Prediction of Osteoporotic Hip Fracture Outcome: Comparative Accuracy of 27 Immune–Inflammatory–Metabolic Markers and Related Conceptual Issues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Laboratory Measurements
2.4. Outcome Measures
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics and Outcomes
3.2. Association between the IIM Indices at Admission and IHD
3.3. IIM Indices and Postoperative Outcomes (Univariate Analysis)
3.4. Comparison of IIM Indices in Patients with Postoperative Myocardial Injury with and without Pre-Fracture Diagnosed IHD
3.5. Relationships between IIM Indices (Pearson’s Correlation)
3.6. Independent Predictors of Poor Hospital Outcome
3.7. Prognostic Value of On-Admission IIM Characteristics
3.8. Predicting Performance of On-Admission IIM Characteristics for Hospital Outcome
3.9. Internal Validation
3.10. Practical Considerations/Application
3.10.1. IIM Biomarkers in Assessing and Managing Short-Term Outcomes
3.10.2. Role of IIM Biomarkers for Evaluation and Management of Health Status
4. Discussion
4.1. IIM Parameters at Admission as Predictors for Outcomes in HF Patients
4.2. Usefulness of Parameters of IIM Homeostasis for Early Screening, Risk Stratification, Prevention and Optimal Management of Osteoporosis and Fractures
- (1)
- Data on mechanistic link between deregulated IIM homeostasis and OP/OF in the general population and individuals with various chronic diseases: lower BMD/OP is associated with lower haemoglobin levels [322,323], high neutrophils [322,324], low lymphocytes [322,325,326], low platelets [327], macrophage/monocyte dysfunction [18,328,329,330], elevated RDW levels [331,332,333,334,335,336,337,338,339,340,341], NLR and PLR [234,342,343,344,345,346], LMR [234], SII and SIRI [103,347], serum cytokines [348,349,350,351], metabolomic changes, including elevated GGT [22,27,352,353,354], hypoalbuminaemia [355], disbalanced adipokines, vitamin and mineral deficiencies, oxidative stress, and other indices of IIM dysregulation [26,356,357,358,359,360,361,362,363]. In other words, indices of IIM deregulation are associated with increased likelihood of developing OP/OF and, importantly, many of these factors are potentially reversible or modifiable (potential therapeutic targets) and should be routinely assessed and managed; initiating appropriate preventive measures may simultaneously reduce the risks of OP/OF and numerous related chronic diseases.
- (2)
- Many chronic diseases are bi/multi-directionally linked to the development and progression of musculoskeletal loss, falls, and fractures, and they also contribute to outcomes, displaying a vicious cycle between musculoskeletal status and chronic disorders. Indeed, CVD [364,365,366,367,368,369,370,371,372], CKD [373,374,375,376,377], T2DM [378], CLD [379,380,381,382,383,384], neurodegenerative diseases [385,386,387,388,389,390], COPD [391,392,393,394], gut dysbiosis [395,396,397,398,399,400], and cancer [401,402,403], (to name a few) are associated with decreased physical functioning, frailty, OP, injurious falls, and OFs, whereas impaired osteogenesis (i.e., decline of osteoblasts), altered production of osteokynes (i.e.,osteocalcin, osteoprotegerin, osteopontin) and myokines affect all vital functions of the organism, including haemopoiesis in the bone marrow (reduction in both lymphoid and myeloid cells) [322,345], endocrine, liver, renal, muscles, other functions [404,405,406,407,408,409,410,411,412,413,414,415,416], and OP/OFs; alterations in metabolism affect the immune system and vice versa [10,15,20,417,418,419,420,421,422,423,424]. OP/OFs in turn increase the risk of and affect the progression of chronic disease, decrease quality of life and lifespan, accelerate mortality risk, and increase health care costs.
- (3)
- Impaired IIM homeostasis is a common but often overlooked determinant of numerous chronic disorders (commonly asymptomatic in the early stages) which are linked to musculoskeletal deterioration, falls and fractures, accelerated biological ageing (“inflammageing”), declined resilience, and frailty. The risk of the onset and progression of the above-mentioned disorders can be predicted using IIM indices. From a clinical and pathophysiological point of view, particularly useful elements might include haemoglobin (Hb), complete blood cell count [148,157,166,167,170,177,178,179,181,183,188,274,425,426,427], RDW [331,332,334,335,336,338,428,429,430], and indexes of systemic inflammation, such as NLR [330,430,431], PLR [268], LMR [330], SII [282,297,432,433], SIRI [330] (alone or integrated in an inflammatory prognostic scoring system [434]), and hypoalbuminaemia [208,223,435,436,437]; moreover, most abnormal single and combined IIM markers are associated with low vitamin D levels [438], a pluripotent hormone involved in the pathophysiology of OP/OF and multiple chronic diseases [439,440,441].
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franceschi, C.; Capri, M.; Monti, D.; Giunta, S.; Olivieri, F.; Sevini, F.; Panourgia, M.P.; Invidia, L.; Celani, L.; Scurti, M.; et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007, 128, 92–105. [Google Scholar] [CrossRef]
- Kotas, M.E.; Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 2015, 160, 816–827. [Google Scholar] [CrossRef]
- Livshits, G.; Kalinkovich, A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res. Rev. 2019, 56, 100980. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Eyerich, S.; Sarin, T.; Klatt, K.C. Nutrition and the Immune System: A Complicated Tango. Nutrients 2020, 12, 818. [Google Scholar] [CrossRef] [PubMed]
- Sayed, N.; Huang, Y.; Nguyen, K.; Krejciova-Rajaniemi, Z.; Grawe, A.P.; Gao, T.; Tibshirani, R.; Hastie, T.; Alpert, A.; Cui, L.; et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 2021, 1, 598–615. [Google Scholar] [CrossRef] [PubMed]
- Meizlish, M.L.; Franklin, R.A.; Zhou, X.; Medzhitov, R. Tissue Homeostasis and Inflammation. Annu. Rev. Immunol. 2021, 39, 557–581. [Google Scholar] [CrossRef]
