Emerging Evidence in Out-of-Hospital Cardiac Arrest—A Critical Appraisal of the Cardiac Arrest Center
Abstract
:1. Introduction
2. Methods
3. Pre-Hospital Care
4. Coronary Care
5. MCS and eCPR
6. Post-Cardiac Arrest Care
7. Targeted Temperature Management (TTM)
8. Neuroprognostication and Risk Assessment Tools
9. Rehabilitation and Post-Discharge Care
10. Management in CACs
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berdowski, J.; Berg, R.A.; Tijssen, J.G.; Koster, R.W. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010, 81, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Gan, Y.; Jiang, N.; Wang, R.; Chen, Y.; Luo, Z.; Zong, Q.; Chen, S.; Lv, C. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: A systematic review and meta-analysis. Crit. Care 2020, 24, 61. [Google Scholar] [CrossRef] [PubMed]
- Sinning, C.; Ahrens, I.; Cariou, A.; Beygui, F.; Lamhaut, L.; Halvorsen, S.; Nikolaou, N.; Nolan, J.P.; Price, S.; Monsieurs, K.; et al. The cardiac arrest centre for the treatment of sudden cardiac arrest due to presumed cardiac cause—Aims, function and structure: Position paper of the Association for Acute CardioVascular Care of the European Society of Cardiology (AVCV), European Association of Percutaneous Coronary Interventions (EAPCI), European Heart Rhythm Association (EHRA), European Resuscitation Council (ERC), European Society for Emergency Medicine (EUSEM) and European Society of Intensive Care Medicine (ESICM). Eur. Heart J. Acute Cardiovasc. Care 2020, 9, S193–S202. [Google Scholar] [CrossRef] [PubMed]
- Gässler, H.; Helm, M.; Hossfeld, B.; Fischer, M. Survival Following Lay Resuscitation. Dtsch. Arztebl. Int. 2020, 117, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Stiell, I.; Nichol, G.; Wells, G.; De Maio, V.; Nesbitt, L.; Blackburn, J.; Spaite, D. Health-Related Quality of Life Is Better for Cardiac Arrest Survivors Who Received Citizen Cardiopulmonary Resuscitation. Circulation 2003, 108, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Hasselqvist-Ax, I.; Riva, G.; Herlitz, J.; Rosenqvist, M.; Hollenberg, J.; Nordberg, P.; Ringh, M.; Jonsson, M.; Axelsson, C.; Lindqvist, J.; et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N. Engl. J. Med. 2015, 372, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Hassager, C.; Nagao, K.; Hildick-Smith, D. Out-of-hospital cardiac arrest: In-hospital intervention strategies. Lancet 2018, 391, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Baekgaard, J.S.; Viereck, S.; Møller, T.P.; Ersbøll, A.K.; Lippert, F.; Folke, F. The effects of public access defibrillation on survival after out-of-hospital cardiac arrest: A systematic review of observational studies. Circulation 2017, 137, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.; Albert, C.M. Epidemiology and genetics of sudden cardiac death. Circulation 2012, 125, 620–637. [Google Scholar] [CrossRef]
- Dew, R.; Norton, M.; Aitken-Fell, P.; Blance, P.; Miles, S.; Potts, S.; Wilkes, S. Knowledge and barriers of out of hospital cardiac arrest bystander intervention and public access automated external defibrillator use in the Northeast of England: A cross-sectional survey study. Intern. Emerg. Med. 2024, 1–11. [Google Scholar] [CrossRef]
- Berglund, E.; Hollenberg, J.; Jonsson, M.; Svensson, L.; Claesson, A.; Nord, A.; Nordberg, P.; Forsberg, S.; Rosenqvist, M.; Lundgren, P.; et al. Effect of Smartphone Dispatch of Volunteer Responders on Automated External Defibrillators and Out-of-Hospital Cardiac Arrests: The SAMBA Randomized Clinical Trial. JAMA Cardiol. 2023, 8, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Lapidus, O.; Jonsson, M.; Svensson, L.; Hollenberg, J.; Berglund, E.; Riva, G.; Claesson, A.; Nordberg, P.; Rosenqvist, M.; Forsberg, S.; et al. Effects of a volunteer responder system for out-of-hospital cardiac arrest in areas of different population density—A retrospective cohort study. Resuscitation 2023, 191. [Google Scholar] [CrossRef]
