Poor Sperm Chromatin Condensation Is Associated with Cryopreservation-Induced DNA Fragmentation and Cell Death in Human Spermatozoa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment, Inclusion, and Sample Collection
2.2. Semen Analysis and Cryopreservation
2.3. Sperm Chromatin Condensation (Aniline Blue-Eosin Staining)
2.4. Sperm DNA Fragmentation (TUNEL)
2.5. Sperm Apoptosis/Necrosis (Annexin V Assay)
2.6. Statistical Analysis
3. Results
3.1. Correlation between the Proportion of AB-Positive Sperm and Conventional Semen Parameters
3.2. Association between the Proportion of AB-Positive Sperm and Progressively Motile Sperm in Pre-Freeze vs. Post-Thaw Samples
3.3. Association between the Proportion of AB-Positive Sperm and Measures of DNA Fragmentation and Cell Death in Pre-Freeze vs. Post-Thaw Samples
3.4. Correlation between the Proportion of AB-Positive Sperm in the Neat Ejaculate and the Percentage Point Change in Measures of DNA Fragmentation and Cell Death following the Freeze–Thaw Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamburrino, L.; Traini, G.; Marcellini, A.; Vignozzi, L.; Baldi, E.; Marchiani, S. Cryopreservation of Human Spermatozoa: Functional, Molecular and Clinical Aspects. Int. J. Mol. Sci. 2023, 24, 4656. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Li, Q.Y.; Li, H.; Wang, H.Y.; Fan, C.X.; Dong, Q.Y.; Pan, B.C.; Ji, Z.L.; Li, J.Y. ROS-Induced Oxidative Stress Is a Major Contributor to Sperm Cryoinjury. Hum. Reprod. 2024, 39, 310–325. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.; Nguyen, T.T.T.; Nguyen, T.T.; Van Nguyen, T.; Nguyen, T.A.T.; Nguyen, Q.H.V.; Cao, T.N. Does Conventional Freezing Affect Sperm DNA Fragmentation? Clin. Exp. Reprod. Med. 2019, 46, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Cankut, S.; Dinc, T.; Cincik, M.; Ozturk, G.; Selam, B. Evaluation of Sperm DNA Fragmentation via Halosperm Technique and TUNEL Assay Before and After Cryopreservation. Reprod. Sci. 2019, 26, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Amor, H.; Zeyad, A.; Alkhaled, Y.; Laqqan, M.; Saad, A.; Ben Ali, H.; Hammadeh, M.E. Relationship between Nuclear DNA Fragmentation, Mitochondrial DNA Damage and Standard Sperm Parameters in Spermatozoa of Fertile and Sub-Fertile Men before and after Freeze-Thawing Procedure. Andrologia 2018, 50, e12998. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, S.; Demiroğlu-Zergeroğlu, A.; Yılmaz, E.; Kutlu, P.; Keskin, İ. Effects of Human Sperm Cryopreservation on Apoptotic Markers in Normozoospermic and Non-Normozoospermic Patients. Zygote 2018, 26, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Darsini, N.; Hamidah, B.; Suyono, S.S.; Ashari, F.Y.; Haryanto Aswin, R.; Yudiwati, R. Human Sperm Motility, Viability, and Morphology Decrease After Cryopreservation. Folia Medica Indones. 2019, 55, 198–201. [Google Scholar] [CrossRef]
- Raad, G.; Lteif, L.; Lahoud, R.; Azoury, J.; Azoury, J.; Tanios, J.; Hazzouri, M.; Azoury, J. Cryopreservation Media Differentially Affect Sperm Motility, Morphology and DNA Integrity. Andrology 2018, 6, 836–845. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Singh, R.; Palani, A. Sperm DNA Fragmentation in Reproductive Medicine: A Review. J. Hum. Reprod. Sci. 2022, 15, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, L.; Jiang, H.; Chen, H.; Chen, Y.; Dai, Y. Sperm DNA Fragmentation Index and Pregnancy Outcome after IVF or ICSI: A Meta-Analysis. J. Assist. Reprod. Genet. 2015, 32, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhao, J.Y.; Xue, X.; Zhu, G.X. The Association between Sperm DNA Fragmentation and Reproductive Outcomes Following Intrauterine Insemination, a Meta Analysis. Reprod. Toxicol. 2019, 86, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Proutski, I.; Stevenson, M.; Jennings, D.; McManus, J.; Lutton, D.; Lewis, S.E.M. Sperm DNA Damage Has a Negative Association with Live-Birth Rates after IVF. Reprod. Biomed. Online 2013, 26, 68–78. [Google Scholar] [CrossRef]