- Schmauck-Medina, T.; Moliere, A.; Lautrup, S.; Zhang, J.; Chlopicki, S.; Madsen, H.B.; Cao, S.; Soendenbroe, C.; Mansell, E.; Vestergaard, M.B.; et al. New hallmarks of ageing: A 2022 Copenhagen ageing meeting summary. Aging 2022, 14, 6829–6839. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ortega, E.F.; Meydani, S.N.; Adkins, Y.; Stephensen, C.B.; Thompson, B.; Zwickey, H. Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota. Adv. Nutr. 2022, 13, S1–S26. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Sapra, L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J. Inflamm. Res. 2022, 15, 1667–1698. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Dunbar, C.L.; Aukema, H.M.; Calder, P.C.; Gibson, D.L.; Henrickson, S.E.; Khan, S.; Mailhot, G.; Panahi, S.; Tabung, F.K.; Tom, M.; et al. Nutrition and immunity: Perspectives on key issues and next steps. Appl. Physiol. Nutr. Metab. 2023, 48, 484–497. [Google Scholar] [CrossRef]
- de Baat, A.; Trinh, B.; Ellingsgaard, H.; Donath, M.Y. Physiological role of cytokines in the regulation of mammalian metabolism. Trends Immunol. 2023, 44, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Fantini, C.; Corinaldesi, C.; Lenzi, A.; Migliaccio, S.; Crescioli, C. Vitamin D as a Shield against Aging. Int. J. Mol. Sci. 2023, 24, 4546. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhu, F.; Xu, C.J.; Li, Y. Metabolomics meets systems immunology. EMBO Rep. 2023, 24, e55747. [Google Scholar] [CrossRef] [PubMed]
- Montano, M.; Correa-de-Araujo, R. Maladaptive Immune Activation in Age-Related Decline of Muscle Function. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Larbi, A.; Pawelec, G.; Khalil, A.; Cohen, A.A.; Hirokawa, K.; Witkowski, J.M.; Franceschi, C. Immunology of Aging: The Birth of Inflammaging. Clin. Rev. Allergy Immunol. 2023, 64, 109–122. [Google Scholar] [CrossRef]
- Iantomasi, T.; Romagnoli, C.; Palmini, G.; Donati, S.; Falsetti, I.; Miglietta, F.; Aurilia, C.; Marini, F.; Giusti, F.; Brandi, M.L. Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int. J. Mol. Sci. 2023, 24, 3772. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
- Mogilenko, D.A.; Sergushichev, A.; Artyomov, M.N. Systems Immunology Approaches to Metabolism. Annu. Rev. Immunol. 2023, 41, 317–342. [Google Scholar] [CrossRef]
- Lyu, Z.; Hu, Y.; Guo, Y.; Liu, D. Modulation of bone remodeling by the gut microbiota: A new therapy for osteoporosis. Bone Res. 2023, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Srikusalanukul, W.; Fisher, L.; Smith, P.N. Comparison of Prognostic Value of 10 Biochemical Indices at Admission for Prediction Postoperative Myocardial Injury and Hospital Mortality in Patients with Osteoporotic Hip Fracture. J. Clin. Med. 2022, 11, 6784. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.A.; Southcott, E.K.; Srikusalanukul, W.; Davis, M.W.; Hickman, P.E.; Potter, J.M.; Smith, P.N. Relationships between myocardial injury, all-cause mortality, vitamin D, PTH, and biochemical bone turnover markers in older patients with hip fractures. Ann. Clin. Lab. Sci. 2007, 37, 222–232. [Google Scholar] [PubMed]
- Fisher, A.; Goh, S.; Srikusalanukul, W.; Davis, M. Elevated serum PTH is independently associated with poor outcomes in older patients with hip fracture and vitamin D inadequacy. Calcif. Tissue Int. 2009, 85, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Srikusalanukul, W.; Davis, M.; Smith, P. Hip fracture type: Important role of parathyroid hormone (PTH) response to hypovitaminosis D. Bone 2010, 47, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.A.; Srikusalanukul, W.; Davis, M.W.; Smith, P.N. Clinical profiles and risk factors for outcomes in older patients with cervical and trochanteric hip fracture: Similarities and differences. J. Trauma. Manag. Outcomes 2012, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Fisher, L.; Srikusalanukul, W.; Fisher, A.; Smith, P. Liver function parameters in hip fracture patients: Relations to age, adipokines, comorbidities and outcomes. Int. J. Med. Sci. 2015, 12, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Fisher, L.; Srikusalanukul, W.; Smith, P.N. Usefulness of simple biomarkers at admission as independent indicators and predictors of in-hospital mortality in older hip fracture patients. Injury 2018, 49, 829–840. [Google Scholar] [CrossRef]
- Marom, O.; Paz, I.; Segal, D.; Topaz, G.; Abelson, N.; Tavdi, A.; Behrbalk, R.; Palmanovich, E.; Ohana, N.; Yaacobi, E. Proximal Femur Fractures in the Elderly-A Novel Modality to Predict Mortality: The Neutrophil-to-Lymphocyte Ratio. J. Clin. Med. 2023, 12, 456. [Google Scholar] [CrossRef]
- Kekec, A.F.; Colak, T.S. Is there a predictive value of the preoperative neutrophil-lymphocyte ratio in terms of intensive care need in geriatric patients who underwent pertrochanteric fracture surgery? Ulus. Travma Acil Cerrahi Derg. 2022, 28, 1164–1169. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Ning, Z.; Che, L.; Li, X. The neutrophil-lymphocyte ratio to predict poor prognosis of critical acute myocardial infarction patients: A retrospective cohort study. Biochem. Med. 2023, 33, 010702. [Google Scholar] [CrossRef]
- Larmann, J.; Handke, J.; Scholz, A.S.; Dehne, S.; Arens, C.; Gillmann, H.J.; Uhle, F.; Motsch, J.; Weigand, M.A.; Janssen, H. Preoperative neutrophil to lymphocyte ratio and platelet to lymphocyte ratio are associated with major adverse cardiovascular and cerebrovascular events in coronary heart disease patients undergoing non-cardiac surgery. BMC Cardiovasc. Disord. 2020, 20, 230. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, R.; Yu, R.; Guo, J.; Xu, J.; Yuan, X.; Guo, J. Predictive value of preoperative platelet-to-albumin ratio and apolipoprotein B-to-apolipoprotein A1 ratio for osteosarcoma in children and adolescents: A retrospective study of 118 cases. BMC Cancer 2022, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Wang, Y.L.; Tao, Y.L.; Tong, Q.; Chen, Z.; Dai, S.M. Platelet to albumin ratio is an independent indicator for disease activity in ankylosing spondylitis. Clin. Rheumatol. 2023, 42, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Huo, J.; Chen, G.; Yang, K.; Huang, Z.; Peng, L.; Xu, J.; Jiang, J. Association between red blood cell distribution width to albumin ratio and prognosis of patients with sepsis: A retrospective cohort study. Front. Nutr. 2022, 9, 1019502. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Y.; Shen, N.; Wang, Q.; Chai, L.; Liu, J.; Chen, Y.; Li, M. Association Between Red Blood Cell Distribution Width-Albumin Ratio and Hospital Mortality in Chronic Obstructive Pulmonary Disease Patients Admitted to the Intensive Care Unit: A Retrospective Study. Int. J. Chron. Obstruct Pulmon Dis. 2022, 17, 1797–1809. [Google Scholar] [CrossRef]