- Morin, F.; Douillet, D.; Lamhaut, L.; Fadel, M.; Savary, D. Deployment of “super lay-rescuers” equipped with AED to improve OHCA survival: An innovative partnership between emergency medical service, city hall and a mobile application in France. Resuscitation 2022, 176, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Morin, F.; Douillet, D.; Sokpoh, E.; Lamhaut, L.; Savary, D. One year after implementation of «super lay-rescuers» equipped with AED to improve survival of OHCA. Resuscitation 2024, 197, 110147. [Google Scholar] [CrossRef] [PubMed]
- Schierbeck, S.; Hollenberg, J.; Nord, A.; Svensson, L.; Nordberg, P.; Ringh, M.; Forsberg, S.; Lundgren, P.; Axelsson, C.; Claesson, A. Automated external defibrillators delivered by drones to patients with suspected out-of-hospital cardiac arrest. Eur. Heart J. 2022, 43, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yuan, Q.; Wang, G.; Bian, Y.; Xu, F.; Chen, Y. Drones delivering automated external defibrillators: A new strategy to improve the prognosis of out-of-hospital cardiac arrest. Resuscitation 2022, 182, 109669. [Google Scholar] [CrossRef] [PubMed]
- Schierbeck, S.; Nord, A.; Svensson, L.; Ringh, M.; Nordberg, P.; Hollenberg, J.; Lundgren, P.; Folke, F.; Jonsson, M.; Forsberg, S.; et al. Drone delivery of automated external defibrillators compared with ambulance arrival in real-life suspected out-of-hospital cardiac arrests: A prospective observational study in Sweden. Lancet Digit. Health 2023, 5, e862–e871. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, A.; Klein, L.W.; Hira, R.S.; Mallidi, J.; Mehran, R.; Messenger, J.C.; Pinto, D.S.; Mooney, M.R.; Rab, T.; Yannopoulos, D.; et al. SCAI expert consensus statement on out of hospital cardiac arrest. Catheter. Cardiovasc. Interv. 2020, 96, 844–861. [Google Scholar] [CrossRef]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E.; Chung, M.K.; De Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA guideline for the management of st-elevation myocardial infarction: A report of the American college of cardiology foundation/american heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2013, 61, e78–e140. [Google Scholar] [CrossRef]
- Kern, K.B.; Lotun, K.; Patel, N.; Mooney, M.R.; Hollenbeck, R.D.; McPherson, J.A.; McMullan, P.W.; Unger, B.; Hsu, C.-H.; Seder, D.B.; et al. Outcomes of Comatose Cardiac Arrest Survivors with and without ST-Segment Elevation Myocardial Infarction: Importance of Coronary Angiography. JACC Cardiovasc. Interv. 2015, 8, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Van De Werf, F. The history of coronary reperfusion. Eur. Heart J. 2014, 35, 2510–2515. [Google Scholar] [CrossRef] [PubMed]
- Kashef, M.A.; Kashef, M.A.; Lotfi, A.S.; Lotfi, A.S. Evidence-Based Approach to Out-of-Hospital Cardiac Arrest. Curr. Treat. Options Cardiovasc. Med. 2021, 23, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Meaney, P.A.; Nadkarni, V.M.; Kern, K.B.; Indik, J.H.; Halperin, H.R.; Berg, R.A. Rhythms and outcomes of adult in-hospital cardiac arrest. Crit. Care Med. 2010, 38, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Han, K.S.; Lee, S.W.; Lee, E.J.; Kwak, M.H.; Kim, S.J. Association between shockable rhythm conversion and outcomes in patients with out-of-hospital cardiac arrest and initial non-shockable rhythm, according to the cause of cardiac arrest. Resuscitation 2019, 142, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Shin, H.; Cho, J.H.; Choi, H.Y.; Kim, W.; Kim, J.; Moon, S.; Ahn, C.; Lee, J.; Cho, Y.; et al. Prognostic value of changes in the cardiac arrest rhythms from the prehospital stage to the emergency department in out-of-hospital cardiac arrest patients without prehospital returns of spontaneous circulation: A nationwide observational study. PLoS ONE 2021, 16, e0257883. [Google Scholar] [CrossRef]
- Cournoyer, A.; Cossette, S.; Potter, B.J.; Daoust, R.; de Montigny, L.; Londei-Leduc, L.; Lamarche, Y.; Ross, D.; Morris, J.; Chauny, J.-M.; et al. Prognostic impact of the conversion to a shockable rhythm from a non-shockable rhythm for patients suffering from out-of-hospital cardiac arrest. Resuscitation 2019, 140, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Gaibazzi, N.; Bergamaschi, L.; Pizzi, C.; Tuttolomondo, D. Resting global longitudinal strain and stress echocardiography to detect coronary artery disease burden. Eur. Heart J. Cardiovasc. Imaging 2023, 24, e86–e88. [Google Scholar] [CrossRef]
