Reliability of the Biomechanical Assessment of the Sagittal Lumbar Spine and Pelvis on Radiographs Used in Clinical Practice: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Study Selection
2.5. Data and Study Characteristics Collection
2.6. Study Bias and Quality Assessment
2.7. Data Synthesis and Analysis
3. Results
3.1. Search Terms and Selection Process
Screening Search Results
3.2. Study Characteristics
3.3. Bias and Quality Analysis Using the QAREL Instrument
3.4. Subgroup Analysis of Similar Measurement Methods
4. Discussion
4.1. Heterogeneity of Findings
4.2. Clinical Interpretation and Relevance of This Systematic Review
4.3. Flaws With Previous Non-Systematic Reviews
4.4. Strengths of Our SROL
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MSK in Adolescents Collaborators. Global pattern, trend, and cross-country inequality of early musculoskeletal disorders from 1990 to 2019, with projection from 2020 to 2050. Med, 2024; ahead of print. [Google Scholar] [CrossRef]
- Rothenfluh, D.A.; Mueller, D.A.; Rothenfluh, E.; Min, K. Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur. Spine J. 2015, 24, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Hey, H.W.D.; Tan, K.A.; Kantharajanna, S.B.; Teo, A.Q.A.; Chan, C.X.; Liu, K.G.; Wong, H.K. Using spinopelvic parameters to estimate residual lumbar lordosis assuming previous lumbosacral fusion-a study of normative values. Spine J. 2018, 18, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Harada, G.K.; Siyaji, Z.K.; Younis, S.; Louie, P.K.; Samartzis, D.; An, H.S. Imaging in spine surgery: Current concepts and future directions. Spine Surg. Relat. Res. 2019, 4, 99–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rubery, P.T.; Lander, S.T.; Mesfin, A.; Sanders, J.O.; Thirukumaran, C.P. Mismatch between pelvic incidence and lumbar lordosis is the key sagittal plane determinant of patient outcome at minimum 40 years after instrumented fusion for adolescent idiopathic scoliosis. Spine 2022, 47, E169–E176. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, Z.; Lv, F.; Zhu, Z.; Qian, B.; Zhang, X.; Lin, X.; Sun, X.; Qiu, Y. Pelvic tilt and trunk inclination: New predictive factors in curve progression during the Milwaukee bracing for adolescent idiopathic scoliosis. Eur. Spine J. 2012, 21, 2050–2058. [Google Scholar] [CrossRef]
- Catanzano, A.A., Jr.; Esposito, V.R.; Dial, B.L.; Wu, C.J.; Hinton, Z.W.; Risoli, T.J.; Green, C.L.; Fitch, R.D.; Lark, R.K. Staying ahead of the curve: The use of spinopelvic parameters to predict curve progression and bracing success in adolescent idiopathic scoliosis. Spine Deform. 2020, 8, 1213–1222. [Google Scholar] [CrossRef]
- Landauer, F.; Trieb, K. Scoliosis: Brace treatment—From the past 50 years to the future. Medicine 2022, 101, e30556. [Google Scholar] [CrossRef]
- Harrison, D.E.; Haas, J.W.; Moustafa, I.M.; Betz, J.W.; Oakley, P.A. Can the mismatch of measured pelvic morphology vs. lumbar lordosis predict chronic low back pain patients? J. Clin. Med. 2024, 13, 2178. [Google Scholar] [CrossRef]
- Diebo, B.G.; Varghese, J.J.; Lafage, R.; Schwab, F.J.; Lafage, V. Sagittal alignment of the spine: What do you need to know? Clin. Neurol. Neurosurg. 2015, 139, 295–301. [Google Scholar] [CrossRef]
- Oakley, P.A.; Ehsani, N.N.; Moustafa, I.M.; Harrison, D.E. Restoring lumbar lordosis: A systematic review of controlled trials utilizing Chiropractic Bio Physics® (CBP®) non-surgical approach to increasing lumbar lordosis in the treatment of low back disorders. J. Phys. Ther. Sci. 2020, 32, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.W.; Lim, C.Y.; Kim, K.; Hwang, J.; Chung, S.G. The relationships between low back pain and lumbar lordosis: A systematic review and meta-analysis. Spine J. 2017, 17, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Sadler, S.G.; Spink, M.J.; Ho, A.; De Jonge, X.J.; Chuter, V.H. Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: A systematic review of prospective cohort studies. BMC Musculoskelet. Disord. 2017, 18, 179. [Google Scholar] [CrossRef] [PubMed]
- Alfuth, M.; Fichter, P.; Knicker, A. Leg length discrepancy: A systematic review on the validity and reliability of clinical as-sessments and imaging diagnostics used in clinical practice. PLoS ONE 2021, 16, e0261457. [Google Scholar] [CrossRef] [PubMed]
- Bussieres, A.E.; Ammendolia, C.; Peterson, C.; Taylor, J.A. Ionizing radiation exposure—more good than harm? The preponderance of evidence does not support abandoning current standards and regulations. J. Can. Chiropr. Assoc. 2006, 50, 103–106. [Google Scholar] [PubMed]
- Bussieres, A.E.; Taylor, J.A.; Peterson, C. Diagnostic imaging practice guidelines for musculoskeletal complaints in adults-an evidence-based approach-part 3: Spinal disorders. J. Manip. Physiol. Ther. 2008, 31, 33–88. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, H.J.; Downie, A.S.; Moore, C.S.; French, S.D. Current evidence for spinal X-ray use in the chiropractic profession: A narrative review. Chiropr. Man. Therap 2018, 26, 48. [Google Scholar] [CrossRef]
- Corso, M.; Cancelliere, C.; Mior, S.; Kumar, V.; Smith, A.; Cote, P. The clinical utility of routine spinal radiographs by chiropractors: A rapid review of the literature. Chiropr. Man. Therap 2020, 28, 33. [Google Scholar] [CrossRef]
- Young, K.J.; Bakkum, B.W.; Siordia, L. The Hangover: The Early and Lasting Effects of the Controversial Incorporation of X-Ray Technology into Chiropractic. Health Hist. 2016, 18, 111–136. [Google Scholar] [CrossRef]
- College Board of Chiropractors of British Columbia. Amendments to the PCH: Routine and Repeat Imaging. In Professional Conduct Handbook; College of Chiropractors of British Columbia: Vancouver, BC, Canada, 2021; Available online: https://cchpbc.ca/wpfd_file/dc-professional-conduct-handbook-june-2023/ (accessed on 5 August 2024).