- Jian, L.; Zhang, Z.; Zhou, Q.; Duan, X.; Ge, L. Red Cell Distribution Width/Albumin Ratio: A Predictor of In-Hospital All-Cause Mortality in Patients with Acute Myocardial Infarction in the ICU. Int. J. Gen. Med. 2023, 16, 745–756. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y. Association between red blood cell distribution width-to-albumin ratio and prognosis of patients with acute myocardial infarction. BMC Cardiovasc. Disord. 2023, 23, 66. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Sessler, D.; Lalu, M. Myocardial injury after noncardiac surgery. Can. J. Anaesth. 2022, 69, 561–567. [Google Scholar] [CrossRef]
- Linn, S.; Grunau, P.D. New patient-oriented summary measure of net total gain in certainty for dichotomous diagnostic tests. Epidemiol. Perspect. Innov. 2006, 3, 11. [Google Scholar] [CrossRef]
- Larner, A.J. Number Needed to Diagnose, Predict, or Misdiagnose: Useful Metrics for Non-Canonical Signs of Cognitive Status? Dement. Geriatr. Cogn. Dis. Extra 2018, 8, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Peng, B.; Liu, J.; Liu, Z.; Xia, Y.; Geng, B. Systemic immune-inflammation index and bone mineral density in postmenopausal women: A cross-sectional study of the national health and nutrition examination survey (NHANES) 2007–2018. Front. Immunol. 2022, 13, 975400. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.Z.; Rached, F.H.; Miname, M.H. Insights into the Role of Inflammation in the Management of Atherosclerosis. J. Inflamm. Res. 2023, 16, 2223–2239. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.K.; Bilek, L.D.; Waltman, N.L.; Ma, J.; Hebert, J.R.; Price, S.; Graeff-Armas, L.; Poole, J.A.; Mack, L.R.; Hans, D.; et al. Dietary Inflammatory Potential and Bone Outcomes in Midwestern Post-Menopausal Women. Nutrients 2023, 15, 4277. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Stout, M.B.; Justice, J.N.; Nicklas, B.J.; Kirkland, J.L. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology 2017, 32, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Movassagh, E.Z.; Vatanparast, H. Current Evidence on the Association of Dietary Patterns and Bone Health: A Scoping Review. Adv. Nutr. 2017, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, R.; Parrillo, L.; Longo, M.; Florese, P.; Desiderio, A.; Zatterale, F.; Miele, C.; Raciti, G.A.; Beguinot, F. Molecular basis of ageing in chronic metabolic diseases. J. Endocrinol. Investig. 2020, 43, 1373–1389. [Google Scholar] [CrossRef]
- Chauss, D.; Freiwald, T.; McGregor, R.; Yan, B.; Wang, L.; Nova-Lamperti, E.; Kumar, D.; Zhang, Z.; Teague, H.; West, E.E.; et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of T(H)1 cells. Nat. Immunol. 2022, 23, 62–74. [Google Scholar] [CrossRef]
- de Lange, P.; Lombardi, A.; Silvestri, E.; Cioffi, F.; Giacco, A.; Iervolino, S.; Petito, G.; Senese, R.; Lanni, A.; Moreno, M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int. J. Mol. Sci. 2023, 24, 11676. [Google Scholar] [CrossRef] [PubMed]
- Chavakis, T.; Alexaki, V.I.; Ferrante, A.W., Jr. Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat. Immunol. 2023, 24, 757–766. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Kofler, T.; Kurmann, R.; Lehnick, D.; Cioffi, G.M.; Chandran, S.; Attinger-Toller, A.; Toggweiler, S.; Kobza, R.; Moccetti, F.; Cuculi, F.; et al. Colchicine in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis of Randomized Trials. J. Am. Heart Assoc. 2021, 10, e021198. [Google Scholar] [CrossRef] [PubMed]
- Kuzemczak, M.; Ibrahem, A.; Alkhalil, M. Colchicine in Patients with Coronary Artery Disease with or Without Diabetes Mellitus: A Meta-analysis of Randomized Clinical Trials. Clin. Drug Investig. 2021, 41, 667–674. [Google Scholar] [CrossRef]
- Ridker, P.M.; Tuttle, K.R.; Perkovic, V.; Libby, P.; MacFadyen, J.G. Inflammation drives residual risk in chronic kidney disease: A CANTOS substudy. Eur. Heart J. 2022, 43, 4832–4844. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Chen, Y.; Li, M.; Luo, W.; Liu, Y.; Fu, Y.; Xia, H.; Xu, C.; Jiang, Y.; et al. Colchicine may become a new cornerstone therapy for coronary artery disease: A meta-analysis of randomized controlled trials. Clin. Rheumatol. 2022, 41, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Andreis, A.; Imazio, M.; Piroli, F.; Avondo, S.; Casula, M.; Paneva, E.; De Ferrari, G.M. Efficacy and safety of colchicine for the prevention of major cardiovascular and cerebrovascular events in patients with coronary artery disease: A systematic review and meta-analysis on 12 869 patients. Eur. J. Prev. Cardiol. 2022, 28, 1916–1925. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, M.G.; Damonte, J.I.; Trankle, C.R.; Kadariya, D.; Carbone, S.; Thomas, G.; Turlington, J.; Markley, R.; Canada, J.M.; Biondi-Zoccai, G.G.; et al. Effect of interleukin-1 blockade with anakinra on leukocyte count in patients with ST-segment elevation acute myocardial infarction. Sci. Rep. 2022, 12, 1254. [Google Scholar] [CrossRef] [PubMed]
- Hemenway, G.; Frishman, W.H. Therapeutic Implications of NLRP3-Mediated Inflammation in Coronary Artery Disease. Cardiol. Rev. 2022, 30, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.; Bulnes, J.F.; Orellana, M.P.; Munoz Venturelli, P.; Martinez Rodriguez, G. The Role of Colchicine in Atherosclerosis: From Bench to Bedside. Pharmaceutics 2022, 14, 1395. [Google Scholar] [CrossRef]