- Hussein, L.; Rehman, M.A.; Jelic, T.; Berdnikov, A.; Teran, F.; Richards, S.; Askin, N.; Jarman, R. Transoesophageal echocardiography in cardiac arrest: A systematic review. Resuscitation 2021, 168, 167–175. [Google Scholar] [CrossRef]
- Teran, F.; Dean, A.J.; Centeno, C.; Panebianco, N.L.; Zeidan, A.J.; Chan, W.; Abella, B.S. Evaluation of out-of-hospital cardiac arrest using transesophageal echocardiography in the emergency department. Resuscitation 2019, 137, 140–147. [Google Scholar] [CrossRef]
- Lemkes, J.S.; Janssens, G.N.; Van Der Hoeven, N.W.; Jewbali, L.S.D.; Dubois, E.A.; Meuwissen, M.M.; Rijpstra, T.A.; Bosker, H.A.; Blans, M.J.; Bleeker, G.B.; et al. Coronary Angiography After Cardiac Arrest Without ST Segment Elevation: One-Year Outcomes of the COACT Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Desch, S.; Freund, A.; Akin, I.; Behnes, M.; Preusch, M.R.; Zelniker, T.A.; Skurk, C.; Landmesser, U.; Graf, T.; Eitel, I.; et al. Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation. N. Engl. J. Med. 2021, 385, 2544–2553. [Google Scholar] [CrossRef] [PubMed]
- Hauw-Berlemont, C.; Lamhaut, L.; Diehl, J.L.; Andreotti, C.; Varenne, O.; Leroux, P.; Lascarrou, J.-B.; Guerin, P.; Loeb, T.; Roupie, E.; et al. Emergency vs Delayed Coronary Angiogram in Survivors of Out-of-Hospital Cardiac Arrest: Results of the Randomized, Multicentric EMERGE Trial. JAMA Cardiol. 2022, 7, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Desch, S.; Freund, A.; Akin, I.; Behnes, M.; Preusch, M.R.; Zelniker, T.A.; Skurk, C.; Landmesser, U.; Graf, T.; Eitel, I.; et al. Coronary Angiography After Out-of-Hospital Cardiac Arrest Without ST-Segment Elevation: One-Year Outcomes of a Randomized Clinical Trial. JAMA Cardiol. 2023, 8, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, F.; Anwari, E.; Spaulding, C.; Hauw-Berlemont, C.; Vilfaillot, A.; Viana-Tejedor, A.; Kern, K.B.; Hsu, C.-H.; Bergmark, B.A.; Qamar, A.; et al. Early versus delayed coronary angiography in patients with out-of-hospital cardiac arrest and no ST-segment elevation: A systematic review and meta-analysis of randomized controlled trials. Clin. Res. Cardiol. 2023, 113, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.R.; Sharma, V.; Shekhar, S.; Kaur, M.; Khubber, S.; Bansal, A.; Singh, J.; Ahuja, K.R.; Nazir, S.; Chetrit, M.; et al. Coronary Angiography in Patients with Out-of-Hospital Cardiac Arrest Without ST-Segment Elevation A Systematic Review and Meta-Analysis. JACC Cardiovasc. Interv. 2020, 13, 2193–2205. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Goslar, T.; Radsel, P.; De Luca, N.; Esposito, G.; Izzo, R.; Tesorio, T.; Barbato, E.; Noc, M. Coronary features across the spectrum of out-of-hospital cardiac arrest with ST-elevation myocardial infarction (CAD-OHCA study). Resuscitation 2023, 193, 109981. [Google Scholar] [CrossRef]
- Stähli, B.E.; Varbella, F.; Linke, A.; Schwarz, B.; Felix, S.B.; Seiffert, M.; Kesterke, R.; Nordbeck, P.; Witzenbichler, B.; Lang, I.M.; et al. Timing of Complete Revascularization with Multivessel PCI for Myocardial Infarction. N. Engl. J. Med. 2023, 389, 1368–1379. [Google Scholar] [CrossRef]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; De Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef]
- Thiele, H.; Akin, I.; Sandri, M.; De Waha-Thiele, S.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Nordbeck, P.; Geisler, T.; Landmesser, U.; et al. One-Year Outcomes after PCI Strategies in Cardiogenic Shock. N. Engl. J. Med. 2018, 379, 1699–1710. [Google Scholar] [CrossRef]
