmed.ncbi.nlm.nih.gov/23447019/ (accessed on 14 May 2024). [CrossRef] [PubMed]
- Steinbach, K.; Vincenti, I.; Merkler, D. Resident-Memory T Cells in Tissue-Restricted Immune Responses: For Better or Worse? Front. Immunol. 2018, 9, 2827. Available online: https://pubmed.ncbi.nlm.nih.gov/30555489 (accessed on 14 May 2024). [CrossRef] [PubMed]
- Boniface, K.; Jacquemin, C.; Darrigade, A.S.; Dessarthe, B.; Martins, C.; Boukhedouni, N.; Vernisse, C.; Grasseau, A.; Thiolat, D.; Rambert, J.; et al. Vitiligo Skin Is Imprinted with Resident Memory CD8 T Cells Expressing CXCR3. J. Investig. Dermatol. 2018, 138, 355–364. Available online: https://pubmed.ncbi.nlm.nih.gov/28927891 (accessed on 14 May 2024). [CrossRef] [PubMed]
- Frisoli, M.L.; Essien, K.; Harris, J.E. Vitiligo: Mechanisms of Pathogenesis and Treatment. Annu. Rev. Immunol. 2020, 38, 621–648. Available online: https://pubmed.ncbi.nlm.nih.gov/32017656/ (accessed on 7 November 2023). [CrossRef]
- Tatu, A.L.; Ionescu, M.A.; Nwabudike, L.C. Contact Allergy to Topical Mometasone Furoate Confirmed by Rechallenge and Patch Test. Am. J. Ther. 2018, 25, E497–E498. Available online: https://pubmed.ncbi.nlm.nih.gov/28328785/ (accessed on 8 August 2024). [CrossRef]
- Seneschal, J.; Speeckaert, R.; Taïeb, A.; Wolkerstorfer, A.; Passeron, T.; Pandya, A.G.; Lim, H.W.; Ezzedine, K.; Zhou, Y.; Xiang, F.; et al. Worldwide expert recommendations for the diagnosis and management of vitiligo: Position statement from the international Vitiligo Task Force—Part 2: Specific treatment recommendations. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2185–2195. [Google Scholar] [CrossRef]
- Kumar, D.; Thakur, V.; Subburaj, K.; Bishnoi, A.; Vinay, K.; Sendhil Kumaran, M. A Randomized Prospective Study to Assess the Role of Topical Tacrolimus as Preventive Therapy in Unstable Acral Vitiligo. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2243–2248. Available online: https://pubmed.ncbi.nlm.nih.gov/37467136/ (accessed on 8 August 2024). [CrossRef] [PubMed]
- Şendur, N.; Karaman, G.; Saniç, N.; Şavk, E. Topical Pimecrolimus: A New Horizon for Vitiligo Treatment? J. Dermatol. Treat. 2006, 17, 338–342. Available online: https://pubmed.ncbi.nlm.nih.gov/17853306/ (accessed on 8 August 2024). [CrossRef] [PubMed]
- Nofal, A.; Eldeeb, F.; Shalaby, M.; Al-Balat, W. Microneedling Combined with Pimecrolimus, 5-fluorouracil, and Trichloroacetic Acid in the Treatment of Vitiligo: A Comparative Study. Dermatol. Ther. 2022, 35, e15294. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/dth.15294 (accessed on 8 August 2024). [CrossRef]
- Bae, J.M.; Jung, H.M.; Hong, B.Y.; Lee, J.H.; Choi, W.J.; Lee, J.H.; Kim, G.M. Phototherapy for Vitiligo: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2017, 153, 666. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817459/ (accessed on 7 November 2023). [CrossRef]
- Yones, S.S.; Palmer, R.A.; Garibaldinos, T.M.; Hawk, J.L.M. Randomized Double-Blind Trial of Treatment of Vitiligo: Efficacy of Psoralen-UV-A Therapy vs. Narrowband-UV-B Therapy. Arch. Dermatol. 2007, 143, 578–584. Available online: https://pubmed.ncbi.nlm.nih.gov/17519217/ (accessed on 7 November 2023). [CrossRef]
- Parsad, D.; Kanwar, A.J.; Kumar, B. Psoralen-Ultraviolet A vs. Narrow-Band Ultraviolet B Phototherapy for the Treatment of Vitiligo. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 175–177. Available online: https://pubmed.ncbi.nlm.nih.gov/16441626/ (accessed on 7 November 2023). [CrossRef] [PubMed]
- Bhatnagar, A.; Kanwar, A.J.; Parsad, D.; De, D. Comparison of Systemic PUVA and NB-UVB in the Treatment of Vitiligo: An Open Prospective Study. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 638–642. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1468-3083.2006.02035.x (accessed on 7 November 2023). [CrossRef]
- Nicolaidou, E.; Antoniou, C.; Stratigos, A.; Katsambas, A.D. Narrowband ultraviolet B phototherapy and 308-nm excimer laser in the treatment of vitiligo: A review. J. Am. Acad. Dermatol. 2009, 60, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Esmat, S.; Hegazy, R.A.; Shalaby, S.; Chu-Sung Hu, S.; Lan, C.C.E. Phototherapy and Combination Therapies for Vitiligo. Dermatol. Clin. 2017, 35, 171–192. Available online: https://pubmed.ncbi.nlm.nih.gov/28317527/ (accessed on 7 November 2023). [CrossRef] [PubMed]
- Taieb, A.; Alomar, A.; Böhm, M.; Dell’anna, M.L.; De Pase, A.; Eleftheriadou, V.; Ezzedine, K.; Gauthier, Y.; Gawkrodger, D.J.; Jouary, T.; et al. Guidelines for the Management of Vitiligo: The European Dermatology Forum Consensus. Br. J. Dermatol. 2013, 168, 5–19. Available online: https://pubmed.ncbi.nlm.nih.gov/22860621/ (accessed on 7 November 2023). [CrossRef]
- Cavalié, M.; Ezzedine, K.; Fontas, E.; Montaudié, H.; Castela, E.; Bahadoran, P.; Taïeb, A.; Lacour, J.P.; Passeron, T. Maintenance Therapy of Adult Vitiligo with 0.1% Tacrolimus Ointment: A Randomized, Double Blind, Placebo-Controlled Study. J. Investig. Dermatol. 2015, 135, 970–974. Available online: https://pubmed.ncbi.nlm.nih.gov/25521460/ (accessed on 7 November 2023). [CrossRef] [PubMed]
- Manga, P.; Elbuluk, N.; Orlow, S.J. Recent advances in understanding vitiligo. F1000Research 2016, 5, 2234. [Google Scholar] [CrossRef] [PubMed]
- Swope, V.B.; Abdel-Malek, Z.; Kassem, L.M.; Nordlund, J.J. Interleukins 1 alpha and 6 and Tumor Necrosis Factor-Alpha Are Paracrine Inhibitors of Human Melanocyte Proliferation and Melanogenesis. J. Investig. Dermatol. 1991, 96, 180–185. Available online: https://pubmed.ncbi.nlm.nih.gov/1899443/ (accessed on 3 January 2024). [CrossRef] [PubMed]
- Mihara, M.; Hashizume, M.; Yoshida, H.; Suzuki, M.; Shiina, M. IL-6/IL-6 Receptor System and Its Role in Physiological and Pathological Conditions. Clin. Sci. 2012, 122, 143–159. Available online: https://pubmed.ncbi.nlm.nih.gov/22029668/ (accessed on 1 January 2024).