- Eghtedari, B.; Roy, S.K.; Budoff, M.J. Anti-inflammatory Therapeutics and Coronary Artery Disease. Cardiol. Rev. 2023, 31, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, G.; Loffredo, F.S.; De Rosa, G.; Cirillo, P. Colchicine in Athero-Thrombosis: Molecular Mechanisms and Clinical Evidence. Int. J. Mol. Sci. 2023, 24, 2483. [Google Scholar] [CrossRef]
- Salai, M.; Segal, E.; Cohen, I.; Dudkiewicz, I.; Farzame, N.; Pitaru, S.; Savion, N. The inhibitory effects of colchicine on cell proliferation and mineralisation in culture. J. Bone Jt. Surg. Br. 2001, 83, 912–915. [Google Scholar] [CrossRef]
- Dudkiewicz, I.; Brosh, T.; Perelman, M.; Salai, M. Colchicine inhibits fracture union and reduces bone strength--in vivo study. J. Orthop. Res. 2005, 23, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Schwier, N.C.; Cornelio, C.K.; Boylan, P.M. A systematic review of the drug-drug interaction between statins and colchicine: Patient characteristics, etiologies, and clinical management strategies. Pharmacotherapy 2022, 42, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Hansten, P.D.; Tan, M.S.; Horn, J.R.; Gomez-Lumbreras, A.; Villa-Zapata, L.; Boyce, R.D.; Subbian, V.; Romero, A.; Gephart, S.; Malone, D.C. Colchicine Drug Interaction Errors and Misunderstandings: Recommendations for Improved Evidence-Based Management. Drug Saf. 2023, 46, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lumbreras, A.; Boyce, R.D.; Villa-Zapata, L.; Tan, M.S.; Hansten, P.D.; Horn, J.; Malone, D.C. Drugs That Interact with Colchicine Via Inhibition of Cytochrome P450 3A4 and P-Glycoprotein: A Signal Detection Analysis Using a Database of Spontaneously Reported Adverse Events (FAERS). Ann. Pharmacother. 2023, 57, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Sim, B.L.; Sim, B.Z.; Tunbridge, M.; Liew, D.F.L.; Robinson, P.C. Examining the Characteristics of Colchicine-Induced Myelosuppression in Clinical Cases: A Systematic Review. J. Rheumatol. 2023, 50, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.M.; Manigrasso, M.B.; O’Connor, J.P. Cyclo-oxygenase 2 function is essential for bone fracture healing. J. Bone Miner. Res. 2002, 17, 963–976. [Google Scholar] [CrossRef] [PubMed]
- Vuolteenaho, K.; Moilanen, T.; Moilanen, E. Non-steroidal anti-inflammatory drugs, cyclooxygenase-2 and the bone healing process. Basic. Clin. Pharmacol. Toxicol. 2008, 102, 10–14. [Google Scholar] [CrossRef]
- Dodwell, E.R.; Latorre, J.G.; Parisini, E.; Zwettler, E.; Chandra, D.; Mulpuri, K.; Snyder, B. NSAID exposure and risk of nonunion: A meta-analysis of case-control and cohort studies. Calcif. Tissue Int. 2010, 87, 193–202. [Google Scholar] [CrossRef]
- George, M.D.; Baker, J.F.; Leonard, C.E.; Mehta, S.; Miano, T.A.; Hennessy, S. Risk of Nonunion with Nonselective NSAIDs, COX-2 Inhibitors, and Opioids. J. Bone Jt. Surg. Am. 2020, 102, 1230–1238. [Google Scholar] [CrossRef]
- Tucker, W.A.; Birt, M.C.; Heddings, A.A.; Horton, G.A. The Effect of Postoperative Nonsteroidal Anti-inflammatory Drugs on Nonunion Rates in Long Bone Fractures. Orthopedics 2020, 43, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Al-Waeli, H.; Reboucas, A.P.; Mansour, A.; Morris, M.; Tamimi, F.; Nicolau, B. Non-steroidal anti-inflammatory drugs and bone healing in animal models-a systematic review and meta-analysis. Syst. Rev. 2021, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- White, A.E.; Henry, J.K.; Dziadosz, D. The Effect of Nonsteroidal Anti-inflammatory Drugs and Selective COX-2 Inhibitors on Bone Healing. HSS J. 2021, 17, 231–234. [Google Scholar] [CrossRef]
- Murphy, P.B.; Kasotakis, G.; Haut, E.R.; Miller, A.; Harvey, E.; Hasenboehler, E.; Higgins, T.; Hoegler, J.; Mir, H.; Cantrell, S.; et al. Efficacy and safety of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of acute pain after orthopedic trauma: A practice management guideline from the Eastern Association for the Surgery of Trauma and the Orthopedic Trauma Association. Trauma. Surg. Acute Care Open 2023, 8, e001056. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, A.; Ofner, C.; Saporito, A.; Farshad, M.; Aguirre, J. The effect of nonsteroidal anti-inflammatory drugs on bone healing in humans: A qualitative, systematic review. J. Clin. Anesth. 2018, 49, 92–100. [Google Scholar] [CrossRef]
- Stroud, S.; Katyal, T.; Gornitzky, A.L.; Swarup, I. Effect of non-steroidal anti-inflammatory drugs on fracture healing in children: A systematic review. World J. Orthop. 2022, 13, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Lara, A.; Hutchinson, I.D.; Nunez, F., Jr.; Smith, T.L.; Miller, A.N. Nonsteroidal Anti-Inflammatory Drugs and Bone-Healing: A Systematic Review of Research Quality. JBJS Rev. 2016, 4, e4. [Google Scholar] [CrossRef]
- Al Farii, H.; Farahdel, L.; Frazer, A.; Salimi, A.; Bernstein, M. The effect of NSAIDs on postfracture bone healing: A meta-analysis of randomized controlled trials. OTA Int. 2021, 4, e092. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.H.; Kim, D.M.; Kholinne, E.; Lee, E.S.; Alzahrani, W.M.; Kim, J.W.; Jeon, I.H.; Koh, K.H. Do Nonsteroidal Anti-Inflammatory or COX-2 Inhibitor Drugs Increase the Nonunion or Delayed Union Rates After Fracture Surgery?: A Propensity-Score-Matched Study. J. Bone Jt. Surg. Am. 2021, 103, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. An update on vitamin D and human immunity. Clin. Endocrinol. 2012, 76, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Trochoutsou, A.I.; Kloukina, V.; Samitas, K.; Xanthou, G. Vitamin-D in the Immune System: Genomic and Non-Genomic Actions. Mini Rev. Med. Chem. 2015, 15, 953–963. [Google Scholar] [CrossRef]
- Cantorna, M.T.; Snyder, L.; Lin, Y.D.; Yang, L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 2015, 7, 3011–3021. [Google Scholar] [CrossRef] [PubMed]