- Kolte, D.; Sardar, P.; Khera, S.; Zeymer, U.; Thiele, H.; Hochadel, M.; Radovanovic, D.; Erne, P.; Hambraeus, K.; James, S.; et al. Culprit Vessel-Only Versus Multivessel Percutaneous Coronary Intervention in Patients with Cardiogenic Shock Complicating ST-Segment-Elevation Myocardial Infarction: A Collaborative Meta-Analysis. Circ. Cardiovasc. Interv. 2017, 10, e005582. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.; MacLaren, G.; Lorusso, R.; Price, S.; Yannopoulos, D.; Vercaemst, L.; Bělohlávek, J.; Taccone, F.S.; Aissaoui, N.; Shekar, K.; et al. Extracorporeal cardiopulmonary resuscitation in adults: Evidence and implications. Intensiv. Care Med. 2021, 48, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.M.; Schrage, B.; Sinning, C.R.; Schmack, B.; Fluschnik, N.; Schwarzl, M.; Waldeyer, C.; Lindner, D.; Seiffert, M.; Neumann, J.T.; et al. Venoarterial Extracorporeal Membrane Oxygenation for Cardiopulmonary Support. Circulation 2018, 138, 2298–2300. [Google Scholar] [CrossRef] [PubMed]
- Lüsebrink, E.; Kellnar, A.; Krieg, K.; Binzenhöfer, L.; Scherer, C.; Zimmer, S.; Schrage, B.; Fichtner, S.; Petzold, T.; Braun, D.; et al. Percutaneous Transvalvular Microaxial Flow Pump Support in Cardiology. Circulation 2022, 145, 1254–1284. [Google Scholar] [CrossRef] [PubMed]
- Gillon, S.; Zheng, C.; Feng, Z.; Fleig, M.; Scquizzato, T.; Belohlavek, J.; Lorusso, R.; Lone, N.; Swol, J. GEospatial aNalysis of ExtRacorporeal membrane oxygenATion in Europe (GENERATE). Perfusion 2023, 38, 24–39. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Zeymer, U.; Freund, A.; Hochadel, M.; Ostadal, P.; Belohlavek, J.; Rokyta, R.; Massberg, S.; Brunner, S.; Lüsebrink, E.; Flather, M.; et al. Venoarterial extracorporeal membrane oxygenation in patients with infarct-related cardiogenic shock: An individual patient data meta-analysis of randomised trials. Lancet 2023, 402, 1338–1346. [Google Scholar] [CrossRef]
- Becher, P.M.; Goßling, A.; Schrage, B.; Twerenbold, R.; Fluschnik, N.; Seiffert, M.; Bernhardt, A.M.; Reichenspurner, H.; Blankenberg, S.; Westermann, D. Procedural volume and outcomes in patients undergoing VA-ECMO support. Crit. Care 2020, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schrage, B.; Sundermeyer, J.; Blankenberg, S.; Colson, P.; Eckner, D.; Eden, M.; Eitel, I.; Frank, D.; Frey, N.; Graf, T.; et al. Timing of Active Left Ventricular Unloading in Patients on Venoarterial Extracorporeal Membrane Oxygenation Therapy. JACC Heart Fail. 2023, 11, 321–330. [Google Scholar] [CrossRef]
- Kim, M.C.; Lim, Y.; Lee, S.H.; Shin, Y.; Ahn, J.H.; Hyun, D.Y.; Cho, K.H.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; et al. Early left ventricular unloading after extracorporeal membrane oxygenation: Rationale and design of EARLY-UNLOAD trial. ESC Heart Fail. 2023, 10, 2672–2679. [Google Scholar] [CrossRef]
- Study Details | Left Ventricular Unloading to Improve Outcome in Cardiogenic Shock Patients on VA-ECMO | ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05577195 (accessed on 20 April 2024).
- Møller, J.E.; Engstrøm, T.; Jensen, L.O.; Eiskjær, H.; Mangner, N.; Polzin, A.; Schulze, P.C.; Skurk, C.; Nordbeck, P.; Clemmensen, P.; et al. Microaxial Flow Pump or Standard Care in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2024, 390, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Hutin, A.; Abu-Habsa, M.; Burns, B.; Bernard, S.; Bellezzo, J.; Shinar, Z.; Torres, E.C.; Gueugniaud, P.-Y.; Carli, P.; Lamhaut, L. Early ECPR for out-of-hospital cardiac arrest: Best practice in 2018. Resuscitation 2018, 130, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Lin, J.-W.; Yu, H.-Y.; Ko, W.-J.; Jerng, J.-S.; Chang, W.-T.; Chen, W.-J.; Huang, S.-C.; Chi, N.-H.; Wang, C.-H.; et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: An observational study and propensity analysis. Lancet 2008, 372, 554–561. [Google Scholar] [CrossRef]
- Wengenmayer, T.; Rombach, S.; Ramshorn, F.; Biever, P.; Bode, C.; Duerschmied, D.; Staudacher, D.L. Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR). Crit. Care 2017, 21, 1–6. [Google Scholar] [CrossRef]