- De, A.; Choudhary, N.; Sil, A.; Sarda, A.; Raja, A.H.H. A Cross-Sectional Study of the Levels of Cytokines IL-6, TNF-α, and IFN-γ in Blood and Skin (Lesional and Uninvolved) of Vitiligo Patients and Their Possible Role as Biomarkers. Indian J. Dermatol. 2023, 68, 67. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162755/ (accessed on 22 October 2023). [CrossRef]
- Karagün, E.; Baysak, S. Levels of TNF-α, IL-6, IL-17, IL-37 Cytokines in Patients with Active Vitiligo. Aging Male 2020, 23, 1487–1492. Available online: https://pubmed.ncbi.nlm.nih.gov/33191834/ (accessed on 23 November 2023). [CrossRef] [PubMed]
- Abdallah, M.; El-Mofty, M.; Anbar, T.; Rasheed, H.; Esmat, S.; Al-Tawdy, A.; Fawzy, M.M.; Abdel-Halim, D.; Hegazy, R.; Gawdat, H.; et al. CXCL-10 and Interleukin-6 Are Reliable Serum Markers for Vitiligo Activity: A Multicenter Cross-Sectional Study. Pigment. Cell Melanoma Res. 2018, 31, 330–336. Available online: https://pubmed.ncbi.nlm.nih.gov/29094481/ (accessed on 22 October 2023). [CrossRef]
- Sushama, S.; Dixit, N.; Gautam, R.K.; Arora, P.; Khurana, A.; Anubhuti, A. Cytokine Profile (IL-2, IL-6, IL-17, IL-22, and TNF-α) in Vitiligo-New Insight into Pathogenesis of Disease. J. Cosmet. Dermatol. 2019, 18, 337–341. Available online: https://pubmed.ncbi.nlm.nih.gov/29504235/ (accessed on 22 October 2023). [CrossRef]
- Kuet, K.; Goodfield, M. Multiple Halo Naevi Associated with Tocilizumab. Clin. Exp. Dermatol. 2014, 39, 717–719. Available online: https://pubmed.ncbi.nlm.nih.gov/24986573/ (accessed on 23 October 2023). [CrossRef]
- Pham, T.; Claudepierre, P.; Constantin, A.; de Bandt, M.; Fautrel, B.; Gossec, L.; Gottenberg, J.E.; Goupille, P.; Guillaume, S.; Hachulla, E.; et al. Tocilizumab: Therapy and Safety Management. Jt. Bone Spine 2010, 77 (Suppl. S1), 3–100. Available online: https://pubmed.ncbi.nlm.nih.gov/20610315/ (accessed on 9 August 2024). [CrossRef] [PubMed]
- Bunker, C.B.; Manson, J. Vitiligo Remitting with Tocilizumab. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e20. Available online: https://pubmed.ncbi.nlm.nih.gov/29888453/ (accessed on 22 October 2023). [CrossRef] [PubMed]
- Nishimoto, N.; Terao, K.; Mima, T.; Nakahara, H.; Takagi, N.; Kakehi, T. Mechanisms and Pathologic Significances in Increase in Serum Interleukin-6 (IL-6) and Soluble IL-6 Receptor after Administration of an Anti-IL-6 Receptor Antibody, Tocilizumab, in Patients with Rheumatoid Arthritis and Castleman Disease. Blood 2008, 112, 3959–3964. Available online: https://pubmed.ncbi.nlm.nih.gov/18784373/ (accessed on 23 October 2023). [CrossRef] [PubMed]
- Choong, D.J.; Tan, E. Does tocilizumab have a role in dermatology? A review of clinical applications, its adverse side effects and practical considerations. Dermatol. Ther. 2021, 34, e14990. [Google Scholar] [CrossRef]
- Jabri, B.; Abadie, V. IL-15 Functions as a Danger Signal to Regulate Tissue-Resident T Cells and Tissue Destruction. Nat. Rev. Immunol. 2015, 15, 771–783. Available online: https://www.nature.com/articles/nri3919 (accessed on 16 May 2024). [CrossRef]
- Tokura, Y.; Phadungsaksawasdi, P.; Kurihara, K.; Fujiyama, T.; Honda, T. Pathophysiology of Skin Resident Memory T Cells. Front. Immunol. 2020, 11, 1. Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.618897/full (accessed on 16 May 2024). [CrossRef]
- Chen, X.; Guo, W.; Chang, Y.; Chen, J.; Kang, P.; Yi, X.; Cui, T.; Guo, S.; Xiao, Q.; Jian, Z.; et al. Oxidative Stress-Induced IL-15 Trans-Presentation in Keratinocytes Contributes to CD8+ T Cells Activation via JAK-STAT Pathway in Vitiligo. Free. Radic. Biol. Med. 2019, 139, 80–91. Available online: https://pubmed.ncbi.nlm.nih.gov/31078730/ (accessed on 16 May 2024). [CrossRef]
- Richmond, J.M.; Strassner, J.P.; Zapata, L., Jr.; Garg, M.; Riding, R.L.; Refat, M.A.; Fan, X.; Azzolino, V.; Tovar-Garza, A.; Tsurushita, N.; et al. Antibody Blockade of IL-15 Signaling Has the Potential to Durably Reverse Vitiligo. Sci. Transl. Med. 2018, 10, 7710. Available online: https://www.science.org/doi/10.1126/scitranslmed.aam7710 (accessed on 16 May 2024). [CrossRef] [PubMed]
- Zelová, H.; Hošek, J. TNF-α Signalling and Inflammation: Interactions between Old Acquaintances. Inflamm. Res. 2013, 62, 641–651. Available online: https://pubmed.ncbi.nlm.nih.gov/23685857/ (accessed on 1 January 2024). [CrossRef] [PubMed]
- Ahmed, R.; Sharif, D.; Jaf, M.; Amin, D.M. Effect of TNF-α −308G/A (rs1800629) Promoter Polymorphism on the Serum Level of TNF-α among Iraqi Patients with Generalized Vitiligo. Clin. Cosmet. Investig. Dermatol. 2020, 13, 825. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Liu, F.; Gao, L. Janus Kinase Inhibitors in the Treatment of Vitiligo: A Review. Front. Immunol. 2021, 12, 790125. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yan, L.; Ha, D.; Qu, L.; Liu, L.; Tao, Y. Changes in sICAM-1 and GM-CSF levels in Skin Tissue Fluid and Expression of IL-6, IL-17 and TNF-α in Blood of Patients with Vitiligo. Exp. Ther. Med. 2019, 17, 408–412. Available online: https://pubmed.ncbi.nlm.nih.gov/30651813/ (accessed on 21 October 2023). [CrossRef] [PubMed]