- Medrano, M.; Carrillo-Cruz, E.; Montero, I.; Perez-Simon, J.A. Vitamin D: Effect on Haematopoiesis and Immune System and Clinical Applications. Int. J. Mol. Sci. 2018, 19, 2663. [Google Scholar] [CrossRef] [PubMed]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Almaghrbi, H.; Al-Shafai, M.; Al-Asmakh, M.; Bawadi, H. Association of Vitamin D Genetic Risk Score with Noncommunicable Diseases: A Systematic Review. Nutrients 2023, 15, 4040. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Infections and Autoimmunity-The Immune System and Vitamin D: A Systematic Review. Nutrients 2023, 15, 3842. [Google Scholar] [CrossRef] [PubMed]
- Nagaria, T.D.; Shinde, R.K.; Shukla, S.; Acharya, S.; Acharya, N.; Jogdand, S.D. The Sunlight-Vitamin D Connection: Implications for Patient Outcomes in the Surgical Intensive Care Unit. Cureus 2023, 15, e46819. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; He, Q.; Xie, J.; Liu, H.; Zhou, R.; Li, C. Vitamin D supplementation is beneficial in improving the prognosis of patients with acute respiratory failure in the intensive care unit: A retrospective study based on the MIMIC-IV database. Front. Med. 2023, 10, 1271060. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.J.; Li, Y.M.; Hu, S.M.; Zou, Y.G.; An, Y.F.; Wang, L.L.; Shi, Y.Y. Vitamin D supplementation reduced blood inflammatory cytokines expression and improved graft function in kidney transplant recipients. Front. Immunol. 2023, 14, 1152295. [Google Scholar] [CrossRef]
- Fusaro, M.; Cianciolo, G.; Brandi, M.L.; Ferrari, S.; Nickolas, T.L.; Tripepi, G.; Plebani, M.; Zaninotto, M.; Iervasi, G.; La Manna, G.; et al. Vitamin K and Osteoporosis. Nutrients 2020, 12, 3625. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Mereu, M.C.; Aghi, A.; Iervasi, G.; Gallieni, M. Vitamin K and bone. Clin. Cases Miner. Bone Metab. 2017, 14, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Inoue, S. Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. Int. J. Mol. Sci. 2019, 20, 2844. [Google Scholar] [CrossRef]
- Azuma, K.; Osuka, Y.; Kojima, N.; Sasai, H.; Inoue, S. Vitamin K insufficiency predicts incidence of frailty in community-dwelling older adults: The Otassha Study. J. Bone Miner. Metab. 2023, 41, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ma, Y. The Potential of Vitamin K as a Regulatory Factor of Bone Metabolism-A Review. Nutrients 2023, 15, 4935. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Tsatsakis, A.; Rocha, J.B.T.; Santamaria, A.; Spandidos, D.A.; Martins, A.C.; Lu, R.; Korobeinikova, T.V.; Chen, W.; et al. Role of vitamins beyond vitamin D(3) in bone health and osteoporosis (Review). Int. J. Mol. Med. 2024, 53, 9. [Google Scholar] [CrossRef]
- Ruetzler, K.; Smilowitz, N.R.; Berger, J.S.; Devereaux, P.J.; Maron, B.A.; Newby, L.K.; de Jesus Perez, V.; Sessler, D.I.; Wijeysundera, D.N. Diagnosis and Management of Patients with Myocardial Injury After Noncardiac Surgery: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e287–e305. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, Y.; Gao, Y.; Zhang, Z.; Qin, L.; Song, J.; Wang, H.; Wu, I.X. Prediction Models for Osteoporotic Fractures Risk: A Systematic Review and Critical Appraisal. Aging Dis. 2022, 13, 1215–1238. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Z.; Wang, S.; Yi, Q.; Xia, Y.; Geng, B. Development and validation of a novel screening tool for osteoporosis in older US adults: The NHANES cross-sectional study. Endocrine 2022, 76, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Park, S. A Prediction Model for Osteoporosis Risk Using a Machine-Learning Approach and Its Validation in a Large Cohort. J. Korean Med. Sci. 2023, 38, e162. [Google Scholar] [CrossRef] [PubMed]
- Goubar, A.; Martin, F.C.; Sackley, C.; Foster, N.E.; Ayis, S.; Gregson, C.L.; Cameron, I.D.; Walsh, N.E.; Sheehan, K.J. Development and Validation of Multivariable Prediction Models for In-Hospital Death, 30-Day Death, and Change in Residence After Hip Fracture Surgery and the “Stratify-Hip” Algorithm. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1659–1668. [Google Scholar] [CrossRef]
- Nijmeijer, W.S.; Folbert, E.C.; Vermeer, M.; Slaets, J.P.; Hegeman, J.H. Prediction of early mortality following hip fracture surgery in frail elderly: The Almelo Hip Fracture Score (AHFS). Injury 2016, 47, 2138–2143. [Google Scholar] [CrossRef] [PubMed]
- Stanley, C.; Lennon, D.; Moran, C.; Vasireddy, A.; Rowan, F. Risk scoring models for patients with proximal femur fractures: Qualitative systematic review assessing 30-day mortality and ease of use. Injury 2023, 54, 111017. [Google Scholar] [CrossRef] [PubMed]
- Karres, J.; Eerenberg, J.P.; Vrouenraets, B.C.; Kerkhoffs, G. Prediction of long-term mortality following hip fracture surgery: Evaluation of three risk models. Arch. Orthop. Trauma. Surg. 2023, 143, 4125–4132. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Z.; Wu, H.; Liu, B.; Zhao, B. Validation of the Nottingham Hip Fracture Score in Predicting Postoperative Outcomes Following Hip Fracture Surgery. Orthop. Surg. 2023, 15, 1096–1103. [Google Scholar] [CrossRef]
- Oosterhoff, J.H.F.; Karhade, A.V.; Groot, O.Q.; Schwab, J.H.; Heng, M.; Klang, E.; Prat, D. Intercontinental validation of a clinical prediction model for predicting 90-day and 2-year mortality in an Israeli cohort of 2033 patients with a femoral neck fracture aged 65 or above. Eur. J. Trauma Emerg. Surg. 2023, 49, 1545–1553. [Google Scholar] [CrossRef]
- van der Sijp, M.P.L.; Suchiman, H.E.D.; Eijk, M.; Vojinovic, D.; Niggebrugge, A.H.P.; Blauw, G.J.; Achterberg, W.P.; Slagboom, P.E. The Prognostic Value of Metabolic Profiling in Older Patients with a Proximal Femoral Fracture. Geriatr. Orthop. Surg. Rehabil. 2020, 11, 2151459320960091. [Google Scholar] [CrossRef] [PubMed]
- Asrian, G.; Suri, A.; Rajapakse, C. Machine learning-based mortality prediction in hip fracture patients using biomarkers. J. Orthop. Res. 2024, 42, 395–403. [Google Scholar] [CrossRef]