- Oakley, P.A.; Betz, J.W.; Harrison, D.E.; Siskin, L.A.; Hirsh, D.W. International chiropractors association rapid response research review. Radiophobia overreaction: College of Chiropractors of British Columbia revoke full X-ray rights based on flawed study and radiation fear-mongering. Dose Response 2021, 19, 15593258211033142. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS peer review of electronic search strate-gies: 2015 guideline statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Lucas, N.; Macaskill, P.; Irwig, L.; Moran, R.; Rickards, L.; Turner, R.; Bogduk, N. The reliability of a quality appraisal tool for studies of diagnostic reliability (QAREL). BMC Med. Res. Methodol. 2013, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, C.; Gibson, C.; Russett, L.; Dlot, L.; MacDermid, J.; Watson, L.; Sadi, J. What is the reliability of clinical measurement tests for humeral head position? A systematic review. J. Hand Ther. 2017, 30, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Stoll, C.R.T.; Izadi, S.; Fowler, S.; Green, P.; Suls, J.; Colditz, G.A. The value of a second reviewer for study selection in systematic reviews. Res. Synth. Methods 2019, 10, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef] [PubMed]
- Barnett, I.; Malik, N.; Kuijjer, M.L.; Mucha, P.J.; Onnela, J.P. Endnote: Feature-based classification of networks. Netw. Sci. 2019, 7, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Abdel, M.P.; Bodemer, W.S.; Anderson, P.A. Supine thoracolumbar sagittal spine alignment: Comparing computerized tomography and plain radiographs. Spine 2012, 37, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Ames, C.P.; Smith, J.S.; Eastlack, R.; Blaskiewicz, D.J.; Shaffrey, C.I.; Schwab, F.; Bess, S.; Kim, H.J.; Mundis, G.M., Jr.; Klineberg, E.; et al. Reliability assessment of a novel cervical spine deformity classification system. J. Neurosurg. Spine 2015, 23, 673–683. [Google Scholar] [CrossRef]
- Andreasen, M.L.; Langhoff, L.; Jensen, T.S.; Albert, H.B. Reproduction of the lumbar lordosis: A comparison of standing radiographs versus supine magnetic resonance imaging obtained with straightened lower extremities. J. Manip. Physiol. Ther. 2007, 30, 26–30. [Google Scholar] [CrossRef]
- Bagheri, A.; Liu, X.C.; Tassone, C.; Thometz, J.; Tarima, S. Reliability of three-dimensional spinal modeling of patients with idiopathic scoliosis using EOS system. Spine Deform. 2018, 6, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Bolesta, M.J.; Winslow, L.; Gill, K. A comparison of film and computer workstation measurements of degenerative spondylolisthesis: Intraobserver and interobserver reliability. Spine 2010, 35, 1300–1303. [Google Scholar] [CrossRef] [PubMed]
- Bredow, J.; Oppermann, J.; Scheyerer, M.J.; Gundlfinger, K.; Neiss, W.F.; Budde, S.; Floerkemeier, T.; Eysel, P.; Beyer, F. Lumbar lordosis and sacral slope in lumbar spinal stenosis: Standard values and measurement accuracy. Arch. Orthop. Trauma. Surg. 2015, 135, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Breen, A.; Hemming, R.; Mellor, F.; Breen, A. Intrasubject repeatability of in vivo intervertebral motion parameters using quantitative fluoroscopy. Eur. Spine J. 2019, 28, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Cakir, B.; Richter, M.; Käfer, W.; Wieser, M.; Puhl, W.; Schmidt, R. Evaluation of lumbar spine motion with dynamic X-ray—A reliability analysis. Spine 2006, 31, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Chanplakorn, P.; Wongsak, S.; Woratanarat, P.; Wajanavisit, W.; Laohacharoensombat, W. Lumbopelvic alignment on standing lateral radiograph of adult volunteers and the classification in the sagittal alignment of lumbar spine. Eur. Spine J. 2011, 20, 706–712. [Google Scholar] [CrossRef]
- Chen, Y.L. Vertebral centroid measurement of lumbar lordosis compared with the Cobb technique. Spine 1999, 24, 1786–1790. [Google Scholar] [CrossRef]
- Chung, N.S.; Jeon, C.H.; Lee, H.D.; Won, S.H. Measurement of spinopelvic parameters on standing lateral lumbar radiographs: Validity and reliability. Clin. Spine Surg. 2017, 30, E119–E123. [Google Scholar] [CrossRef]
- De Carvalho, D.E.; Soave, D.; Ross, K.; Callaghan, J.P. Lumbar spine and pelvic posture between standing and sitting: A radiologic investigation including reliability and repeatability of the lumbar lordosis measure. J. Manip. Physiol. Ther. 2010, 33, 48–55. [Google Scholar] [CrossRef]
- Dimar, J.R., 2nd; Carreon, L.Y.; Labelle, H.; Djurasovic, M.; Weidenbaum, M.; Brown, C.; Roussouly, P. Intra- and inter-observer reliability of determining radiographic sagittal parameters of the spine and pelvis using a manual and a computer-assisted methods. Eur. Spine J. 2008, 17, 1373–1379. [Google Scholar] [CrossRef]