- Wakabayashi, T.; Hosohata, K.; Oyama, S.; Inada, A.; Ueno, S.; Kambara, H.; Iida, T.; Nakatsuji, T.; Uchida, M.; Iwanaga, K. Comparison of Adverse Event Profiles of Tumor Necrosis Factor-Alfa Inhibitors: Analysis of a Spontaneous Reporting Database. Ther. Clin. Risk Manag. 2020, 16, 741. [Google Scholar] [CrossRef]
- Vulliemoz, M.; Brand, S.; Juillerat, P.; Mottet, C.; Ben-Horin, S.; Michetti, P. TNF-Alpha Blockers in Inflammatory Bowel Diseases: Practical Recommendations and a User’s Guide: An Update. Digestion 2020, 101 (Suppl. S1), 16–26. [Google Scholar] [CrossRef]
- Webb, K.C.; Tung, R.; Winterfield, L.S.; Gottlieb, A.B.; Eby, J.M.; Henning, S.W.; Le Poole, I.C. Tumour Necrosis Factor-a Inhibition Can Stabilize Disease in Progressive Vitiligo. Br. J. Dermatol. 2015, 173, 641–650. Available online: https://academic.oup.com/bjd/article/173/3/641/6627485 (accessed on 22 October 2023). [CrossRef]
- Ramírez-Hernández, M.; Marras, C.; Martínez-Escribano, J.A. Infliximab-Induced Vitiligo. Dermatology 2005, 210, 79–80. Available online: https://pubmed.ncbi.nlm.nih.gov/15604556/ (accessed on 22 October 2023). [CrossRef]
- Posada, C.; Flórez, Á.; Batalla, A.; Alcázar, J.J.; Carpio, D. Vitiligo during Treatment of Crohn’s Disease with Adalimumab: Adverse Effect or Co-Occurrence? Case Rep. Dermatol. 2011, 3, 28–31. Available online: https://pubmed.ncbi.nlm.nih.gov/21931575/ (accessed on 22 October 2023). [CrossRef] [PubMed]
- Phan, K.; Charlton, O.; Smith, S.D. New Onset Vitiligo in a Patient with Hidradenitis Suppurativa Treated with Adalimumab. Dermatol. Ther. 2020, 33, 13347. Available online: https://pubmed.ncbi.nlm.nih.gov/32239739/ (accessed on 22 October 2023). [CrossRef] [PubMed]
- Rigopoulos, D.; Gregoriou, S.; Larios, G.; Moustou, E.; Belayeva-Karatza, E.; Kalogeromitros, D. Etanercept in the Treatment of Vitiligo. Dermatology 2007, 215, 84–85. Available online: https://pubmed.ncbi.nlm.nih.gov/17587849/ (accessed on 22 October 2023). [CrossRef]
- Campanati, A.; Giuliodori, K.; Ganzetti, G.; Liberati, G.; Offidani, A.M. A Patient with Psoriasis and Vitiligo Treated with Etanercept. Am. J. Clin. Dermatol. 2010, 11 (Suppl. S1), 46–48. Available online: https://pubmed.ncbi.nlm.nih.gov/20586509/ (accessed on 22 October 2023). [CrossRef]
- Bae, J.M.; Kim, M.; Lee, H.H.; Kim, K.J.; Shin, H.; Ju, H.J.; Kim, G.M.; Park, C.J.; Park, H.J. Increased Risk of Vitiligo Following Anti-Tumor Necrosis Factor Therapy: A 10-Year Population-Based Cohort Study. J. Investig. Dermatol. 2018, 138, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kang, P.; Zhang, W.; Jian, Z.; Zhang, Q.; Yi, X.; Guo, S.; Guo, W.; Shi, Q.; Li, B.; et al. Activated NLR Family Pyrin Domain Containing 3 (NLRP3) Inflammasome in kEratinocytes Promotes Cutaneous T-Cell Response in Patients with Vitiligo. J. Allergy Clin. Immunol. 2020, 145, 632–645. Available online: https://pubmed.ncbi.nlm.nih.gov/31756352/ (accessed on 16 May 2024). [CrossRef] [PubMed]
- Gu, R.; Shi, Y.; Huang, W.; Lao, C.; Zou, Z.; Pan, S.; Huang, Z. Theobromine Mitigates IL-1β-Induced Oxidative Stress, Inflammatory Response, and Degradation of Type II Collagen in Human Chondrocytes. Int. Immunopharmacol. 2020, 82, 106226. Available online: https://pubmed.ncbi.nlm.nih.gov/32146317/ (accessed on 16 May 2024). [CrossRef]
- Bhardwaj, S.; Rani, S.; Srivastava, N.; Kumar, R.; Parsad, D. Increased Systemic and Epidermal Levels of IL-17A and IL-1β Promotes Progression of Non-Segmental vitiligo. Cytokine 2017, 91, 153–161. Available online: https://pubmed.ncbi.nlm.nih.gov/28082234/ (accessed on 16 May 2024). [CrossRef]
- Marie, J.; Kovacs, D.; Pain, C.; Jouary, T.; Cota, C.; Vergier, B.; Picardo, M.; Taieb, A.; Ezzedine, K.; Cario-André, M. Inflammasome Activation and Vitiligo/Nonsegmental Vitiligo Progression. Br. J. Dermatol. 2014, 170, 816–823. Available online: https://pubmed.ncbi.nlm.nih.gov/24734946/ (accessed on 16 May 2024). [CrossRef]
- Cui, D.; Zhong, F.; Lin, J.; Wu, Y.; Long, Q.; Yang, X.; Zhu, Q.; Huang, L.; Mao, Q.; Huo, Z.; et al. Changes of Circulating Th22 Cells in Children with Hand, Foot, and Mouth Disease Caused by Enterovirus 71 Infection. Oncotarget 2016, 8, 29370–29382. Available online: https://www.oncotarget.com/article/14083/text/ (accessed on 16 May 2024). [CrossRef] [PubMed]
- Dong, J.; An, X.; Zhong, H.; Wang, Y.; Shang, J.; Zhou, J. Interleukin-22 participates in the inflammatory process of vitiligo. Oncotarget 2017, 8, 109161. [Google Scholar] [CrossRef] [PubMed]
- Markota, A.; Endres, S.; Kobold, S. Targeting interleukin-22 for cancer therapy. Hum. Vaccines Immunother. 2018, 14, 2012. [Google Scholar] [CrossRef]
- Singh, R.K.; Lee, K.M.; Vujkovic-Cvijin, I.; Ucmak, D.; Farahnik, B.; Abrouk, M.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Wei, M.; et al. The Role of IL-17 in Vitiligo: A Review. Autoimmun. Rev. 2016, 15, 397–404. Available online: https://pubmed.ncbi.nlm.nih.gov/26804758/ (accessed on 1 January 2024). [CrossRef] [PubMed]
- Belpaire, A.; van Geel, N.; Speeckaert, R. From IL-17 to IFN-γ in Inflammatory Skin Disorders: Is Transdifferentiation a Potential Treatment Target? Front. Immunol. 2022, 13, 932265. [Google Scholar] [CrossRef]