- Osman, A.; Alsomait, H.; Seshadri, S.; El-Toukhy, T.; Khalaf, Y. The Effect of Sperm DNA Fragmentation on Live Birth Rate after IVF or ICSI: A Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2015, 30, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Chen, F.; Zhang, S.; She, H.; Ju, Y.; Wen, X.; Yang, C.; Sun, Y.; Dong, N.; Xue, T.; et al. Influence of Sperm DNA Fragmentation on the Clinical Outcome of in Vitro Fertilization-Embryo Transfer (IVF-ET). Front. Endocrinol. 2022, 13, 945242. [Google Scholar] [CrossRef] [PubMed]
- Siddhartha, N.; Reddy, N.; Pandurangi, M.; Muthusamy, T.; Vembu, R.; Kasinathan, K. The Effect of Sperm DNA Fragmentation Index on the Outcome of Intrauterine Insemination and Intracytoplasmic Sperm Injection. J. Hum. Reprod. Sci. 2019, 12, 189. [Google Scholar] [CrossRef]
- Jin, J.; Pan, C.; Fei, Q.; Ni, W.; Yang, X.; Zhang, L.; Huang, X. Effect of Sperm DNA Fragmentation on the Clinical Outcomes for in Vitro Fertilization and Intracytoplasmic Sperm Injection in Women with Different Ovarian Reserves. Fertil. Steril. 2015, 103, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.P.A.F.; Setti, A.; Morishima, C.; Provenza, R.R.; Iaconelli, A.; Borges, E. The Effect of Sperm DNA Fragmentation on ICSI Outcomes Depending on Oocyte Quality. Andrology 2023, 11, 1682–1693. [Google Scholar] [CrossRef] [PubMed]
- Borges, E.; Zanetti, B.F.; Setti, A.S.; Braga, D.P.d.A.F.; Provenza, R.R.; Iaconelli, A. Sperm DNA Fragmentation Is Correlated with Poor Embryo Development, Lower Implantation Rate, and Higher Miscarriage Rate in Reproductive Cycles of Non–Male Factor Infertility. Fertil. Steril. 2019, 112, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Murphy, K.; Shamsi, M.B.; Liu, L.; Emery, B.; Aston, K.I.; Hotaling, J.; Carrell, D.T. Paternal Influence of Sperm DNA Integrity on Early Embryonic Development. Hum. Reprod. 2014, 29, 2402–2412. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp, S.; van Tol, H.T.A.; Spierings, D.C.J.; Boymans, S.; Guryev, V.; Roelen, B.A.J.; Lansdorp, P.M.; Cuppen, E.; Kuijk, E.W. Sperm DNA Damage Causes Genomic Instability in Early Embryonic Development. Sci. Adv. 2020, 6, eaaz7602. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.-W.; Song, G.; Wang, Q.-L.; Liu, S.-W.; Zhu, X.-L.; Deng, S.-M.; Zhong, A.; Tan, Y.-M.; Tan, Y. Sperm DNA Damage Has a Negative Effect on Early Embryonic Development following In Vitro Fertilization. Asian J. Androl. 2018, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Wdowiak, A.; Bakalczuk, S.; Bakalczuk, G. The Effect of Sperm DNA Fragmentation on the Dynamics of the Embryonic Development in Intracytoplasmatic Sperm Injection. Reprod. Biol. 2015, 15, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Sedó, C.; Bilinski, M.; Lorenzi, D.; Uriondo, H.; Noblía, F.; Longobucco, V.; Lagar, E.V.; Nodar, F. Effect of Sperm DNA Fragmentation on Embryo Development: Clinical and Biological Aspects. JBRA Assist. Reprod. 