- du Rose, A.; Breen, A. Relationships between lumbar inter-vertebral motion and lordosis in healthy adult males: A cross sectional cohort study. BMC Musculoskelet. Disord. 2016, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.M.; Piva, S.R.; Childs, J.D. Accuracy of the clinical examination to predict radiographic instability of the lumbar spine. Eur. Spine J. 2005, 14, 743–750. [Google Scholar] [CrossRef]
- Gilliam, J.; Brunt, D.; MacMillan, M.; Kinard, R.E.; Montgomery, W.J. Relationship of the pelvic angle to the sacral angle: Measurement of clinical reliability and validity. J. Orthop. Sports Phys. Ther. 1994, 20, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Gladnick, B.P.; Schreiber, J.J.; Ishmael, C.R.; Bjerke-Kroll, B.T.; Cunningham, M.E. Assessment of vertebral curves using the manual post-it technique. Clin. Spine Surg. 2017, 30, E148–E151. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.E.; Harrison, D.D.; Cailliet, R.; Janik, T.J.; Holland, B. Radiographic analysis of lumbar lordosis: Centroid, Cobb, TRALL, and Harrison posterior tangent methods. Spine 2001, 26, E235–E242. [Google Scholar] [CrossRef] [PubMed]
- Hicks, G.E.; George, S.Z.; Nevitt, M.A.; Cauley, J.A.; Vogt, M.T. Measurement of lumbar lordosis: Inter-rater reliability, minimum detectable change and longitudinal variation. J. Spinal Disord. Tech. 2006, 19, 501–506. [Google Scholar] [CrossRef]
- Hohenhaus, M.; Volz, F.; Merz, Y.; Watzlawick, R.; Scholz, C.; Hubbe, U.; Klingler, J.H. The challenge of measuring spinopelvic parameters: Inter-rater reliability before and after minimally invasive lumbar spondylodesis. BMC Musculoskelet. Disord. 2022, 23, 104. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Suh, S.W.; Modi, H.N.; Hur, C.Y.; Song, H.R.; Park, J.H. Reliability analysis for radiographic measures of lumbar lordosis in adult scoliosis: A case-control study comparing 6 methods. Eur. Spine J. 2010, 19, 1551–1557. [Google Scholar] [CrossRef]
- Jackson, R.P.; Kanemura, T.; Kawakami, N.; Hales, C. Lumbopelvic lordosis and pelvic balance on repeated standing lateral radiographs of adult volunteers and untreated patients with constant low back pain. Spine 2000, 25, 575–586. [Google Scholar] [CrossRef]
- Jackson, R.P.; Peterson, M.D.; McManus, A.C.; Hales, C. Compensatory spinopelvic balance over the hip axis and better reliability in measuring lordosis to the pelvic radius on standing lateral radiographs of adult volunteers and patients. Spine 1998, 23, 1750–1767. [Google Scholar] [CrossRef]
- Karabag, H.; Iplikcioglu, A.C.; Dusak, A.; Karayol, S.S. Pelvic incidence measurement with supine magnetic resonance imaging: A validity and reliability study. Clin. Neurol. Neurosurg. 2022, 222, 107424. [Google Scholar] [CrossRef] [PubMed]
- Kepler, C.K.; Hilibrand, A.S.; Sayadipour, A.; Koerner, J.D.; Rihn, J.A.; Radcliff, K.E.; Vaccaro, A.R.; Albert, T.J.; Anderson, D.G. Clinical and radiographic degenerative spondylolisthesis (CARDS) classification. Spine J. 2015, 15, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, A.S.; Mundis, G.M., Jr.; Yagi, M.; Fessler, R.G.; Bess, S.; Hosogane, N.; Park, P.; Than, K.D.; Daniels, A.; Iorio, J.; et al. Variability in assessing spinopelvic parameters with lumbosacral transitional vertebrae: Inter- and intraobserver reliability among spine surgeons. Spine 2018, 43, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Kunkle, W.A.; Madden, M.; Potts, S.; Fogelson, J.; Hershman, S. Validity of a smartphone protractor to measure sagittal parameters in adult spinal deformity. Spine J. 2017, 17, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Lafage, R.; Ferrero, E.; Henry, J.K.; Challier, V.; Diebo, B.; Liabaud, B.; Lafage, V.; Schwab, F. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J. 2015, 15, 2493–4502. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Goh, T.S.; Park, S.H.; Lee, H.S.; Suh, K.T. Radiographic measurement reliability of lumbar lordosis in ankylosing spondylitis. Eur. Spine J. 2013, 22, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Kim, I.S.; Lee, J.J.; Park, J.H.; Cho, C.B.; Yang, S.H.; Sung, J.H.; Hong, J.T. Validity of a smartphone application (Sagittalmeter Pro) for the measurement of sagittal balance parameters. World Neurosurg. 2019, 126, e8–e15. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, B.V.; Candotti, C.T.; Raupp, E.G.; Oliveira, E.B.C.; Furlanetto, T.S.; Loss, J.F. Accuracy of a radiological evaluation method for thoracic and lumbar spinal curvatures using spinous processes. J. Manip. Physiol. Ther. 2017, 40, 700–707. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.E.; Mehlman, C.T.; Tamai, J.; Do, T.T.; Crawford, A.H.; Klein, G. Spondylolisthesis: Intraobserver and interobserver reliability with regard to the measurement of slip percentage. J. Pediatr. Orthop. 2009, 29, 755–759. [Google Scholar] [CrossRef]