- Vaccaro, M.; Cannavò, S.P.; Imbesi, S.; Cristani, M.; Barbuzza, O.; Tigano, V.; Gangemi, S. Increased Serum Levels of Interleukin-23 Circulating in Patients with Non-Segmental Generalized Vitiligo. Int. J. Dermatol. 2015, 54, 672–674. Available online: https://pubmed.ncbi.nlm.nih.gov/25427848/ (accessed on 21 November 2023). [CrossRef]
- Bassiouny, D.A.; Shaker, O. Role of Interleukin-17 in the Pathogenesis of Vitiligo. Clin. Exp. Dermatol. 2011, 36, 292–297. Available online: https://pubmed.ncbi.nlm.nih.gov/21198791/ (accessed on 15 November 2023). [CrossRef]
- Basak, P.Y.; Adiloglu, A.K.; Ceyhan, A.M.; Tas, T.; Akkaya, V.B. The Role of Helper and Regulatory T Cells in the Pathogenesis of Vitiligo. J. Am. Acad. Dermatol. 2009, 60, 256–260. Available online: https://pubmed.ncbi.nlm.nih.gov/19022528/ (accessed on 15 November 2023). [CrossRef] [PubMed]
- Zhang, L.; Kang, Y.; Chen, S.; Wang, L.; Jiang, M.; Xiang, L. Circulating CCL20: A Potential Biomarker for Active Vitiligo together with the Number of Th1/17 Cells. J. Dermatol. Sci. 2019, 93, 92–100. Available online: https://pubmed.ncbi.nlm.nih.gov/30655106/ (accessed on 28 October 2023). [CrossRef]
- Le Poole, I.C.; Van Den Wijngaard, R.M.; Westerhof, W.; Das, P.K. Presence of T Cells and Macrophages in Inflammatory Vitiligo Skin Parallels Melanocyte Disappearance. Am. J. Pathol. 1996, 148, 1219–1228. [Google Scholar] [PubMed]
- Basdeo, S.A.; Cluxton, D.; Sulaimani, J.; Moran, B.; Canavan, M.; Orr, C.; Veale, D.J.; Fearon, U.; Fletcher, J.M. Ex-Th17 (Nonclassical Th1) Cells Are Functionally Distinct from Classical Th1 and Th17 Cells and Are Not Constrained by Regulatory T Cells. J. Immunol. 2017, 198, 2249–2259. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, R.; Mylle, S.; van Geel, N. IL-17A Is Not a Treatment Target in Progressive Vitiligo. Pigment. Cell Melanoma Res. 2019, 32, 842–847. Available online: https://pubmed.ncbi.nlm.nih.gov/31063266/ (accessed on 28 October 2023). [CrossRef] [PubMed]
- Aboobacker, S.; Kurn, H.; Al Aboud, A.M. Secukinumab. Turkderm Turk. Arch. Dermatol. Venereol. 2023, 56, 52–54. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537091/ (accessed on 15 November 2023).
- Palazzo, G. Resolution of Post-Adalimumab Vitiligo with Secukinumab in a Patient with Psoriasis Vulgaris. Oxf. Med. Case Rep. 2020, 2020, 13–16. Available online: https://academic.oup.com/omcr/article/2020/1/omz134/5721283 (accessed on 21 October 2023). [CrossRef] [PubMed]
- Giordano, D.; Magri, F.; Persechino, F.; Lepore, A.; Verde, R.; Capalbo, A.; Persechino, S. Vitiligo with Progressive Repigmentation during Secukinumab Treatment in a Patient with Psoriatic Arthritis: A Case Report. Case Rep. Dermatol. 2021, 13, 209–215. Available online: www.karger.com/cde (accessed on 21 October 2023). [CrossRef]
- Kim, J.C.; Lee, E.S. Progression of Pre-Existing Vitiligo during Secukinumab Treatment for Psoriasis. Ann. Dermatol. 2023, 35 (Suppl. S1), S117–S121. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Benito, L.M.; Baniandrés-Rodríguez, O. New-Onset Vitiligo during Treatment with Secukinumab: Report of Two Cases and Review of the Literature. Clin. Drug Investig. 2020, 40, 1089–1091. Available online: https://link.springer.com/article/10.1007/s40261-020-00964-w (accessed on 21 October 2023). [CrossRef]
- Bouzid, S.; Hammami-Ghorbel, H.; Chamli, A.; Aounti, I.; Daly, W.; Kochbati, S.; Fenniche, S.; Zaouak, A. Secukinumab-Induced Vitiligo: A New Case Report and Review of the Literature. Therapie 2022, 78, 754–756. Available online: https://pubmed.ncbi.nlm.nih.gov/36566160/ (accessed on 21 October 2023). [CrossRef] [PubMed]
- Raimondo, A.; Guglielmi, G.; Marino, C.; Ligrone, L.; Lembo, S. Hair Whitening in a Patient with Psoriasis on Adalimumab Reversed after Switching to Ixekizumab. JAAD Case Rep. 2021, 11, 51–53. Available online: https://pubmed.ncbi.nlm.nih.gov/33912637/ (accessed on 1 January 2024). [CrossRef]
- Eker, H.; Kaya İslamoğlu, Z.G.; Demirbaş, A. Vitiligo development in a patient with psoriasis vulgaris treated with ixekizumab. Dermatol. Ther. 2022, 35, 15314. [Google Scholar] [CrossRef] [PubMed]
- Marasca, C.; Fornaro, L.; Martora, F.; Picone, V.; Fabbrocini, G.; Megna, M. Onset of Vitiligo in a Psoriasis Patient on Ixekizumab. Dermatol. Ther. 2021, 34, 15102. Available online: https://pubmed.ncbi.nlm.nih.gov/34436817/ (accessed on 1 January 2024). [CrossRef]
- Pathmarajah, P.; Benjamin-Laing, Z.; Abdurrahman, M.; Grunova, A.; Sinclair, C. Generalized Vitiligo in a Psoriatic Patient Treated with Ixekizumab. Dermatol. Ther. 2022, 35, 15872. Available online: https://pubmed.ncbi.nlm.nih.gov/36181252/ (accessed on 1 January 2024). [CrossRef] [PubMed]
- Kearns, D.G.; Uppal, S.; Chat, V.S.; Wu, J.J. Comparison of Guidelines for the Use of Interleukin-17 Inhibitors for Psoriasis in the United States, Britain, and Europe: A Critical Appraisal and Comprehensive Review. J. Clin. Aesthet. Dermatol. 2021, 14, 55. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594534/ (accessed on 9 August 2024).