- Xing, F.; Luo, R.; Liu, M.; Zhou, Z.; Xiang, Z.; Duan, X. A New Random Forest Algorithm-Based Prediction Model of Post-operative Mortality in Geriatric Patients with Hip Fractures. Front. Med. 2022, 9, 829977. [Google Scholar] [CrossRef] [PubMed]
- Ohata, E.; Nakatani, E.; Kaneda, H.; Fujimoto, Y.; Tanaka, K.; Takagi, A. Use of the Shizuoka Hip Fracture Prognostic Score (SHiPS) to Predict Long-Term Mortality in Patients with Hip Fracture in Japan: A Cohort Study Using the Shizuoka Kokuho Database. JBMR Plus 2023, 7, e10743. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Tsai, C.F.; Yang, H.Y. Utilizing a nomogram to predict the one-year postoperative mortality risk for geriatric patients with a hip fracture. Sci. Rep. 2023, 13, 11091. [Google Scholar] [CrossRef]
- Lex, J.R.; Di Michele, J.; Koucheki, R.; Pincus, D.; Whyne, C.; Ravi, B. Artificial Intelligence for Hip Fracture Detection and Outcome Prediction: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e233391. [Google Scholar] [CrossRef] [PubMed]
- Uragami, M.; Matsushita, K.; Shibata, Y.; Takata, S.; Karasugi, T.; Sueyoshi, T.; Masuda, T.; Nakamura, T.; Tokunaga, T.; Hisanaga, S.; et al. A machine learning-based scoring system and ten factors associated with hip fracture occurrence in the elderly. Bone 2023, 176, 116865. [Google Scholar] [CrossRef]
- Lei, M.; Han, Z.; Wang, S.; Han, T.; Fang, S.; Lin, F.; Huang, T. A machine learning-based prediction model for in-hospital mortality among critically ill patients with hip fracture: An internal and external validated study. Injury 2023, 54, 636–644. [Google Scholar] [CrossRef]
- Piscitelli, P.; Feola, M.; Rao, C.; Neglia, C.; Rizzo, E.; Vigilanza, A.; Rivezzi, M.; Faccilongo, N.; Conto, F.; Distante, A.; et al. Incidence and costs of hip fractures in elderly Italian population: First regional-based assessment. Arch. Osteoporos. 2019, 14, 81. [Google Scholar] [CrossRef]
- Piscitelli, P.; Neglia, C.; Feola, M.; Rizzo, E.; Argentiero, A.; Ascolese, M.; Rivezzi, M.; Rao, C.; Miani, A.; Distante, A.; et al. Updated incidence and costs of hip fractures in elderly Italian population. Aging Clin. Exp. Res. 2020, 32, 2587–2593. [Google Scholar] [CrossRef]
- Boukebous, B.; Gao, F.; Biau, D. Hip fractures after 60 years of age in France in 2005-2017: Nationwide sample of statutory-health-insurance beneficiaries. Orthop. Traumatol. Surg. Res. 2023, 109, 103677. [Google Scholar] [CrossRef] [PubMed]
- Nam, N.H.; Minh, N.D.; Hai, T.X.; Sinh, C.T.; Loi, C.B.; Anh, L.T. Pre-operative Factors Predicting Mortality in Six Months and Functional Recovery in Elderly Patients with Hip Fractures. Malays. Orthop. J. 2023, 17, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Bui, M.; Nijmeijer, W.S.; Hegeman, J.H.; Witteveen, A.; Groothuis-Oudshoorn, C.G.M. Systematic review and meta-analysis of preoperative predictors for early mortality following hip fracture surgery. Osteoporos. Int. 2024, 35, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Sing, C.W.; Lin, T.C.; Bartholomew, S.; Bell, J.S.; Bennett, C.; Beyene, K.; Bosco-Levy, P.; Bradbury, B.D.; Chan, A.H.Y.; Chandran, M.; et al. Global Epidemiology of Hip Fractures: Secular Trends in Incidence Rate, Post-Fracture Treatment, and All-Cause Mortality. J. Bone Miner. Res. 2023, 38, 1064–1075. [Google Scholar] [CrossRef]
- Feng, J.N.; Zhang, C.G.; Li, B.H.; Zhan, S.Y.; Wang, S.F.; Song, C.L. Global burden of hip fracture: The Global Burden of Disease Study. Osteoporos. Int. 2024, 35, 41–52. [Google Scholar] [CrossRef]
- Saager, L.; Turan, A.; Reynolds, L.F.; Dalton, J.E.; Mascha, E.J.; Kurz, A. The association between preoperative anemia and 30-day mortality and morbidity in noncardiac surgical patients. Anesth. Analg. 2013, 117, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Xue, F.S.; Meng, F.M.; Liu, G.P. Is basal haemoglobin level really a prognostic factor for early death of elderly patients undergoing hip fracture surgery? Injury 2015, 46, 2079–2080. [Google Scholar] [CrossRef] [PubMed]
- Baehl, S.; Garneau, H.; Le Page, A.; Lorrain, D.; Viens, I.; Svotelis, A.; Lord, J.M.; Phillips, A.C.; Cabana, F.; Larbi, A.; et al. Altered neutrophil functions in elderly patients during a 6-month follow-up period after a hip fracture. Exp. Gerontol. 2015, 65, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Regolo, M.; Sorce, A.; Vaccaro, M.; Colaci, M.; Stancanelli, B.; Natoli, G.; Motta, M.; Isaia, I.; Castelletti, F.; Giangreco, F.; et al. Assessing Humoral Immuno-Inflammatory Pathways Associated with Respiratory Failure in COVID-19 Patients. J. Clin. Med. 2023, 12, 4057. [Google Scholar] [CrossRef]
- Bhaskar, D.; Parker, M.J. Haematological indices as surrogate markers of factors affecting mortality after hip fracture. Injury 2011, 42, 178–182. [Google Scholar] [CrossRef]
- Laulund, A.S.; Lauritzen, J.B.; Duus, B.R.; Mosfeldt, M.; Jorgensen, H.L. Routine blood tests as predictors of mortality in hip fracture patients. Injury 2012, 43, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Kovar, F.M.; Endler, G.; Wagner, O.F.; Jaindl, M. Basal haemoglobin levels as prognostic factor for early death in elderly patients with a hip fracture—A twenty year observation study. Injury 2015, 46, 1018–1022. [Google Scholar] [CrossRef]
- Yombi, J.C.; Putineanu, D.C.; Cornu, O.; Lavand’homme, P.; Cornette, P.; Castanares-Zapatero, D. Low haemoglobin at admission is associated with mortality after hip fractures in elderly patients. Bone Jt. J. 2019, 101, 1122–1128. [Google Scholar] [CrossRef]
- Kim, K.M.; Lui, L.Y.; Cauley, J.A.; Ensrud, K.E.; Orwoll, E.S.; Schousboe, J.T.; Cummings, S.R.; Osteoporotic Fractures in Men Study Research, G. Red Cell Distribution Width Is a Risk Factor for Hip Fracture in Elderly Men Without Anemia. J. Bone Miner. Res. 2020, 35, 869–874. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, X.; Wang, Y.; Li, J.; Wang, G.; Meng, Y.; Li, M.; Li, Y.; Luo, Y.; Gao, Z.; et al. Preoperative Anemia and Risk of In-hospital Postoperative Complications in Patients with Hip Fracture. Clin. Interv. Aging 2023, 18, 639–653. [Google Scholar] [CrossRef]