- Mellor, F.E.; Thomas, P.W.; Thompson, P.; Breen, A.C. Proportional lumbar spine inter-vertebral motion patterns: A comparison of patients with chronic, non-specific low back pain and healthy controls. Eur. Spine J. 2014, 23, 2059–2067. [Google Scholar] [CrossRef]
- Newton, P.O.; Khandwala, Y.; Bartley, C.E.; Reighard, F.G.; Bastrom, T.P.; Yaszay, B. New EOS imaging protocol allows a substantial reduction in radiation exposure for scoliosis patients. Spine Deform. 2016, 4, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Okpala, F.O. Comparison of four radiographic angular measures of lumbar lordosis. J. Neurosci. Rural. Pract. 2018, 9, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Orosz, L.D.; Bhatt, F.R.; Jazini, E.; Dreischarf, M.; Grover, P.; Grigorian, J.; Roy, R.; Schuler, T.C.; Good, C.R.; Haines, C.M. Novel artificial intelligence algorithm: An accurate and independent measure of spinopelvic parameters. J. Neurosurg. Spine 2022, 37, 893–901. [Google Scholar] [CrossRef]
- Pearson, A.M.; Spratt, K.F.; Genuario, J.; McGough, W.; Kosman, K.; Lurie, J.; Sengupta, D.K. Precision of lumbar intervertebral measurements: Does a computer-assisted technique improve reliability? Spine 2011, 36, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Pinel-Giroux, F.M.; Mac-Thiong, J.M.; de Guise, J.A.; Berthonnaud, E.; Labelle, H. Computerized assessment of sagittal curvatures of the spine: Comparison between Cobb and tangent circles techniques. J. Spinal Disord. Tech. 2006, 19, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Plaugher, G.; Cremata, E.E.; Phillips, R.B. A retrospective consecutive case analysis of pretreatment and comparative static radiological parameters following chiropractic adjustments. J. Manip. Physiol. Ther. 1990, 13, 498–506. [Google Scholar]
- Polly, D.W., Jr.; Kilkelly, F.X.; McHale, K.A.; Asplund, L.M.; Mulligan, M.; Chang, A.S. Measurement of lumbar lordosis. Evaluation of intraobserver, interobserver, and technique variability. Spine 1996, 21, 1530–1535. [Google Scholar] [CrossRef]
- Rastegar, F.; Contag, A.; Daniels, A.; Hiratzka, J.; Lin, C.; Chang, J.; Than, K.; Raslan, A.; Kong, C.; Nguyen, N.L.; et al. Proximal junctional kyphosis: Inter- and intraobserver reliability of radiographic measurements in adult spinal deformity. Spine 2018, 43, E40–E44. [Google Scholar] [CrossRef]
- Rehm, J.; Germann, T.; Akbar, M.; Pepke, W.; Kauczor, H.U.; Weber, M.A.; Spira, D. 3D-modeling of the spine using EOS imaging system: Inter-reader reproducibility and reliability. PLoS ONE 2017, 12, e0171258. [Google Scholar] [CrossRef]
- Ruhinda, E.; Byanyima, R.K.; Mugerwa, H. Reliability and validity of subjective assessment of lumbar lordosis in conventional radiography. East. Afr. Med. J. 2014, 91, 326–332. [Google Scholar]
- Russell, B.S.; Muhlenkamp-Wermert, K.A.; Hoiriis, K.T. Measurement of lumbar lordosis: A comparison of 2 alternatives to the Cobb angle. J. Manip. Physiol. Ther. 2020, 43, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Segundo, S.T.; Valesin, E.S.; Filho Lenza, M.; Santos, D.D.; Rosemberg, L.A.; Ferretti, M. Interobserver reproducibility of radiographic evaluation of lumbar spine instability. Einstein 2016, 14, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Severijns, P.; Overbergh, T.; Thauvoye, A.; Baudewijns, J.; Monari, D.; Moke, L.; Desloovere, K.; Scheys, L. A subject-specific method to measure dynamic spinal alignment in adult spinal deformity. Spine J. 2020, 20, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Endo, K.; Mizuochi, J.; Kobayashi, H.; Tanaka, H.; Yamamoto, K. Clasped position for measurement of sagittal spinal alignment. Eur. Spine J. 2010, 19, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Imai, N.; Nozaki, A.; Hirano, Y.; Endo, N. Anatomical sacral slope, a new pelvic parameter, is associated with lumbar lordosis and pelvic incidence in healthy Japanese women: A retrospective cross-sectional study. J. Orthop. Surg. 2020, 28, 2309499019888809. [Google Scholar] [CrossRef] [PubMed]