- Maddur, M.S.; Miossec, P.; Kaveri, S.V.; Bayry, J. Th17 Cells: Biology, Pathogenesis of Autoimmune and Inflammatory Diseases, and Therapeutic Strategies. Am. J. Pathol. 2012, 181, 8–18. Available online: https://pubmed.ncbi.nlm.nih.gov/22640807/ (accessed on 21 November 2023). [CrossRef]
- Duvallet, E.; Semerano, L.; Assier, E.; Falgarone, G.; Boissier, M.C. Interleukin-23: A Key Cytokine in Inflammatory Diseases. Ann. Med. 2011, 43, 503–511. Available online: https://pubmed.ncbi.nlm.nih.gov/21585245/ (accessed on 21 November 2023). [CrossRef] [PubMed]
- Verstockt, B.; Salas, A.; Sands, B.E.; Abraham, C.; Leibovitzh, H.; Neurath, M.F.; Vande Casteele, N. IL-12 and IL-23 Pathway Inhibition in Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 433–446. Available online: https://pubmed.ncbi.nlm.nih.gov/37069321/ (accessed on 22 October 2023). [CrossRef] [PubMed]
- Weaver, C.T.; Elson, C.O.; Fouser, L.A.; Kolls, J.K. The Th17 Pathway and Inflammatory Diseases of the Intestines, Lungs, and Skin. Annu. Rev. Pathol. Mech. Dis. 2013, 8, 477–512. Available online: https://www.annualreviews.org/doi/abs/10.1146/annurev-pathol-011110-130318 (accessed on 22 October 2023). [CrossRef]
- Jerjen, R.; Moodley, A.; Sinclair, R. Repigmentation of Acrofacial Vitiligo with Subcutaneous Tildrakizumab. Australas. J. Dermatol. 2020, 61, e446–e448. Available online: https://pubmed.ncbi.nlm.nih.gov/32441048/ (accessed on 22 October 2023). [CrossRef] [PubMed]
- Miyoshi, J.; Matsuura, M.; Hisamatsu, T. Safety Evaluation of Ustekinumab for Moderate-to-Severe Ulcerative Colitis. Expert Opin. Drug Saf. 2022, 21, 1–8. Available online: https://pubmed.ncbi.nlm.nih.gov/34511011/ (accessed on 1 January 2024). [CrossRef] [PubMed]
- Rawal, S.; Kianian, S.; Guo, W.; Marquez, J.; Ayasse, M.; Siamas, K.A.; Lee, Y.; Salvemini, J. Alternative Uses of Ustekinumab for Non-Indicated Dermatological Conditions: A Systematic Review. Arch. Dermatol. Res. 2022, 314, 503–514. Available online: https://pubmed.ncbi.nlm.nih.gov/34156549/ (accessed on 21 October 2023). [CrossRef]
- Elkady, A.; Bonomo, L.; Amir, Y.; Vekaria, A.S.; Guttman-Yassky, E.; York, N. Effective use of ustekinumab in a patient with concomitant psoriasis, vitiligo, and alopecia areata. JAAD Case Rep. 2017, 23, 477–479. [Google Scholar] [CrossRef]
- Méry-Bossard, L.; Bagny, K.; Chaby, G.; Khemis, A.; Maccari, F.; Marotte, H.; Perrot, J.L.; Reguiai, Z.; Sigal, M.L.; Avenel-Audran, M. New-Onset Vitiligo and Progression of Pre-Existing Vitiligo during Treatment with Biological Agents in Chronic Inflammatory Diseases. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 181–186. Available online: https://pubmed.ncbi.nlm.nih.gov/27291924/ (accessed on 19 October 2023). [CrossRef] [PubMed]
- Anthony, N.; Bourneau-martin, D.; Ghamrawi, S.; Lagarce, L.; Babin, M.; Briet, M. Drug-Induced Vitiligo: A Case/Non-Case Study in Vigibase®, the WHO Pharmacovigilance Database. Fundam. Clin. Pharmacol. 2020, 34, 736–742. Available online: https://pubmed.ncbi.nlm.nih.gov/32246859/ (accessed on 19 October 2023). [CrossRef] [PubMed]
- Blauvelt, A.; Chiricozzi, A.; Ehst, B.D.; Lebwohl, M.G. Safety of IL-23 p19 Inhibitors for the Treatment of Patients with Moderate-to-Severe Plaque Psoriasis: A Narrative Review. Adv. Ther. 2023, 40, 3410–3433. Available online: https://link.springer.com/article/10.1007/s12325-023-02568-0 (accessed on 9 August 2024). [CrossRef] [PubMed]
- Montilla, A.M.; Gómez-García, F.; Gómez-Arias, P.J.; Gay-Mimbrera, J.; Hernández-Parada, J.; Isla-Tejera, B.; Ruano, J. Scoping Review on the Use of Drugs Targeting JAK/STAT Pathway in Atopic Dermatitis, Vitiligo, and Alopecia Areata. Dermatol. Ther. 2019, 9, 655–683. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Sousa, J.; Echeverria, D.; Fan, X.; Hsueh, Y.C.; Afshari, K.; MeHugh, N.; Cooper, D.A.; Vangjeli, L.; Monopoli, K.; et al. RNAi-based modulation of IFN-γ signaling in skin. Mol. Ther. 2022, 30, 2709. [Google Scholar] [CrossRef] [PubMed]
- Rashighi, M.; Agarwal, P.; Richmond, J.M.; Harris, T.H.; Dresser, K.; Su, M.W.; Zhou, Y.; Deng, A.; Hunter, C.A.; Luster, A.D.; et al. CXCL10 Is Critical for the Progression and Maintenance of Depigmentation in a Mouse Model of Vitiligo. Sci. Transl. Med. 2014, 6, 223. Available online: https://pubmed.ncbi.nlm.nih.gov/24523323/ (accessed on 15 November 2023). [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Le, Q.; Tong, J.; Wang, H. The IFN-γ-CXCL9/CXCL10-CXCR3 Axis in Vitiligo: Pathological Mechanism and Treatment. Eur. J. Immunol. 2024, 54, 2250281. Available online: https://pubmed.ncbi.nlm.nih.gov/37937817/ (accessed on 15 November 2023). [CrossRef]