- Suverein, M.M.; Delnoij, T.S.; Lorusso, R.; Bruinsma, G.J.B.B.; Otterspoor, L.; Kraemer, C.V.E.; Vlaar, A.P.; van der Heijden, J.J.; Scholten, E.; Uil, C.D.; et al. Early Extracorporeal CPR for Refractory Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2023, 388, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Belohlavek, J.; Smalcova, J.; Rob, D.; Franek, O.; Smid, O.; Pokorna, M.; Horák, J.; Mrazek, V.; Kovarnik, T.; Zemanek, D.; et al. Effect of Intra-arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA 2022, 327, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.; Dahiya, G.; Mutirangura, P.; Ergando, T.; Mello, G.; Singh, R.; Bentho, O.; Elliott, A.M. Post Cardiac Arrest Care in the Cardiac Intensive Care Unit. Curr. Cardiol. Rep. 2024, 26, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.P.; Sandroni, C.; Böttiger, B.W.; Cariou, A.; Cronberg, T.; Friberg, H.; Genbrugge, C.; Haywood, K.; Lilja, G.; Moulaert, V.R.M.; et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: Post-resuscitation care. Intensive Care Med. 2021, 47, 369. [Google Scholar] [CrossRef]
- Hirsch, K.G.; Abella, B.S.; Amorim, E.; Bader, M.K.; Barletta, J.F.; Berg, K.; Callaway, C.W.; Friberg, H.; Gilmore, E.J.; Greer, D.M.; et al. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society. Circulation 2024, 149, e168. [Google Scholar] [CrossRef]
- Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002, 346, 549–556. [Google Scholar] [CrossRef]
- Bernard, S.A.; Gray, T.W.; Buist, M.D.; Jones, B.M.; Silvester, W.; Gutteridge, G.; Smith, K. Treatment of Comatose Survivors of Out-of-Hospital Cardiac Arrest with Induced Hypothermia. N. Engl. J. Med. 2002, 346, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Peberdy, M.A.; Callaway, C.W.; Neumar, R.W.; Geocadin, R.G.; Zimmerman, J.L.; Donnino, M.; Gabrielli, A.; Silvers, S.M.; Zaritsky, A.L.; Merchant, R.; et al. Part 9: Post–Cardiac Arrest Care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122 (Suppl. S3), S768–S786. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.; Wetterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. Targeted Temperature Management at 33 °C versus 36 °C after Cardiac Arrest. N. Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Dankiewicz, J.; Cronberg, T.; Lilja, G.; Jakobsen, J.C.; Levin, H.; Ullén, S.; Rylander, C.; Wise, M.P.; Oddo, M.; Cariou, A.; et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2021, 384, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Granfeldt, A.; Holmberg, M.J.; Nolan, J.P.; Soar, J.; Andersen, L.W. Targeted temperature management in adult cardiac arrest: Systematic review and meta-analysis. Resuscitation 2021, 167, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Holgersson, J.; Meyer, M.A.S.; Dankiewicz, J.; Lilja, G.; Ullén, S.; Hassager, C.; Cronberg, T.; Wise, M.P.; Bělohlávek, J.; Hovdenes, J.; et al. Hypothermic versus Normothermic Temperature Control after Cardiac Arrest. NEJM Evid. 2022, 1, EVIDoa2200137. [Google Scholar] [CrossRef] [PubMed]
- Callaway, C.W.; Donnino, M.W.; Fink, E.L.; Geocadin, R.G.; Golan, E.; Kern, K.B.; Leary, M.; Meurer, W.J.; Peberdy, M.A.; Thompson, T.M.; et al. Part 8: Post–Cardiac Arrest Care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015, 132 (Suppl. S2), S465–S482. [Google Scholar] [CrossRef] [PubMed]
- Perman, S.M.; Bartos, J.A.; Marina, F.; Rios, D.; Donnino, M.W.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Maciel, C.B.; Menon, V.; et al. Temperature Management for Comatose Adult Survivors of Cardiac Arrest: A Science Advisory From the American Heart Association. Circulation 2023, 148, 982–988. [Google Scholar] [CrossRef]
- Sandroni, C.; Nolan, J.P.; Andersen, L.W.; Böttiger, B.W.; Cariou, A.; Cronberg, T.; Friberg, H.; Genbrugge, C.; Lilja, G.; Morley, P.T.; et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Intensive Care Med. 2022, 48, 261–269. [Google Scholar] [CrossRef]
- Rajajee, V.; Muehlschlegel, S.; Wartenberg, K.E.; Alexander, S.A.; Busl, K.M.; Chou, S.H.Y.; Creutzfeldt, C.J.; Fontaine, G.V.; Fried, H.; Hocker, S.E.; et al. Guidelines for Neuroprognostication in Comatose Adult Survivors of Cardiac Arrest. Neurocriti. Care 2023, 38, 533–563. [Google Scholar] [CrossRef]
- Dragancea, I.; Wise, M.P.; Al-Subaie, N.; Cranshaw, J.; Friberg, H.; Glover, G.; Pellis, T.; Rylance, R.; Walden, A.; Nielsen, N.; et al. Protocol-driven neurological prognostication and withdrawal of life-sustaining therapy after cardiac arrest and targeted temperature management. Resuscitation 2017, 117, 50–57. [Google Scholar] [CrossRef]