- Taghipour-Darzi, M.; Ebrahimi-Takamjani, E.; Salavati, M.; Mobini, B.; Zekavat, H. Reliability of quality measures of movement in lumbar spine flexion-extension radiography. J. Back. Musculoskelet. Rehabil. 2009, 22, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Watanabe, K.; Okamoto, M.; Hatsushikano, S.; Hasegawa, K.; Endo, N. Sacral incidence to pubis: A novel and alternative morphologic radiological parameter to pelvic incidence in assessing spinopelvic sagittal alignment. BMC Musculoskelet. Disord. 2021, 22, 214. [Google Scholar] [CrossRef] [PubMed]
- Tallroth, K.; Ylikoski, M.; Landtman, M.; Santavirta, S. Reliability of radiographical measurements of spondylolisthesis and extension-flexion radiographs of the lumbar spine. Eur. J. Radiol. 1994, 18, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Teyhen, D.S.; Flynn, T.W.; Bovik, A.C.; Abraham, L.D. A new technique for digital fluoroscopic video assessment of sagittal plane lumbar spine motion. Spine 2005, 30, E406–E413. [Google Scholar] [CrossRef]
- Timon, S.J.; Gardner, M.J.; Wanich, T.; Poynton, A.; Pigeon, R.; Widmann, R.F.; Rawlins, B.A.; Burke, S.W. Not all spondylolisthesis grading instruments are reliable. Clin. Orthop. Relat. Res. 2005, 434, 157–162. [Google Scholar] [CrossRef]
- Troyanovich, S.J.; Robertson, G.A.; Harrison, D.D.; Holland, B. Intra- and interexaminer reliability of the chiropractic biophysics lateral lumbar radiographic mensuration procedure. J. Manip. Physiol. Ther. 1995, 18, 519–524. [Google Scholar]
- Troyanovich, S.J.; Harrison, D.E.; Harrison, D.D.; Holland, B.; Janik, T.J. Further analysis of the reliability of the posterior tangent lateral lumbar radiographic mensuration procedure: Concurrent validity of computer-aided X-ray digitization. J. Manip. Physiol. Ther. 1998, 21, 460–467. [Google Scholar]
- Wang, Z.; Parent, S.; de Guise, J.A.; Labelle, H. A variability study of computerized sagittal sacral radiologic measures. Spine 2010, 35, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Wanke-Jellinek, L.; Heese, O.; Krenauer, A.; Würtinger, C.; Siepe, C.J.; Wiechert, K.; Mehren, C. Is there any use? Validity of 4D rasterstereography compared to EOS 3D X-ray imaging in patients with degenerative disk disease. Eur. Spine J. 2019, 28, 2162–2168. [Google Scholar] [CrossRef]
- Wong, C.; Hall, J.; Gosvig, K. The effects of rotation on radiological parameters in the spine. Acta Radiol. 2019, 60, 338–346. [Google Scholar] [CrossRef]
- Wu, W.; Liang, J.; Du, Y.; Tan, X.; Xiang, X.; Wang, W.; Ru, N.; Le, J. Reliability and reproducibility analysis of the Cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools. BMC Musculoskelet. Disord. 2014, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wei, F.; Ma, L.; Li, J.; Zhang, N.; Tian, W.; Sun, Y. Accuracy and reliability of standing lateral lumbar radiographs for measurements of spinopelvic parameters. Spine 2021, 46, 1033–1038. [Google Scholar] [CrossRef]
- Zhang, Y.; Hai, Y.; Liu, Y.; Zhang, X.; Zhang, Y.; Han, C.; Liu, J.; Zhou, L. The reliability of computer-assisted three-dimensional surgical simulation of posterior osteotomies in thoracolumbar kyphosis secondary to ankylosing spondylitis patients. Mediat. Inflamm. 2022, 2022, 8134242. [Google Scholar] [CrossRef]
- Zhou, Q.S.; Sun, X.; Chen, X.; Xu, L.; Qian, B.P.; Zhu, Z.; Qiu, Y. Utility of natural sitting lateral radiograph in the diagnosis of segmental instability for patients with degenerative lumbar spondylolisthesis. Clin. Orthop. Relat. Res. 2021, 479, 817–825. [Google Scholar] [CrossRef]
- Zhou, S.; Yao, H.; Ma, C.; Chen, X.; Wang, W.; Ji, H.; He, L.; Luo, M.; Guo, Y. Artificial intelligence X-ray measurement technology of anatomical parameters related to lumbosacral stability. Eur. J. Radiol. 2022, 146, 110071. [Google Scholar] [CrossRef]
- Zhu, F.; Bao, H.; He, S.; Wang, F.; Zhu, Z.; Liu, Z.; Qiu, Y. Lumbo-femoral angle: A novel sagittal parameter related to quality of life in patients with adult scoliosis. Eur. Spine J. 2015, 24, 1244–1250. [Google Scholar] [CrossRef]
- Lucas, N.P.; Macaskill, P.M.; Irwig, L.; Bogduk, N. The development of a quality appraisal tool for studies of diagnostic reliability (QAREL). J. Clin. Epidemiol. 2010, 63, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.A.; Coleman, R.R.; Cremata, E.J. Radiography and clinical decision-making in chiropractic. Dose Response 2021, 19, 15593258211044844. [Google Scholar] [CrossRef]
- Traeger, A.; Buchbinder, R.; Harris, I.; Maher, C. Diagnosis and management of low-back pain in primary care. CMAJ 2017, 189, E1386–E1395. [Google Scholar] [CrossRef] [PubMed]
- Suits, W.H. Clinical measures of pelvic tilt in physical therapy. Int. J. Sports Phys. Ther. 2021, 16, 1366–1375. [Google Scholar] [CrossRef]