- Maouia, A.; Sormani, L.; Youssef, M.; Helal, A.N.; Kassab, A.; Passeron, T. Differential Expression of CXCL9, CXCL10, and IFN-γ in Vitiligo and Alopecia Areata Patients. Pigment. Cell Melanoma Res. 2017, 30, 259–261. Available online: https://pubmed.ncbi.nlm.nih.gov/27863059/ (accessed on 14 May 2024). [CrossRef] [PubMed]
- Yu, H.S.; Chang, K.L.; Yu, C.L.; Li, H.F.; Wu, M.T.; Wu, C.S. Alterations in IL-6, IL-8, GM-CSF, TNF-alpha, and IFN-gamma Release by Peripheral Mononuclear Cells in Patients with Active Vitiligo. J. Investig. Dermatol. 1997, 108, 527–529. Available online: https://pubmed.ncbi.nlm.nih.gov/9077486/ (accessed on 16 May 2024). [CrossRef]
- Rashighi, M.; Harris, J.E. Interfering with the IFN-γ/CXCL10 Pathway to Develop New Targeted Treatments for Vitiligo. Ann. Transl. Med. 2015, 3, 343. Available online: https://pubmed.ncbi.nlm.nih.gov/26734651/ (accessed on 4 January 2024). [PubMed]
- Nada, H.R.; El Sharkawy, D.A.; Elmasry, M.F.; Rashed, L.A.; Mamdouh, S. Expression of Janus Kinase 1 in Vitiligo & Psoriasis before and after Narrow Band UVB: A Case-Control Study. Arch. Dermatol. Res. 2018, 310, 39–46. Available online: https://pubmed.ncbi.nlm.nih.gov/29127481/ (accessed on 3 November 2023). [PubMed]
- Abdel Motaleb, A.A.; Tawfik, Y.M.; El-Mokhtar, M.A.; Elkady, S.; El-Gazzar, A.F.; ElSayed, S.K.; Awad, S.M. Cutaneous JAK Expression in Vitiligo. J. Cutan. Med. Surg. 2021, 25, 157–162. Available online: https://pubmed.ncbi.nlm.nih.gov/33174479/ (accessed on 3 November 2023). [CrossRef]
- Boukhedouni, N.; Martins, C.; Darrigade, A.S.; Drullion, C.; Rambert, J.; Barrault, C.; Garnier, J.; Jacquemin, C.; Thiolat, D.; Lucchese, F.; et al. Type-1 Cytokines Regulate MMP-9 Production and E-Cadherin Disruption to Promote Melanocyte Loss in Vitiligo. JCI Insight 2020, 5, 133772. Available online: https://pubmed.ncbi.nlm.nih.gov/32369451/ (accessed on 14 May 2024). [PubMed]
- Samuel, C.; Cornman, H.; Kambala, A.; Kwatra, S.G. A Review on the Safety of Using JAK Inhibitors in Dermatology: Clinical and Laboratory Monitoring. Dermatol. Ther. 2023, 13, 729–749. [Google Scholar] [CrossRef]
- Rosmarin, D.; Passeron, T.; Pandya, A.G.; Grimes, P.; Harris, J.E.; Desai, S.R.; Lebwohl, M.; Ruer-Mulard, M.; Seneschal, J.; Wolkerstorfer, A.; et al. Two Phase 3, Randomized, Controlled Trials of Ruxolitinib Cream for Vitiligo. N. Engl. J. Med. 2022, 387, 1445–1455. Available online: https://pubmed.ncbi.nlm.nih.gov/36260792/ (accessed on 5 November 2023). [CrossRef] [PubMed]
- Howell, M.D.; Kuo, F.I.; Smith, P.A. Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Front. Immunol. 2019, 10, 490313. [Google Scholar] [CrossRef]
- Study Results|A Study to Evaluate the Mechanism of Action of Ruxolitinib Cream in Subjects with Vitiligo (TRuE-V MOA)|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04896385?tab=results (accessed on 1 January 2024).
- Tavoletti, G.; Avallone, G.; Conforti, C.; Roccuzzo, G.; Maronese, C.A.; Mattioli, M.A.; Quaglino, P.; Zalaudek, I.; Marzano, A.V.; Ribero, S.; et al. Topical Ruxolitinib: A New Treatment for Vitiligo. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2222–2230. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/jdv.19162 (accessed on 5 November 2023). [CrossRef] [PubMed]
- Ajayi, S.; Becker, H.; Reinhardt, H.; Engelhardt, M.; Zeiser, R.; von Bubnoff, N.; Wäsch, R. Ruxolitinib. Recent Results Cancer Res. 2018, 212, 119–132. Available online: https://pubmed.ncbi.nlm.nih.gov/30069628/ (accessed on 18 November 2023). [PubMed]
- Phan, K.; Phan, S.; Shumack, S.; Gupta, M. Repigmentation in Vitiligo Using Janus Kinase (JAK) Inhibitors with Phototherapy: Systematic Review and Meta-Analysis. J. Dermatol. Treat. 2022, 33, 173–177. Available online: https://www.tandfonline.com/doi/abs/10.1080/09546634.2020.1735615 (accessed on 5 November 2023). [CrossRef] [PubMed]
- Janus Kinase and Tyrosine Kinase Inhibitors in Dermatology. Available online: https://www.skintherapyletter.com/dermatology/janus-tyrosine-kinase-inhibitors-review/ (accessed on 5 November 2023).