- Maupain, C.; Bougouin, W.; Lamhaut, L.; Deye, N.; Diehl, J.-L.; Geri, G.; Perier, M.-C.; Beganton, F.; Marijon, E.; Jouven, X.; et al. The CAHP (Cardiac Arrest Hospital Prognosis) score: A tool for risk stratification after out-of-hospital cardiac arrest. Eur. Heart J. 2016, 37, 3222–3228. [Google Scholar] [CrossRef]
- Adrie, C.; Cariou, A.; Mourvillier, B.; Laurent, I.; Dabbane, H.; Hantala, F.; Rhaoui, A.; Thuong, M.; Monchi, M. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: The OHCA score. Eur. Heart J. 2006, 27, 2840–2845. [Google Scholar] [CrossRef]
- Martinell, L.; Nielsen, N.; Herlitz, J.; Karlsson, T.; Horn, J.; Wise, M.P.; Undén, J.; Rylander, C. Early predictors of poor outcome after out-of-hospital cardiac arrest. Crit. Care 2017, 21, 96. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, N.; Cheese, F.; Leadbetter, Z.; Joshi, N.V.; Mariathas, M.; Felekos, I.; Biswas, S.; Dalton, G.; Dastidar, A.; Aziz, S.; et al. Validation of the MIRACLE2 Score for Prognostication After Out-of-hospital Cardiac Arrest. Interv. Cardiol. Rev. 2023, 18, e29. [Google Scholar] [CrossRef] [PubMed]
- Pareek, N.; Kordis, P.; Beckley-Hoelscher, N.; Pimenta, D.; Kocjancic, S.T.; Jazbec, A.; Nevett, J.; Fothergill, R.; Kalra, S.; Lockie, T.; et al. A practical risk score for early prediction of neurological outcome after out-of-hospital cardiac arrest: MIRACLE2. Eur. Heart J. 2020, 41, 4508–4517. [Google Scholar] [CrossRef]
- Schmidbauer, S.; Rylander, C.; Cariou, A.; Wise, M.P.; Thomas, M.; Keeble, T.R.; Erlinge, D.; Haenggi, M.; Wendel-Garcia, P.D.; Bělohlávek, J.; et al. Comparison of four clinical risk scores in comatose patients after out-of-hospital cardiac arrest. Resuscitation 2023, 191, 109949. [Google Scholar] [CrossRef] [PubMed]
- Pek, P.P.; Fan, K.C.; Ong, M.E.H.; Luo, N.; Østbye, T.; Lim, S.L.; Ho, A.F. Determinants of health-related quality of life after out-of-hospital cardiac arrest (OHCA): A systematic review. Resuscitation 2023, 188, 109794. [Google Scholar] [CrossRef]
- Yeo, J.W.; Ng, Z.H.C.; Goh, A.X.C.; Gao, J.F.; Liu, N.; Lam, S.W.S.; Chia, Y.W.; Perkins, G.D.; Ong, M.E.H.; Ho, A.F.W.; et al. Impact of Cardiac Arrest Centers on the Survival of Patients with Nontraumatic Out-of-Hospital Cardiac Arrest: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e023806. [Google Scholar] [CrossRef]
- Xin Chun Goh, A.; Cong Seow, J.; Yong Hao Lai, M.; Liu, N.; Man Goh, Y.; Eng Hock Ong, M.; Lim, S.L.; Ho, J.S.Y.; Yeo, J.W.; Ho, A.F.W.; et al. Association of High-Volume Centers with Survival Outcomes Among Patients with Nontraumatic Out-of-Hospital Cardiac Arrest A Systematic Review and Meta-Analysis + Supplemental content. JAMA Netw. Open 2022, 5, 2214639. [Google Scholar]
- Schober, A.; Sterz, F.; Laggner, A.N.; Poppe, M.; Sulzgruber, P.; Lobmeyr, E.; Datler, P.; Keferböck, M.; Zeiner, S.; Nuernberger, A.; et al. Admission of out-of-hospital cardiac arrest victims to a high volume cardiac arrest center is linked to improved outcome. Resuscitation 2016, 106, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.Y.; Tsai, S.L.; Tsai, L.H.; Chen, C.B.; Seak, C.J.; Weng, Y.M.; Lin, C.-C.; Ng, C.-J.; Chien, W.-C.; Huang, C.-H.; et al. Impact of Transport Time and Cardiac Arrest Centers on the Neurological Outcome After Out-of-Hospital Cardiac Arrest: A Retrospective Cohort Study. J. Am. Heart Assoc. 2020, 9, 15544. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.; Ro, Y.S.; Park, J.H.; Ryu, H.H.; Do, S.S. Clinical Medicine Direct Transport to Cardiac Arrest Center and Survival Outcomes after Out-of-Hospital Cardiac Arrest by Urbanization Level. J. Clin. Med. 2022, 2022, 1033. [Google Scholar] [CrossRef]