2017, 21, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Yifu, P.; Lei, Y.; Shaoming, L.; Yujin, G.; Xingwang, Z. Sperm DNA Fragmentation Index with Unexplained Recurrent Spontaneous Abortion: A Systematic Review and Meta-Analysis. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101740. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-B.; Chen, Q.; Fan, W.-M.; Niu, Z.-H.; Xu, B.-F.; Zhang, A.-J. Sperm DNA Fragmentation in Chinese Couples with Unexplained Recurrent Pregnancy Loss. Asian J. Androl. 2020, 22, 296. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Taskin, O.; Albert, A.; Bedaiwy, M.A. Association between Sperm DNA Fragmentation and Idiopathic Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2019, 38, 951–960. [Google Scholar] [CrossRef] [PubMed]
- McQueen, D.B.; Zhang, J.; Robins, J.C. Sperm DNA Fragmentation and Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis. Fertil. Steril. 2019, 112, 54–60.e3. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Bakos, H.W. Should We Be Measuring DNA Damage in Human Spermatozoa? New Light on an Old Question. Hum. Reprod. 2021, 36, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J. DNA Damage in Human Spermatozoa; Important Contributor to Mutagenesis in the Offspring. Transl. Androl. Urol. 2017, 6 (Suppl. 4), S761–S764. [Google Scholar] [CrossRef]
- Newman, H.; Catt, S.; Vining, B.; Vollenhoven, B.; Horta, F. DNA Repair and Response to Sperm DNA Damage in Oocytes and Embryos, and the Potential Consequences in ART: A Systematic Review. Mol. Hum. Reprod. 2021, 28, gaab071. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.; Yelumalai, S.; Jones, C.; Coward, K. Aberrant Protamine Content in Sperm and Consequential Implications for Infertility Treatment. Hum. Fertil. 2014, 17, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Oliva, R. Protamines and Male Infertility. Hum. Reprod. Update 2006, 12, 417–435. [Google Scholar] [CrossRef] [PubMed]
- Drevet, J.R.; Aitken, R.J. Oxidation of Sperm Nucleus in Mammals: A Physiological Necessity to Some Extent with Adverse Impacts on Oocyte and Offspring. Antioxidants 2020, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; Nguyen, H.; Wu, H.; Ward, W.S. Functional Aspects of Sperm Chromatin Organization. In Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine; Springer: Berlin/Heidelberg, Germany, 2022; pp. 295–311. [Google Scholar] [CrossRef]
- De Iuliis, G.N.; Thomson, L.K.; Mitchell, L.A.; Finnie, J.M.; Koppers, A.J.; Hedges, A.; Nixon, B.; Aitken, R.J. DNA Damage in Human Spermatozoa Is Highly Correlated with the Efficiency of Chromatin Remodeling and the Formation of 8-Hydroxy-2′-Deoxyguanosine, a Marker of Oxidative Stress. Biol. Reprod. 2009, 81, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J. Not Every Sperm Is Sacred: A Perspective on Male Infertility. MHR Basic Sci. Reprod. Med. 2018, 24, 287–298. [Google Scholar] [CrossRef]
- Aitken, R.J.; Drevet, J.R. The Importance of Oxidative Stress in Determining the Functionality of Mammalian Spermatozoa: A Two-Edged Sword. Antioxidants 2020, 9, 111. [Google Scholar] [CrossRef]