- Liu, L.Y.; Strassner, J.P.; Refat, M.A.; Harris, J.E.; King, B.A. Repigmentation in Vitiligo Using the Janus Kinase Inhibitor Tofacitinib May Require Concomitant Light Exposure. J. Am. Acad. Dermatol. 2017, 77, 675–682.e1. Available online: https://pubmed.ncbi.nlm.nih.gov/28823882/ (accessed on 5 November 2023). [CrossRef] [PubMed]
- Craiglow, B.G.; King, B.A. Tofacitinib Citrate for the Treatment of Vitiligo: A Pathogenesis-Directed Therapy. JAMA Dermatol. 2015, 151, 1110–1112. Available online: https://pubmed.ncbi.nlm.nih.gov/26107994/ (accessed on 5 November 2023). [CrossRef]
- Joshipura, D.; Plotnikova, N.; Goldminz, A.; Deverapalli, S.; Turkowski, Y.; Gottlieb, A.; Rosmarin, D. Importance of Light in the Treatment of Vitiligo with JAK-Inhibitors. J. Dermatol. Treat. 2018, 29, 98–99. Available online: https://pubmed.ncbi.nlm.nih.gov/28581823/ (accessed on 5 November 2023). [CrossRef] [PubMed]
- Kim, S.R.; Heaton, H.; Liu, L.Y.; King, B.A. Rapid Repigmentation of Vitiligo Using Tofacitinib Plus Low-Dose, Narrowband UV-B Phototherapy. JAMA Dermatol. 2018, 154, 370–371. Available online: https://pubmed.ncbi.nlm.nih.gov/29387870/ (accessed on 5 November 2023). [CrossRef] [PubMed]
- Zhang, J.; Qi, F.; Dong, J.; Tan, Y.; Gao, L.; Liu, F. Application of Baricitinib in Dermatology. J. Inflamm. Res. 2022, 15, 1935. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939862/ (accessed on 5 November 2023). [CrossRef] [PubMed]
- Dong, J.; Huang, X.; Ma, L.P.; Qi, F.; Wang, S.N.; Zhang, Z.Q.; Wei, S.N.; Gao, L.; Liu, F. Baricitinib is Effective in Treating Progressing Vitiligo in vivo and in vitro. Dose Response 2022, 20, 15593258221105370. [Google Scholar] [CrossRef] [PubMed]
- Diotallevi, F.; Gioacchini, H.; De Simoni, E.; Marani, A.; Candelora, M.; Paolinelli, M.; Molinelli, E.; Offidani, A.; Simonetti, O. Vitiligo, from Pathogenesis to Therapeutic Advances: State of the Art. Int. J. Mol. Sci. 2023, 24, 4910. Available online: https://pubmed.ncbi.nlm.nih.gov/36902341/ (accessed on 18 January 2024). [CrossRef]
- Ezzedine, K.; Peeva, E.; Yamaguchi, Y.; Cox, L.A.; Banerjee, A.; Han, G.; Hamzavi, I.; Ganesan, A.K.; Picardo, M.; Thaçi, D.; et al. Efficacy and Safety of Oral Ritlecitinib for the Treatment of Active Nonsegmental Vitiligo: A Randomized Phase 2b Clinical Trial. J. Am. Acad. Dermatol. 2023, 88, 395–403. Available online: http://www.jaad.org/article/S0190962222029899/fulltext (accessed on 4 January 2024). [CrossRef]
- Feng, Y.; Lu, Y. Advances in Vitiligo: Update on Therapeutic Targets. Front. Immunol. 2022, 13, 986918. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9471423/ (accessed on 18 January 2024). [CrossRef]
- Sardana, K.; Bathula, S.; Khurana, A. Which Is the Ideal JAK Inhibitor for Alopecia Areata—Baricitinib, Tofacitinib, Ritlecitinib or Ifidancitinib—Revisiting the Immunomechanisms of the JAK Pathway. Indian Dermatol. Online J. 2023, 14, 465. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373824/ (accessed on 18 January 2024). [CrossRef]
- Su, X.; Luo, R.; Ruan, S.; Zhong, Q.; Zhuang, Z.; Xiao, Z.; Zhang, P.; Cheng, B.; Gong, T.; Ji, C. Efficacy and Tolerability of Oral Upadacitinib Monotherapy in Patients with Recalcitrant Vitiligo. J. Am. Acad. Dermatol. 2023, 89, 1257–1259. Available online: https://pubmed.ncbi.nlm.nih.gov/37516357/ (accessed on 11 March 2024). [CrossRef]
- Coffey, G.; Betz, A.; DeGuzman, F.; Pak, Y.; Inagaki, M.; Baker, D.C.; Hollenbach, S.J.; Pandey, A.; Sinha, U. The Novel Kinase Inhibitor PRT062070 (Cerdulatinib) Demonstrates Efficacy in Models of Autoimmunity and B-Cell Cancer. J. Pharmacol. Exp. Ther. 2014, 351, 538–548. Available online: https://pubmed.ncbi.nlm.nih.gov/25253883/ (accessed on 17 May 2024). [CrossRef] [PubMed]
- Ma, J.; Xing, W.; Coffey, G.; Dresser, K.; Lu, K.; Guo, A.; Raca, G.; Pandey, A.; Conley, P.; Yu, H.; et al. Cerdulatinib, a Novel Dual SYK/JAK Kinase Inhibitor, Has Broad Anti-Tumor Activity in both ABC and GCB Types of Diffuse Large B Cell Lymphoma. Oncotarget 2015, 6, 43881. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791274/ (accessed on 14 May 2024). [CrossRef] [PubMed]
- Yagi, K.; Ishida, Y.; Otsuka, A.; Kabashima, K. Two Cases of Vitiligo Vulgaris Treated with Topical Janus Kinase Inhibitor Delgocitinib. Australas. J. Dermatol. 2021, 62, 433–434. Available online: https://pubmed.ncbi.nlm.nih.gov/33667323/ (accessed on 14 May 2024). [CrossRef] [PubMed]
- Skurkovich, S.; Skurkovich, B.; Kelly, J. Anticytokine Therapy, Particularly Anti-IFN-gamma, in Th1-Mediated Autoimmune Diseases. Expert Rev. Clin. Immunol. 2005, 1, 11–25. Available online: https://pubmed.ncbi.nlm.nih.gov/20477651/ (accessed on 17 May 2024). [CrossRef]
- Harris, J.E.; Harris, T.H.; Weninger, W.; Wherry, E.J.; Hunter, C.A.; Turka, L.A. A Mouse Model of Vitiligo with Focused Epidermal Depigmentation Requires IFN-γ for Autoreactive CD8+ T-Cell Accumulation in the Skin. J. Investig. Dermatol. 2012, 132, 1869–1876. Available online: https://pubmed.ncbi.nlm.nih.gov/22297636/ (accessed on 16 May 2024). [CrossRef] [PubMed]
- Richmond, J.M.; Masterjohn, E.; Chu, R.; Tedstone, J.; Youd, M.E.; Harris, J.E. CXCR3 Depleting Antibodies Prevent and Reverse Vitiligo in Mice. J. Investig. Dermatol. 2017, 137, 982–985. Available online: https://pubmed.ncbi.nlm.nih.gov/28126463/ (accessed on 17 May 2024). [CrossRef]
- Choi, Y.M.; Diehl, J.; Levins, P.C. Promising Alternative Clinical Uses of Prostaglandin F2α Analogs: Beyond the Eyelashes. J. Am. Acad. Dermatol. 2015, 72, 712–716. Available online: http://www.jaad.org/article/S019096221402057X/fulltext (accessed on 8 August 2024). [CrossRef] [PubMed]
- Lim, H.W.; Grimes, P.E.; Agbai, O.; Hamzavi, I.; Henderson, M.; Haddican, M.; Linkner, R.V.; Lebwohl, M. Afamelanotide and Narrowband UV-B Phototherapy for the Treatment of Vitiligo: A Randomized Multicenter Trial. JAMA Dermatol. 2015, 151, 42–50. Available online: https://pubmed.ncbi.nlm.nih.gov/25230094/ (accessed on 25 June 2024). [CrossRef]
- New Insights in Vitiligo Treatments Using Bioactive Compounds from Piper Nigrum. Available online: https://www.spandidos-publications.com/10.3892/etm.2018.6977 (accessed on 8 August 2024).