- Groisser, B.N.; Hillstrom, H.J.; Thakur, A.; Morse, K.W.; Cunningham, M.; Hresko, M.T.; Kimmel, R.; Wolf, A.; Widmann, R.F. Reliability of automated topographic measurements for spine deformity. Spine Deform. 2022, 10, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Gold, R.; Esterberg, E.; Hollombe, C.; Arkind, J.; Vakarcs, P.A.; Tran, H.; Burdick, T.; Devoe, J.E.; Horberg, M.A. Low back imaging when not indicated: A descriptive cross-system analysis. Perm. J. 2016, 20, 25–33. [Google Scholar] [CrossRef]
- Dagenais, S.; Galloway, E.; Roffey, D. A systematic review of diagnostic imaging use for low back pain in the United States. Spine J. 2014, 14, 1036–1048. [Google Scholar] [CrossRef]
- Ghafouri, M.; Ghasemi, E.; Rostami, M.; Rouhifard, M.; Rezaei, N.; Nasserinejad, M.; Danandeh, K.; Nakhostin-Ansari, A.; Ghanbari, A.; Borghei, A.; et al. The quality of care index for low back pain: A systematic analysis of the global burden of disease study 1990–2017. Arch. Public Health 2023, 81, 167. [Google Scholar] [CrossRef]
- Sylwander, C.; Larsson, I.; Andersson, M.; Bergman, S. The impact of chronic widespread pain on health status and long-term health predictors: A general population cohort study. BMC Musculoskelet. Disord. 2020, 21, 36. [Google Scholar] [CrossRef]
- Oakley, P.A.; Kallan, S.Z.; Harrison, D.E. Structural rehabilitation of the lumbar lordosis: A selective review of CBP® case reports. J. Contemp. Chiro 2022, 5, 206–211. [Google Scholar]
- Harrison, D.E.; Oakley, P.A. Non-operative correction of flat back syndrome using lumbar extension traction: A CBP® case series of two. J. Phys. Ther. Sci. 2018, 30, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- White, H.J.; Bradley, J.; Hadgis, N.; Wittke, E.; Piland, B.; Tuttle, B.; Erickson, M.; Horn, M.E. Predicting patient-centered outcomes from spine surgery using risk assessment tools: A systematic review. Curr. Rev. Musculoskelet. Med. 2020, 13, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.U.; Chang, M.C.; Kim, T.U.; Lee, G.W. Diagnostic modality in spine disease: A review. Asian Spine J. 2020, 14, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Ames, C.P.; Smith, J.S.; Pellisé, F.; Kelly, M.; Alanay, A.; Acaroğlu, E.; Pérez-Grueso, F.J.S.; Kleinstück, F.; Obeid, I.; Vila-Casademunt, A.; et al. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: Towards a new classification scheme that predicts quality and value. Spine 2019, 44, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.M.; Mahoor, M.H.; Haas, J.W.; Ferrantelli, J.R.; Dupuis, A.-L.; Jaeger, J.O.; Harrison, D.E. Intra-examiner reliability and validity of sagittal cervical spine mensuration methods using deep convolutional neural networks. J. Clin. Med. 2024, 13, 2573. [Google Scholar] [CrossRef] [PubMed]
- Casiano, V.E.; Sarwan, G.; Dydyk, A.M.; Varacallo, M. Back Pain; Updated 20 February 2023; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538173/ (accessed on 5 August 2024).
- Manabe, H.; Morimoto, M.; Sugiura, K.; Takeuchi, M.; Tezuka, F.; Yamashita, K.; Sakai, T.; Sairyo, K. Morphological evaluation of lumbar facet joints in professional baseball players. Orthop. J. Sports Med. 2024, 12, 23259671231219194. [Google Scholar] [CrossRef] [PubMed]
- Bortsov, A.V.; Parisien, M.; Khoury, S.; Martinsen, A.E.; Lie, M.U.; Heuch, I.; Hveem, K.; Zwart, J.A.; Winsvold, B.S.; Diatchenko, L. Brain-specific genes contribute to chronic but not to acute back pain. Pain Rep. 2022, 7, e1018. [Google Scholar] [CrossRef] [PubMed]
- Vaedeh, D.; Mannion, R.J.; Woolf, C.J. Toward a mechanism-based approach to pain diagnosis. J. Pain 2016, 17, T50–T69. [Google Scholar] [CrossRef]
- Du, S.H.; Zhang, Y.H.; Yang, Q.H.; Wang, Y.C.; Fang, Y.; Wang, X.Q. Spinal posture assessment and low back pain. EFORT Open Rev. 2023, 8, 708–718. [Google Scholar] [CrossRef]
- Choi, S.; Nah, S.; Jang, H.D.; Moon, J.E.; Han, S. Association between chronic low back pain and degree of stress: A nationwide cross-sectional study. Sci. Rep. 2021, 11, 14549. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lu, M.L.; Haldeman, S.; Swanson, N. Psychosocial risk factors for low back pain in US workers: Data from the 2002–2018 quality of work life survey. Am. J. Ind. Med. 2023, 66, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Lerchi, T.; Nispel, K.; Baum, T.; Bodden, J.; Senner, V.; Kirschke, J.S. Multibody models of the thoracolumbar spine: A review on applications, limitations, and challenges. Bioengineering 2023, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Pennington, C.W.; Siegel, J.A. The linear no-threshold model of low-dose radiogenic cancer: A failed fiction. Dose Response 2019, 17, 1559325818824200. [Google Scholar] [CrossRef] [PubMed]