- Aitken, R.J.; De Iuliis, G.N.; Mclachlan, R.I. Biological and Clinical Significance of DNA Damage in the Male Germ Line. Int. J. Androl. 2009, 32, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; De Iuliis, G.N. On the Possible Origins of DNA Damage in Human Spermatozoa. Mol. Hum. Reprod. 2010, 16, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.; Baker, M.; Nixon, B. Are Sperm Capacitation and Apoptosis the Opposite Ends of a Continuum Driven by Oxidative Stress? Asian J. Androl. 2015, 17, 633. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Gibb, Z.; Baker, M.A.; Drevet, J.; Gharagozloo, P. Causes and Consequences of Oxidative Stress in Spermatozoa. Reprod. Fertil. Dev. 2016, 28, 1. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; Longobardi, S.; Di Rella, F.; Adiga, S.K.; Talevi, R. Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants 2021, 10, 1025. [Google Scholar] [CrossRef] [PubMed]
- Muratori, M.; Tarozzi, N.; Cambi, M.; Boni, L.; Iorio, A.L.; Passaro, C.; Luppino, B.; Nadalini, M.; Marchiani, S.; Tamburrino, L.; et al. Variation of DNA Fragmentation Levels During Density Gradient Sperm Selection for Assisted Reproduction Techniques. Medicine 2016, 95, e3624. [Google Scholar] [CrossRef] [PubMed]
- Hezavehei, M.; Sharafi, M.; Kouchesfahani, H.M.; Henkel, R.; Agarwal, A.; Esmaeili, V.; Shahverdi, A. Sperm Cryopreservation: A Review on Current Molecular Cryobiology and Advanced Approaches. Reprod. Biomed. Online 2018, 37, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Said, T.M.; Gaglani, A.; Agarwal, A. Implication of Apoptosis in Sperm Cryoinjury. Reprod. Biomed. Online 2010, 21, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Zribi, N.; Feki Chakroun, N.; El Euch, H.; Gargouri, J.; Bahloul, A.; Ammar Keskes, L. Effects of Cryopreservation on Human Sperm Deoxyribonucleic Acid Integrity. Fertil. Steril. 2010, 93, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.-P.; Zhou, W.-M.; Wang, S.-Q.; Wang, W.; Tang, J.-Y.; Xu, Z.; Zhang, Z.-X.; Qin, C.; Wang, Z.-J.; Zhang, W. Multivariate Model for Predicting Semen Cryopreservation Outcomes in a Human Sperm Bank. Asian J. Androl. 2017, 19, 404. [Google Scholar] [CrossRef] [PubMed]
- Palomar Rios, A.; Molina Botella, I. Sperm Parameters That Play a Major Role in the Assessment of Semen Quality after Cryopreservation. J. Assist. Reprod. Genet. 2017, 34, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Marchiani, S.; Degl’Innocenti, S.; Dabizzi, S.; Tamburrino, L.; Fino, M.G.; Traini, G.; Calamai, C.; Maggi, M.; Vignozzi, L.; Baldi, E.; et al. Semen Cryopreservation for Men Banking for Oligozoospermia, Cancers, and Other Conditions: 24 Years’ Experience of an Italian Bank. J. Clin. Med. 2023, 12, 4657. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Lee, C.-T.; Wu, C.-H.; Hsu, C.-S.; Hsu, M.-I. Kruger Strict Morphology and Post-Thaw Progressive Motility in Cryopreserved Human Spermatozoa. Andrologia 2012, 44, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Soto, J.C.; Landeras, J.; Gadea, J. Spermatozoa and Seminal Plasma Fatty Acids as Predictors of Cryopreservation Success. Andrology 2013, 1, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Dearing, C.G.; Lindsay, K.S. Corrected Cholesterol, a Novel Marker for Predicting Semen Post-Thaw Quality: A Pilot Study. Hum. Fertil. 2019, 22, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Nery, S.F.; Vieira, M.A.F.; Dela Cruz, C.; Lobach, V.N.M.; Del Puerto, H.L.; Torres, P.B.; Rocha, A.L.L.; Reis, A.B.; Reis, F.M. Seminal Plasma Concentrations of Anti-Müllerian Hormone and Inhibin B Predict Motile Sperm Recovery from Cryopreserved Semen in Asthenozoospermic Men: A Prospective Cohort Study. Andrology 2014, 2, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, W.; Xu, Y.; Tang, M.; Fang, J.; Sun, H.; Sun, Y.; Gu, M.; Liu, Z.; Zhang, Z.; et al. Proteomic Characteristics of Human Sperm Cryopreservation. Proteomics 2014, 14, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Wang, S.; Han, P.; Jiang, X.; Liu, Z.; Sun, H.; Tang, M.; Wang, W.; Tang, J.; Zhang, W. Aconitate 2 (ACO 2) and Pyruvate Kinase M 2 (PKM 2) Are Good Predictors of Human Sperm Freezability. Int. J. Clin. Exp. Med. 2018, 11, 7995–8002. [Google Scholar]