- von Vopelius-Feldt, J.; Perkins, G.D.; Benger, J. Association between admission to a cardiac arrest centre and survival to hospital discharge for adults following out-of-hospital cardiac arrest: A multi-centre observational study. Resuscitation 2021, 160, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.; Matsuyama, T.; Bray, J.; Reynolds, J.; Skrifvars, M.B. Does care at a cardiac arrest centre improve outcome after out-of-hospital cardiac arrest?—A systematic review. Resuscitation 2019, 137, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Elmer, J.; Rittenberger, J.C.; Coppler, P.J.; Guyette, F.; Doshi, A.A.; Callaway, C.W.; Pittsburgh Post-Cardiac Arrest Service. Long-term survival benefit from treatment at a specialty center after cardiac arrest. Resuscitation 2016, 108, 48–53. [Google Scholar] [CrossRef]
- 88. May, T.L.; Lary, C.W.; Riker, R.R.; Friberg, H.; Patel, N.; Søreide, E.; McPherson, J.A.; Undén, J.; Hand, R.; Sunde, K.; et al. Variability in functional outcome and treatment practices by treatment center after out-of-hospital cardiac arrest: Analysis of International Cardiac Arrest Registry. Intensive Care Med. 2019, 45, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.; Perkins, G.D.; Perkins, A.; Clayton, T.; Evans, R.; Dodd, M.; Robertson, S.; Wilson, K.; Mellett-Smith, A.; Fothergill, R.T.; et al. Expedited transfer to a cardiac arrest centre for non-ST-elevation out-of-hospital cardiac arrest (ARREST): A UK prospective, multicentre, parallel, randomised clinical trial. Lancet 2023, 402, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Greif, R.; Bhanji, F.; Bigham, B.L.; Bray, J.; Breckwoldt, J.; Cheng, A.; Duff, J.P.; Gilfoyle, E.; Hsieh, M.-J.; Iwami, T.; et al. Education, Implementation, and Teams: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 2020, 142, S222–S283. [Google Scholar] [CrossRef]
- Berg, K.M.; Bray, J.E.; Ng, K.C.; Liley, H.G.; Greif, R.; Carlson, J.N.; Morley, P.T.; Drennan, I.R.; Smyth, M.; Scholefield, B.R.; et al. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations: Summary from the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2024, 195, e187–e280. [Google Scholar] [CrossRef]
- Rott, N.; Scholz, K.; Busch, H.; Frey, N.; Kelm, M.; Thiele, H.; Böttiger, B. Cardiac Arrest Center Certification for out-of-hospital cardiac arrest patients successfully established in Germany. Resuscitation 2020, 156, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Voß, F.; Thevathasan, T.; Scholz, K.H.; Böttiger, B.W.; Scheiber, D.; Kabiri, P.; Bernhard, M.; Kienbaum, P.; Jung, C.; Westenfeld, R.; et al. Accredited cardiac arrest centers facilitate eCPR and improve neurological outcome. Resuscitation 2024, 194, 110069. [Google Scholar] [CrossRef]
- Rott, N.; Böttiger, B. Five years of Cardiac Arrest Center (CAC) certification in Germany—A success story. Resuscitation 2024, 196, 110130. [Google Scholar] [CrossRef] [PubMed]
- Rott, N.; Wingen, S.; Müller, D.; Böttiger, B.W. Cardiac arrest centers—Certification fosters inflow of patients by emergency medical services. Med. Klin.-Intensiv. Notfallmedizin 2022, 118, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Grübl, T.; Nauheimer, D.; Wolff, H.; Gehret, G.; Rott, N.; Schmidbauer, W.; Schieffer, B.; Gliwitzky, B. Zertifizierung von Cardiac-Arrest-Zentren. Notf.+ Rettungsmedizin 2022, 26, 23–29. [Google Scholar] [CrossRef]
- Pöss, J.; Sinning, C.; Schreiner, I.; Apfelbacher, C.; Drewitz, K.-P.; Hösler, N.; Schneider, S.; Pieske, B.; Böttiger, B.W.; Ewen, S.; et al. German Cardiac Arrest Registry: Rationale and design of G-CAR. Clin. Res. Cardiol. 2022, 112, 455–463. [Google Scholar] [CrossRef]
Authors | Type of Evidence | Total n° of Patients n | N° of Patients Treated in CAC vs. Non-CAC | Primary Endpoints/ Outcome Measures | % of Coronary Angiographies | Key Outcomes Regarding CACs |
---|---|---|---|---|---|---|
Patterson et al., 2023 [89] | Randomized controlled trial | 862 | CAC: 431 (50%) vs. Non-CAC: 431 (50%), 411 vs. 412 included in analysis | All-cause mortality at 30 days | CAC: 231 of 412 (56%), non-CAC: 153 of 410 (37%) | No significant difference, p = 0.96 (95% CI 0.9–1.11) |
Yeo et al., 2022 [80] | Systematic review/ meta-analysis | 147.943 (36 studies) | n.a. | (a) Survival to hospital discharge or 30 days (b) Survival to hospital discharge or 30 days with favorable neurological outcome | n.a. | (a) CAC favorable, adjusted OR 1.92 (95% CI 1.59–2.32) (b) CAC favorable, adjusted OR 1.85 (95% CI 1.52–2.26) |