- Oakley, P.A.; Harrison, D.E. Radiophobia: 7 Reasons Why Radiography Used in Spine and Posture Rehabilitation Should Not Be Feared or Avoided. Dose Response. 2018, 16, 1559325818781445. [Google Scholar] [CrossRef] [PubMed]
- Schultz, C.H.; Fairley, R.; Murphy, L.S.; Doss, M. The risk of cancer from CT scans and other sources of low-dose radiation: A critical appraisal of methodologic quality. Prehosp. Disaster Med. 2020, 35, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Selby, P.B.; Calabrese, E.J. How self-interest and deception led to the adoption of the linear non-threshold dose response (LNT) model for cancer risk assessment. Sci. Total Environ. 2023, 898, 165402. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Agathokleous, E.; Giordano, J.; Selby, P.B. Manhattan Project genetic studies: Flawed research discredits LNT recommendations. Environ. Pollut. 2023, 319, 120902. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Agathokleous, E. Is LNT anti-evolution dose response model? Arch. Toxicol. 2022, 96, 3141–3142. [Google Scholar] [CrossRef]
- Doss, M. The Conclusion of the BEIR VII Report Endorsing the Linear No-Threshold Model Is No Longer Valid Due to Advancement of Knowledge. J. Nucl. Med. 2018, 59, 1777. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Giordano, J. How did Hermann Muller publish a paper absent any data in the journal Science? Ethical questions and implications of Muller’s Nobel Prize. Chem. Biol. Interact. 2022, 368, 110204. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Confirmation that Hermann Muller was dishonest in his Nobel Prize Lecture. Arch. Toxicol. 2023, 97, 2999–3003. [Google Scholar] [CrossRef] [PubMed]
- Oakley, P.A.; Harrison, D.E. Selective usage of medical practice data, misrepresentations, and omission of conflicting data to support the ‘red flag only’ agenda for chiropractic radiography guidelines: A critical assessment of the Jenkins et al. article: “Current evidence for spinal X-ray use in the chiropractic profession”. Ann. Vert. Sublux Res. 2019, 14, 141–157. [Google Scholar]
- Lee, C.-H.; Heo, S.J.; Park, S.H.; Jeong, H.S.; Kim, S.-Y. Functional changes in patients and morphological changes in the lumbar intervertebral disc after applying lordotic curve-controlled traction: A double-blind randomized controlled study. Medicina 2019, 56, 4. [Google Scholar] [CrossRef] [PubMed]
Study | QAREL Instrument Questions | Sum | Bias Risk | Quality | Reliability | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |||||
Abdel 2012 [29] | Y | Y | Y | Y | Y | Y | N | U | U | Y | Y | 8 | L | H | B |
Ames 2015 [30] | Y | Y | U | U | NA | Y | U | U | Y | Y | Y | 6 | M | M | B |
Andreason 2007 [31] | Y | Y | Y | Y | NA | U | U | Y | Y | Y | Y | 8 | L | H | B |
Bagheri 2018 [32] | Y | N | U | U | NA | U | U | U | Y | Y | Y | 4 | H | L | B |
Bolesta 2010 [33] | Y | Y | Y | Y | NA | U | U | U | Y | Y | Y | 7 | M | M | B |
Bredow 2015 [34] | Y | Y | Y | Y | NA | U | U | U | Y | Y | Y | 7 | M | M | B |
Breen 2019 [35] | Y | Y | Y | Y | NA | Y | Y | U | Y | Y | Y | 9 | L | H | IR |
Cakir 2006 [36] | Y | Y | U | U | NA | U | U | U | Y | Y | Y | 5 | M | M | B |
Chanplakorn 2011 [37] | Y | Y | U | U | NA | U | U | U | U | Y | Y | 4 | H | L | IR |
Chen 1999 [38] | Y | Y | Y | Y | NA | U | U | U | Y | Y | Y | 7 | M | M | B |
Chung 2017 [39] | Y | Y | Y | Y | NA | Y | Y | Y | U | Y | Y | 9 | L | H | B |
de Carvalho 2010 [40] | Y | Y | Y | U | NA | U | U | U | U | Y | N | 4 | H | L | B |
Dimar 2008 [41] | Y | Y | U | U | NA | U | U | U | Y | Y | Y | 5 | M | M | B |
du Rose 2016 [42] | Y | Y | Y | Y | NA | U | U | U | Y | Y | Y | 7 | M | M | B |
Fritz 2005 [43] | U | Y | Y | Y | NA | Y | Y | Y | Y | Y | Y | 9 | L | H | IA |
Gilliam 1994 [44] | Y | Y | Y | U | NA | U | U | U | U | Y | Y | 5 | M | M | B |
Gladnick 2017 [45] | Y | Y | Y | NA | Y | Y | U | NA | Y | Y | Y | 8 | L | H | IR |
Harrison 2001 [46] | Y | Y | Y | NA | Y | U | U | Y | Y | Y | Y | 8 | L | H | B |
Hicks 2006 [47] | Y | Y | Y | NA | NA | U | U | N | NA | Y | Y | 5 | M | M | IR |
Hohenhaus 2022 [48] | Y | Y | Y | NA | NA | U | U | NA | Y | Y | Y | 6 | M | M | IR |
Hong 2010 [49] | Y | Y | Y | Y | NA | U | U | Y | Y | Y | Y | 8 | L | H | B |
Jackson 2000 [50] | Y | Y | Y | Y | NA | U | U | U | Y | Y | Y | 7 | M | M | B |
Jackson 1998 [51] | Y | Y | Y | Y | NA | U | U | U | U | Y | Y | 6 | M | M | B |
Karabag 2022 [52] | Y | Y | U | U | NA | U | U | U | U | Y | Y | 4 | H | L | B |
Kepler 2015 [53] | Y | Y | Y | Y | NA | Y | Y | Y | Y | Y | Y | 10 | L | H | B |