- Ďuračka, M.; Benko, F.; Tvrdá, E. Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. Int. J. Mol. Sci. 2023, 24, 3379. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Henkel, R.; Agarwal, A. Comparative Analysis of Tests Used to Assess Sperm Chromatin Integrity and DNA Fragmentation. Andrologia 2021, 53, e13718. [Google Scholar] [CrossRef] [PubMed]
- Boitrelle, F.; Albert, M.; Theillac, C.; Ferfouri, F.; Bergere, M.; Vialard, F.; Wainer, R.; Bailly, M.; Selva, J. Cryopreservation of Human Spermatozoa Decreases the Number of Motile Normal Spermatozoa, Induces Nuclear Vacuolization and Chromatin Decondensation. J. Androl. 2012, 33, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, A.; Leo, R.; Liguori, F. Effects of Cryostorage on Human Sperm Chromatin Integrity. Zygote 2013, 21, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Rarani, F.Z.; Golshan-Iranpour, F.; Dashti, G.R. Correlation between Sperm Motility and Sperm Chromatin/DNA Damage before and after Cryopreservation and the Effect of Folic Acid and Nicotinic Acid on Post-Thaw Sperm Quality in Normozoospermic Men. Cell Tissue Bank. 2019, 20, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Najafi, L.; Halvaei, I.; Movahedin, M. Canthaxanthin Protects Human Sperm Parameters during Cryopreservation. Andrologia 2019, 51, e13389. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; World Health Organization: Geneva, Switzerland, 2021; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Drake-Brockman, L.; Boisen, B.; Sanders, K.; Burton, P. Effect of Density Gradient Centrifugation and Processing Time on Human Sperm Apoptosis. J. Reprod. Biotechnol. Fertil. 2018, 7, 38–46. [Google Scholar]
- Nowicka-Bauer, K.; Nixon, B. Molecular Changes Induced by Oxidative Stress That Impair Human Sperm Motility. Antioxidants 2020, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Bronson, R.; Smith, T.B.; De Iuliis, G.N. The Source and Significance of DNA Damage in Human Spermatozoa; a Commentary on Diagnostic Strategies and Straw Man Fallacies. Mol. Hum. Reprod. 2013, 19, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Oumaima, A.; Tesnim, A.; Zohra, H.; Amira, S.; Ines, Z.; Sana, C.; Intissar, G.; Lobna, E.; Ali, J.; Meriem, M. Investigation on the Origin of Sperm Morphological Defects: Oxidative Attacks, Chromatin Immaturity, and DNA Fragmentation. Environ. Sci. Pollut. Res. 2018, 25, 13775–13786. [Google Scholar] [CrossRef] [PubMed]
- Marchiani, S.; Tamburrino, L.; Muratori, M.; Baldi, E. Spermatozoal Chromatin Structure: Role in Sperm Functions and Fertilization. In Genetics of Male Infertility; Springer International Publishing: Cham, Switzerland, 2020; pp. 39–55. [Google Scholar] [CrossRef]
- Gavriliouk, D.; Aitken, R.J. Damage to Sperm DNA Mediated by Reactive Oxygen Species: Its Impact on Human Reproduction and the Health Trajectory of Offspring. In The Male Role in Pregnancy Loss and Embryo Implantation Failure; Springer: Berlin/Heidelberg, Germany, 2015; pp. 23–47. [Google Scholar] [CrossRef]