- Haddad, B.I.; Hamdan, M.; Alshrouf, M.A.; Alzubi, A.; Khirsheh, A.; Al-Oleimat, A.; Aldabaibeh, M.; Al-Qaryouti, R.; Abulubbad, W.; Al-Saber, M.; et al. Preoperative hemoglobin levels and mortality outcomes after hip fracture patients. BMC Surg. 2023, 23, 266. [Google Scholar] [CrossRef] [PubMed]
- Golsorkhtabaramiri, M.; McKenzie, J.; Potter, J. Predictability of Neutrophil to Lymphocyte Ratio in preoperative elderly hip fracture patients for post-operative short-term complications: A retrospective study. BMC Musculoskelet. Disord. 2023, 24, 227. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, L.; Liu, N.; Lei, L.; Ye, H.; Peng, J. Association of monocyte count on admission with angiographic no-reflow after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Kardiol. Pol. 2016, 74, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, N.; Wong, G.C.; Cairns, J.A.; Goodman, S.G.; Perry-Arnesen, M.; Tocher, W.; Mackay, M.; Singer, J.; Lee, T.; Rao, S.V.; et al. Association of Anemia with Outcomes Among ST-Segment-Elevation Myocardial Infarction Patients Receiving Primary Percutaneous Coronary Intervention. Circ. Cardiovasc. Interv. 2018, 11, e007175. [Google Scholar] [CrossRef]
- Akbar, K.M.A.; Dharma, S.; Andriantoro, H.; Sukmawan, R.; Mangkuanom, A.S.; Rejeki, V.G. Relationship between Hemoglobin Concentration at Admission with the Incidence of No-Reflow Phenomenon and In-Hospital Mortality in Acute Myocardial Infarction with Elevation of ST Segments in Patients who underwent Primary Percutaneous Coronary Intervention. Int. J. Angiol. 2023, 32, 106–112. [Google Scholar] [CrossRef]
- Babagoli, M.; Ghaseminejad Raeini, A.; Sheykhvatan, M.; Baghdadi, S.; Shafiei, S.H. Influencing factors on morbidity and mortality in intertrochanteric fractures. Sci. Rep. 2023, 13, 12090. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.N.; Fei, X.J.; Wang, J.Y.; Hua, R.L.; Tong, Y.N.; Li, K.; Cao, W.W.; Chen, S.H.; Zhang, B.F.; et al. Association between Neutrophil Levels on Admission and All-Cause Mortality in Geriatric Patients with Hip Fractures: A Prospective Cohort Study of 2589 Patients. Int. J. Clin. Pract. 2022, 2022, 1174521. [Google Scholar] [CrossRef]
- Madjid, M.; Awan, I.; Willerson, J.T.; Casscells, S.W. Leukocyte count and coronary heart disease: Implications for risk assessment. J. Am. Coll. Cardiol. 2004, 44, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- Koren-Morag, N.; Tanne, D.; Goldbourt, U. White blood cell count and the incidence of ischemic stroke in coronary heart disease patients. Am. J. Med. 2005, 118, 1004–1009. [Google Scholar] [CrossRef]
- Horne, B.D.; Anderson, J.L.; John, J.M.; Weaver, A.; Bair, T.L.; Jensen, K.R.; Renlund, D.G.; Muhlestein, J.B.; Intermountain Heart Collaborative Study, G. Which white blood cell subtypes predict increased cardiovascular risk? J. Am. Coll. Cardiol. 2005, 45, 1638–1643. [Google Scholar] [CrossRef]
- Toor, I.S.; Jaumdally, R.; Lip, G.Y.; Millane, T.; Varma, C. Eosinophil count predicts mortality following percutaneous coronary intervention. Thromb. Res. 2012, 130, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Hartaigh, B.; Bosch, J.A.; Thomas, G.N.; Lord, J.M.; Pilz, S.; Loerbroks, A.; Kleber, M.E.; Grammer, T.B.; Fischer, J.E.; Boehm, B.O.; et al. Which leukocyte subsets predict cardiovascular mortality? From the LUdwigshafen RIsk and Cardiovascular Health (LURIC) Study. Atherosclerosis 2012, 224, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Abate, E.; Degef, M.; Melkie, A.; Gnanasekeran, N.; Mehdi, M.; Tolcha, Y.; Chala, D. Haematological Parameters in People with Atherosclerotic Cardiovascular Disease versus Those Who are Only at Risk for Cardiovascular Disease: A Comparative Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2023, 16, 1869–1883. [Google Scholar] [CrossRef]
- Nguyen, M.; Stiel, L.; Guilloteau, A.; Bahr, P.A.; Masson, D.; Thomas, C.; Blot, M.; Guy, J.; Fontaine, C.; Durand, B.; et al. Leukocyte cell population data in patients with cardiac surgery and cardiopulmonary bypass: A potential readily available tool to monitor immunity. Front. Immunol. 2022, 13, 1101937. [Google Scholar] [CrossRef]
- Conlan, D.P. Value of lymphocyte counts as a prognostic index of survival following femoral neck fractures. Injury 1989, 20, 352–354. [Google Scholar] [CrossRef]
- Kumar, V.; Alva, A.; Akkena, S.; Jones, M.; Murphy, P.N.; Clough, T. Are albumin and total lymphocyte count significant and reliable predictors of mortality in fractured neck of femur patients? Eur. J. Orthop. Surg. Traumatol. 2014, 24, 1193–1196. [Google Scholar] [CrossRef]
- Schroth, J.; Weber, V.; Jones, T.F.; Del Arroyo, A.G.; Henson, S.M.; Ackland, G.L. Preoperative lymphopaenia, mortality, and morbidity after elective surgery: Systematic review and meta-analysis. Br. J. Anaesth. 2021, 127, 32–40. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Zheng, H.; Wang, X.; Liu, Z.; Sun, T. Prognostic Role of Serum Albumin, Total Lymphocyte Count, and Mini Nutritional Assessment on Outcomes After Geriatric Hip Fracture Surgery: A Meta-Analysis and Systematic Review. J. Arthroplast. 2019, 34, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Geleit, R.; Bence, M.; Samouel, P.; Craik, J. Biomarkers as predictors of inpatient mortality in fractured neck of femur patients. Arch. Gerontol. Geriatr. 2023, 111, 105004. [Google Scholar] [CrossRef] [PubMed]
- Vural, A.; Aydin, E. The Predictive Value of Eosinophil Indices for Major Cardiovascular Events in Patients with Acute Decompensated HFrEF. Medicina 2022, 58, 1455. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Zhang, Z.; She, J.; Bai, X.; Wu, Y.; Gao, L.; Zhou, J.; Yuan, Z. The Predictive Values of White Blood Cell Indices (Lymphocyte and Eosinophilic Granulocyte) for Heart Failure in Acute Coronary Syndrome Patients Following Percutaneous Coronary Intervention: A Prospective Cohort Study. Clin. Interv. Aging 2023, 18, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jiang, L.; Xu, L.; Tian, J.; Xu, Y.; Zhao, Y.; Feng, X.; Wu, Y.; Zhang, Y.; Wang, D.; et al. Predictive value of in-hospital white blood cell count in Chinese patients with triple-vessel coronary disease. Eur. J. Prev. Cardiol. 2019, 26, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, D.F.; Cahill, R.A.; Sheehan, F.; McCreery, C. Prediction of calculated future cardiovascular disease by monocyte count in an asymptomatic population. Vasc. Health Risk Manag. 2008, 4, 177–187. [Google Scholar] [CrossRef]