Xin Chun Goh et al., 2022 [81] | Systematic review/ meta-analysis | 82.769 (16 studies) | n.a. | (a) Survival to hospital discharge or 30 days (b) Neurological outcomes at hospital discharge or 30 days | n.a. | (a) CAC favorable, adjusted OR 1.28 (95% CI 1.00–1.64) (b) No significant difference, adjusted OR 0.96 (95% CI 0.77–1.20) |
Jung et al., 2022 [84] | Observational | 95.931 | CAC: 23.292 (24.3%) vs. Non-CAC: 72.639 (75.7%) | (a) Survival to hospital discharge (b) Good neurologic recovery | n.a. | (a) CAC favorable, adjusted OR 1.70 (1.60–1.80) (b) CAC favorable, adjusted OR 1.75 (1.63–1.89) |
Vopelius-Feldt et al., 2021 [85] | Observational | 10.650 (4.368 after propensity score matching) | 24/7 PPCI center: 5.375 (50.5%) vs. Other hospitals: 5.275 (49.5%) High volume center: 5.216 (49.0%) vs. Other hospitals: 5.434 (51.0%) | Survival to hospital discharge | n.a. | 24/7 PPCI centers favorable, adjusted OR 1.69 (95% CI 1.28 to 2.23) High volume centers favorable, adjusted OR 1.41 (95% CI 1.14 to 1.75) |
Chien et al., 2020 [83] | Observational | 6.655 (5.156 after propensity score matching) | CAC: 4.039 (60.7%) vs. Non-CAC: 2.616 (39.3%) | (a) (Association of transport time with) survival to hospital discharge (b) (Association of transport time with) good neurological outcome at discharge | n.a. | (a) CAC favorable in shockable rhythms, adjusted OR 2.20 (95% CI 1.29–3.75) for transport time < 8 min and adjusted OR 1.92 (95% CI 1.25–2.94) for transport time ≥ 8 min (b) CAC favorable in shockable rhythms, adjusted OR 2.7 (95% CI 1.4–5.22) for transport time < 8 min and adjusted OR 1.92 (95% CI 1.25–2.94) for transport time ≥ 8 min |
May et al., 2019 [88] | Observational | 3.855 | High-performing centers: 873 vs. Low-performing centers: 1.311 | CPC (Cerebral Performance Category) score at hospital discharge | Unconscious catheterization: High-performing centers 451 (53%) vs. Low-performing centers: 411 (32%) | Center specific risk standardized rates for good functional outcome range from 0.47 (0.37–0.58) to 0.2 (0.12–0.26) |
Yeung et al., 2019 [86] | Systematic review/meta-analysis | Endpoint (a): 46.164 Endpoint (b): 30.080 (17 studies) | (a) CAC: 18.449 vs. Other hospitals: 27.507 (b) CAC: 3.086 vs. Other hospitals: 587 | (a) Survival to 30 days with favorable neurological outcome (b) Survival to hospital discharge with favorable neurological outcome | n.a. | (a) No significant difference (OR 2.92, 95% CI 0.68–12.48) (b) CACs favorable (OR 2.22, 95% CI 1.74–2.84) |
Schober et al., 2016 [82] | Observational | 2.238 | High-volume center (>100 cases/year): 378 vs. Medium- and low-volume centers: 483 | Survival to 30 days with favorable neurological outcome (CPC 1 or 2) | n.a. | High frequency centers favorable (OR 5.2, 95% CI 1.2–21.7, p = 0.025) |
Elmer et al., 2016 [87] | Observational | 987 | High-volume center: 680 vs. Medium- and low-volume centers: 307 | Predictors of long-term survival | High-volume center: 264 of 680 (39%) vs. Medium- and low-volume centers: 115 of 307 (37%) | High-volume center favorable, adjusted HR for treatment in medium- and low-volume centers: 1.58 (95% CI 1.27–1.95), p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memenga, F.; Sinning, C. Emerging Evidence in Out-of-Hospital Cardiac Arrest—A Critical Appraisal of the Cardiac Arrest Center. J. Clin. Med. 2024, 13, 3973. https://doi.org/10.3390/jcm13133973
Memenga F, Sinning C. Emerging Evidence in Out-of-Hospital Cardiac Arrest—A Critical Appraisal of the Cardiac Arrest Center. Journal of Clinical Medicine. 2024; 13(13):3973. https://doi.org/10.3390/jcm13133973
Chicago/Turabian StyleMemenga, Felix, and Christoph Sinning. 2024. "Emerging Evidence in Out-of-Hospital Cardiac Arrest—A Critical Appraisal of the Cardiac Arrest Center" Journal of Clinical Medicine 13, no. 13: 3973. https://doi.org/10.3390/jcm13133973
APA StyleMemenga, F., & Sinning, C. (2024). Emerging Evidence in Out-of-Hospital Cardiac Arrest—A Critical Appraisal of the Cardiac Arrest Center. Journal of Clinical Medicine, 13(13), 3973. https://doi.org/10.3390/jcm13133973