- Wu, Y.; Zhang, J.; Du, S.; Wang, X.; Li, J.; Chen, Y.; Zhou, H.; Gao, S.; Li, Y.; Liu, X. Combination of 308-nm Excimer Laser and Piperine Promotes Melanocyte Proliferation, Migration, and Melanin Content Production via the miR-328/SFRP1 Axis. Photodermatol. Photoimmunol. Photomed. 2024, 40, 12970. Available online: https://pubmed.ncbi.nlm.nih.gov/38685665/ (accessed on 8 August 2024). [CrossRef]
- Bertoli, C.; Chester, J.; Cortelazzi, C.; Ciardo, S.; Manfredini, M.; Di Nuzzo, S.; Kaleci, S.; Pellacani, G.; Farnetani, F. Vitiligo Treated with Combined Piperine-Based Topical Treatment and Narrowband Ultraviolet B Therapy: Follow-Up with Reflectance Confocal Microscopy. Diagnostics 2024, 14, 494. [Google Scholar] [CrossRef] [PubMed]
- Elrewiny, E.M.; Shawky, A.; Mohamed, S.F.F.; Ammar, A.M.; Mansour, M.; Rageh, M.A. Intralesional Methotrexate in the Treatment of Localized Vitiligo: A Pilot Study. Australas. J. Dermatol. 2023, 64, e207–e211. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/ajd.14071 (accessed on 25 June 2024). [CrossRef] [PubMed]
Drug | Target | Effect |
---|---|---|
Tocilizumab [36,37,38,39,40] | IL-6 receptor | Lack of effectiveness, new vitiligo lesions (case reports) |
anti-CD122 [44] | IL-15 | Repigmentation of vitiligo lesions (mice model) |
IL-15 monoclonal antibody (AMG 714) [8] | IL-15 | Ongoing phase IIa clinical trial |
Adalimumab Infliximab Etanercept [49,50,51,52,53,54,55,56,57] | TNF-alpha | Increased risk of new-onset vitiligo, controversial therapeutic results (case reports, cohort study) |
- | IL-1β | - |
IL-22 neutralizing antibody [64] | IL-22 | - |
Secukinumab [75,76,77,78,79] | IL-17A | Controversial results (case reports) |
Ixekizumab [80,81,82,83,84] | IL-17A | New vitiligo lesions (case reports) |
Tildrakizumab [89] | IL-23 | Insufficient studies (case report) |
Ustekinumab [91,92,93,94] | IL-12 and IL-23 | New vitiligo lesions, controversial therapeutic results (case reports, case/non-case study/review) |
Ruxolitinib [107,108,109,110,112] | JAK1/2 | Good clinical response, repigmentation of vitiligo lesions (approved by FDA and EMA in adults and adolescents from 12 years of age with non-segmental vitiligo) |
Tofacitinib [115,116,117] | JAK1/2/3 | Repigmentation of vitiligo lesions, nbUVB may increase clinical effect (case reports, retrospective case series) |
Baricitinib [119] | JAK1/2 | Repigmentation of vitiligo lesions, nbUVB may increase clinical effect (phase II clinical trial) |
Ritlecitinib [121] | JAK3/TEC | Repigmentation of vitiligo (phase III clinical trial) |
Ifidancitinib [99] | JAK1/3 | Repigmentation of vitiligo lesions (phase II clinical trial) |
Brepocytinib [99] | JAK1/TYK | No results (phase II clinical trial) |
Upadacitinib [124] | JAK1 | Repigmentation of vitiligo lesions (phase III clinical trial) |
Cerdulatynib | JAK1/3 | No results (phase II clinical trial) |
Delgocitinib [127] | JAK1/2/3, TYK2 | Good clinical response (case reports) |
Drug | Study Name | Phase | Population | Primary Outcomes | Key Findings |
---|---|---|---|---|---|
Ruxolitinib | NCT04530344 (TRuE-V1) | Phase 3 | Adolescents and adults with vitiligo | Percentage change in F-VASI (face) at Week 24 | Significant improvement in facial vitiligo area scores; FDA approved ruxolitinib cream for vitiligo |
Ruxolitinib | NCT04530357 (TRuE-V2) | Phase 3 | Adolescents and adults with vitiligo | Percentage change in F-VASI (face) at Week 24 | Confirmed efficacy and safety; supports use of ruxolitinib cream in broader population |
Baricitinib | NCT04822584 | Phase 2 | Adults With progressive vitiligo | No result posted | No result posted |
Ritlecitinib | NCT03715829 | Phase 2b | Adolescents and adults with vitiligo | F-VASI improvement at week 24 | Showed efficacy in repigmentation; generally well tolerated. |
Ifidancitinib | NCT03468855 | Phase 2 | Adults with non-segmental facial vitiligo | F-VASI improvement | Change in the facial Vitiligo Area Scoring Index (F-VASI) score from baseline to Week 24. |
Brepocitinib | NCT03715829 | Phase 2 | Adolescents and adults with vitiligo | No result posted | No result posted |
Upadacitinib | NCT04927975 | Phase 2 | Adult Participants with Non-Segmental Vitiligo | No result posted | No result posted |
Upadacitinib | NCT06118411 | Phase 3 | Adult and Adolescent Participants with Vitiligo | Is ongoing | Is ongoing |
Cerdulatinib | NCT04103060 | Phase 2 | Adults with Vitiligo | No results posted | No results posted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kądziela, M.; Kutwin, M.; Karp, P.; Woźniacka, A. Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. J. Clin. Med. 2024, 13, 4919. https://doi.org/10.3390/jcm13164919
Kądziela M, Kutwin M, Karp P, Woźniacka A. Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. Journal of Clinical Medicine. 2024; 13(16):4919. https://doi.org/10.3390/jcm13164919
Chicago/Turabian StyleKądziela, Marcelina, Magdalena Kutwin, Paulina Karp, and Anna Woźniacka. 2024. "Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications" Journal of Clinical Medicine 13, no. 16: 4919. https://doi.org/10.3390/jcm13164919
APA StyleKądziela, M., Kutwin, M., Karp, P., & Woźniacka, A. (2024). Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. Journal of Clinical Medicine, 13(16), 4919. https://doi.org/10.3390/jcm13164919