- Aitken, R.J.; Koppers, A.J. Apoptosis and DNA Damage in Human Spermatozoa. Asian J. Androl. 2011, 13, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Auger, J.; Sermondade, N.; Eustache, F. Semen Quality of 4480 Young Cancer and Systemic Disease Patients: Baseline Data and Clinical Considerations. Basic Clin. Androl. 2016, 26, 3. [Google Scholar] [CrossRef] [PubMed]
- Preface. ESHRE Monogr. 2002, 2002, i. [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine and the Practice Committee of the Society for Reproductive Endocrinology and Infertility. Optimizing Natural Fertility: A Committee Opinion. Fertil. Steril. 2022, 117, 53–63. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Lv, M.; Ge, P.; Liu, Y.; Zhou, D. Vitrification and Conventional Freezing Methods in Sperm Cryopreservation: A Systematic Review and Meta-Analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 233, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Leffler, K.S.; Walters, C.A. A Comparison of Time, Temperature, and Refreezing Variables on Frozen Sperm Motility Recovery. Fertil. Steril. 1996, 65, 272–274. [Google Scholar]
- Calamera, J.C.; Buffone, M.G.; Doncel, G.F.; Brugo-Olmedo, S.; de Vincentiis, S.; Calamera, M.M.; Storey, B.T.; Alvarez, J.G. Effect of Thawing Temperature on the Motility Recovery of Cryopreserved Human Spermatozoa. Fertil. Steril. 2010, 93, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Androni, D.A.; Dodds, S.; Tomlinson, M.; Maalouf, W.E. Is Pre-Freeze Sperm Preparation More Advantageous than Post-Freeze? Reprod. Fertil. 2021, 2, 17–25. [Google Scholar] [CrossRef] [PubMed]
Median (IQR) | Rs | p | |
---|---|---|---|
Semen volume (mL) | 4.14 (3.06) | 0.165 | 0.247 |
Sperm concentration (million/mL) | 83.17 (62.7) | −0.381 | 0.006 ** |
Total sperm count (million) | 342.78 (272.65) | −0.162 | 0.256 |
Total motility (%) | 65.60 (17.87) | −0.175 | 0.220 |
Progressive motility (%) | 59.48 (16.12) | −0.223 | 0.115 |
Pre-Freeze | Post-Thaw | ||||
---|---|---|---|---|---|
Unadjusted | Adjusted | Unadjusted | Adjusted | ||
DFI (TUNEL+) | Rs = 0.327 p = 0.019 * | Partial Rs = 0.261 p = 0.055 | Rs = 0.492 p < 0.001 *** | Partial Rs = 0.513 p < 0.001 *** | |
N = 51 | N = 45 | ||||
Late apoptosis (Ann+/7-AAD+) | Rs = 0.520 p < 0.001 *** | Partial Rs = 0.531 p < 0.001 *** | Rs = 0.555 p < 0.001 *** | Partial Rs = 0.527 p < 0.001 *** | |
N = 43 | N = 48 | ||||
Necrosis (Ann−/7-AAD+) | Rs = 0.248 p = 0.109 | Partial Rs = 0.212 p = 0.115 | Rs = 0.424 p = 0.003 ** | Partial Rs = 0.493 p = 0.001 ** | |
N = 43 | N = 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallam, J.; Burton, P.; Sanders, K. Poor Sperm Chromatin Condensation Is Associated with Cryopreservation-Induced DNA Fragmentation and Cell Death in Human Spermatozoa. J. Clin. Med. 2024, 13, 4156. https://doi.org/10.3390/jcm13144156
Hallam J, Burton P, Sanders K. Poor Sperm Chromatin Condensation Is Associated with Cryopreservation-Induced DNA Fragmentation and Cell Death in Human Spermatozoa. Journal of Clinical Medicine. 2024; 13(14):4156. https://doi.org/10.3390/jcm13144156
Chicago/Turabian StyleHallam, Jade, Peter Burton, and Katherine Sanders. 2024. "Poor Sperm Chromatin Condensation Is Associated with Cryopreservation-Induced DNA Fragmentation and Cell Death in Human Spermatozoa" Journal of Clinical Medicine 13, no. 14: 4156. https://doi.org/10.3390/jcm13144156
APA StyleHallam, J., Burton, P., & Sanders, K. (2024). Poor Sperm Chromatin Condensation Is Associated with Cryopreservation-Induced DNA Fragmentation and Cell Death in Human Spermatozoa. Journal of Clinical Medicine, 13(14), 4156. https://doi.org/10.3390/jcm13144156