Khalsa 2018 [54] | Y | Y | Y | NA | NA | U | U | U | Y | N | Y | 5 | M | M | B |
Kunkle 2017 [55] | Y | Y | Y | Y | NA | N | U | U | U | Y | Y | 6 | M | M | B |
Lafage 2015 [56] | Y | Y | Y | Y | Y | Y | U | Y | Y | Y | Y | 10 | L | H | B |
Lee 2019 [57] | Y | Y | U | U | NA | U | U | U | Y | Y | Y | 5 | M | M | B |
Lee 2013 [58] | Y | Y | U | U | NA | U | U | U | Y | Y | Y | 5 | M | M | B |
Marchetti 2007 [59] | Y | Y | Y | Y | NA | Y | U | Y | Y | Y | Y | 9 | L | H | B |
McCarty 2009 [60] | Y | Y | Y | Y | NA | U | U | U | Y | Y | Y | 7 | M | M | B |
Mellor 2014 [61] | Y | Y | U | U | NA | U | U | U | Y | Y | Y | 5 | M | M | B |
Newton 2016 [62] | Y | Y | U | U | NA | U | U | U | Y | Y | Y | 5 | M | M | B |
Okpala 2018 [63] | Y | U | U | U | NA | U | U | U | U | Y | N | 2 | H | L | IR |
Orosz 2022 [64] | Y | Y | Y | NA | NA | U | U | U | NA | Y | Y | 5 | M | M | IR |
Pearson 2011 [65] | Y | Y | Y | Y | NA | Y | Y | Y | U | Y | Y | 9 | L | H | B |
Pinel-Giroux 2006 [66] | Y | Y | U | U | NA | U | U | U | Y | Y | Y | 5 | M | M | B |
Plaugher 1990 [67] | Y | Y | Y | Y | NA | Y | N | U | U | Y | Y | 7 | M | M | B |
Polly 1996 [68] | Y | Y | Y | Y | NA | Y | Y | Y | Y | Y | Y | 10 | L | H | B |
Rastegar 2018 [69] | Y | Y | U | Y | U | U | U | Y | Y | Y | Y | 7 | M | M | B |
Rehm 2017 [70] | Y | U | U | U | NA | U | U | U | U | Y | Y | 3 | H | L | IR |
Ruhinda 2014 [71] | Y | Y | U | U | NA | U | U | U | U | N | N | 2 | H | L | B |
Russell 2020 [72] | Y | Y | Y | U | NA | U | U | U | U | Y | Y | 5 | M | M | B |
Segundo 2016 [73] | Y | Y | Y | U | NA | U | U | U | U | Y | Y | 5 | M | M | IR |
Severijns 2020 [74] | Y | Y | Y | U | NA | U | U | U | Y | Y | Y | 6 | M | M | B |
Suzuki 2010 [75] | Y | Y | U | U | U | U | U | U | Y | Y | Y | 5 | M | M | B |
Suzuki 2020 [76] | Y | Y | U | U | U | U | U | U | Y | Y | Y | 5 | M | M | B |
Taghipour-Darzi 2009 [77] | Y | Y | NA | U | U | U | U | U | Y | Y | Y | 5 | M | M | IA |
Takahashi 2021 [78] | Y | Y | Y | Y | U | U | U | Y | Y | Y | Y | 8 | L | H | B |
Tallroth 1994 [79] | Y | Y | Y | Y | U | U | U | Y | Y | Y | Y | 8 | L | H | B |
Teyhen 2005 [80] | Y | Y | U | U | U | U | U | Y | Y | Y | Y | 6 | M | M | IA |
Timon 2005 [81] | Y | Y | U | Y | U | U | U | Y | Y | Y | Y | 7 | M | M | B |
Troyanovich 1995 [82] | Y | Y | Y | Y | U | U | U | Y | Y | Y | Y | 8 | L | H | B |
Troyanovich 1998 [83] | Y | Y | Y | Y | U | U | U | Y | Y | Y | Y | 8 | L | H | B |
Wang 2010 [84] | Y | Y | U | U | U | U | U | U | Y | Y | Y | 5 | M | M | B |
Wanke-Jellinek 2019 [85] | Y | Y | U | NA | U | U | U | U | NA | Y | Y | 4 | H | L | IR |
Wong 2019 [86] | Y | Y | U | U | U | U | U | U | U | Y | Y | 4 | H | L | IA |
Wu 2014 [87] | Y | Y | Y | Y | U | U | U | Y | Y | Y | Y | 8 | L | H | IA |
Wu 2021 [88] | Y | Y | U | U | U | U | U | U | U | Y | Y | 4 | H | L | B |
Zhang 2022 [89] | Y | U | NA | U | NA | U | U | U | U | Y | Y | 3 | H | L | IA |
Zhou 2021 [90] | Y | Y | NA | U | U | U | U | U | U | Y | Y | 4 | H | L | IA |
Zhou 2022 [91] | Y | Y | Y | U | U | U | U | N | Y | Y | Y | 6 | M | M | B |
Zhu 2015 [92] | Y | Y | Y | U | U | U | U | U | Y | Y | Y | 6 | M | M | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betz, J.W.; Lightstone, D.F.; Oakley, P.A.; Haas, J.W.; Moustafa, I.M.; Harrison, D.E. Reliability of the Biomechanical Assessment of the Sagittal Lumbar Spine and Pelvis on Radiographs Used in Clinical Practice: A Systematic Review of the Literature. J. Clin. Med. 2024, 13, 4650. https://doi.org/10.3390/jcm13164650
Betz JW, Lightstone DF, Oakley PA, Haas JW, Moustafa IM, Harrison DE. Reliability of the Biomechanical Assessment of the Sagittal Lumbar Spine and Pelvis on Radiographs Used in Clinical Practice: A Systematic Review of the Literature. Journal of Clinical Medicine. 2024; 13(16):4650. https://doi.org/10.3390/jcm13164650
Chicago/Turabian StyleBetz, Joseph W., Douglas F. Lightstone, Paul A. Oakley, Jason W. Haas, Ibrahim M. Moustafa, and Deed E. Harrison. 2024. "Reliability of the Biomechanical Assessment of the Sagittal Lumbar Spine and Pelvis on Radiographs Used in Clinical Practice: A Systematic Review of the Literature" Journal of Clinical Medicine 13, no. 16: 4650. https://doi.org/10.3390/jcm13164650
APA StyleBetz, J. W., Lightstone, D. F., Oakley, P. A., Haas, J. W., Moustafa, I. M., & Harrison, D. E. (2024). Reliability of the Biomechanical Assessment of the Sagittal Lumbar Spine and Pelvis on Radiographs Used in Clinical Practice: A Systematic Review of the Literature. Journal of Clinical Medicine, 13(16), 4650. https://doi.org/10.3390/jcm13164650