- Combadiere, C.; Potteaux, S.; Rodero, M.; Simon, T.; Pezard, A.; Esposito, B.; Merval, R.; Proudfoot, A.; Tedgui, A.; Mallat, Z. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 2008, 117, 1649–1657. [Google Scholar] [CrossRef]
- Gijsberts, C.M.; Ellenbroek, G.H.; Ten Berg, M.J.; Huisman, A.; van Solinge, W.W.; Asselbergs, F.W.; den Ruijter, H.M.; Pasterkamp, G.; de Kleijn, D.P.; Hoefer, I.E. Routinely analyzed leukocyte characteristics improve prediction of mortality after coronary angiography. Eur. J. Prev. Cardiol. 2016, 23, 1211–1220. [Google Scholar] [CrossRef]
- Fan, L.; Gui, L.; Chai, E.Q.; Wei, C.J. Routine hematological parameters are associated with short- and long-term prognosis of patients with ischemic stroke. J. Clin. Lab. Anal. 2018, 32, e22244. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.S.; You, Z.; Nowak, K.L.; Jovanovich, A.J. Association of Monocyte Count and Monocyte/Lymphocyte Ratio with the Risk of Cardiovascular Outcomes in Patients with CKD. Kidney360 2022, 3, 657–665. [Google Scholar] [CrossRef]
- Ruder, A.V.; Wetzels, S.M.W.; Temmerman, L.; Biessen, E.A.L.; Goossens, P. Monocyte heterogeneity in cardiovascular disease. Cardiovasc. Res. 2023, 119, 2033–2045. [Google Scholar] [CrossRef]
- Lakomkin, N.; Sathiyakumar, V.; Dodd, A.C.; Jahangir, A.A.; Whiting, P.S.; Obremskey, W.T.; Sethi, M.K. Pre-operative labs: Wasted dollars or predictors of post-operative cardiac and septic events in orthopaedic trauma patients? Injury 2016, 47, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Varady, N.H.; Yeung, C.M.; Amen, T.B.; Schwab, P.E.; Chen, A.F. Preoperative Platelet and International Normalized Ratio Thresholds and Risk of Complications After Primary Hip Fracture Surgery. J. Am. Acad. Orthop. Surg. 2021, 29, e396–e403. [Google Scholar] [CrossRef]
- Thaulow, E.; Erikssen, J.; Sandvik, L.; Stormorken, H.; Cohn, P.F. Blood platelet count and function are related to total and cardiovascular death in apparently healthy men. Circulation 1991, 84, 613–617. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Donati, M.B.; Cerletti, C.; de Gaetano, G.; Iacoviello, L.; Investigators, M.-S. Age-sex-specific ranges of platelet count and all-cause mortality: Prospective findings from the MOLI-SANI study. Blood 2016, 127, 1614–1616. [Google Scholar] [CrossRef] [PubMed]
- Weil, I.A.; Kumar, P.; Seicean, S.; Neuhauser, D.; Seicean, A. Platelet count abnormalities and peri-operative outcomes in adults undergoing elective, non-cardiac surgery. PLoS ONE 2019, 14, e0212191. [Google Scholar] [CrossRef]
- Liu, F.; Yang, P.; Wang, Y.; Shi, M.; Wang, R.; Xu, Q.; Peng, Y.; Chen, J.; Zhang, J.; Wang, A.; et al. HS-CRP Modifies the Prognostic Value of Platelet Count for Clinical Outcomes After Ischemic Stroke. J. Am. Heart Assoc. 2023, 12, e030007. [Google Scholar] [CrossRef]
- Seo, I.H.; Lee, Y.J. Usefulness of Complete Blood Count (CBC) to Assess Cardiovascular and Metabolic Diseases in Clinical Settings: A Comprehensive Literature Review. Biomedicines 2022, 10, 2697. [Google Scholar] [CrossRef]
- Berger, M.; Dressel, A.; Kleber, M.E.; Marz, W.; Hellstern, P.; Marx, N.; Schutt, K. Platelet Reactivity and Cardiovascular Mortality Risk in the LURIC Study. J. Clin. Med. 2023, 12, 1913. [Google Scholar] [CrossRef] [PubMed]
- Vinholt, P.J.; Hvas, A.M.; Frederiksen, H.; Bathum, L.; Jorgensen, M.K.; Nybo, M. Platelet count is associated with cardiovascular disease, cancer and mortality: A population-based cohort study. Thromb. Res. 2016, 148, 136–142. [Google Scholar] [CrossRef]
- Liu, L.; Chen, L.; Lu, Y.; Yan, H.Y.; Cui, W.H. Association studies between postoperative hypoeosinophilia and hospital stay in patients undergoing hip fracture surgery under different anesthesia. Zhonghua Yi Xue Za Zhi 2021, 101, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Rios-Navarro, C.; Gavara, J.; Vidal, V.; Bonanad, C.; Racugno, P.; Bayes-Genis, A.; Minana, G.; Husser, O.; Oltra, R.; Nunez, J.; et al. Characterization and implications of the dynamics of eosinophils in blood and in the infarcted myocardium after coronary reperfusion. PLoS ONE 2018, 13, e0206344. [Google Scholar] [CrossRef] [PubMed]
- Alkhalil, M.; Kearney, A.; Hegarty, M.; Stewart, C.; Devlin, P.; Owens, C.G.; Spence, M.S. Eosinopenia as an Adverse Marker of Clinical Outcomes in Patients Presenting with Acute Myocardial Infarction. Am. J. Med. 2019, 132, e827–e834. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.; Liu, T.; Deng, Z.; Fang, W.; Zhang, X.; Li, J.; Huang, Q.; Liu, C.; Wang, Y.; et al. Eosinophils improve cardiac function after myocardial infarction. Nat. Commun. 2020, 11, 6396. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.D.; Denaxas, S.; Nicholas, O.; Hingorani, A.D.; Hemingway, H. Low eosinophil and low lymphocyte counts and the incidence of 12 cardiovascular diseases: A CALIBER cohort study. Open Heart 2016, 3, e000477. [Google Scholar] [CrossRef]
- Gao, S.; Deng, Y.; Wu, J.; Zhang, L.; Deng, F.; Zhou, J.; Yuan, Z.; Wang, L. Eosinophils count in peripheral circulation is associated with coronary artery disease. Atherosclerosis 2019, 286, 128–134. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, D.Z.; Ren, Y.L.; Cai, J.P.; Chen, B.X. Significance of eosinophil accumulation in the thrombus and decrease in peripheral blood in patients with acute coronary syndrome. Coron. Artery Dis. 2015, 26, 101–106. [Google Scholar] [CrossRef]
- Toor, I.S.; Ruckerl, D.; Mair, I.; Ainsworth, R.; Meloni, M.; Spiroski, A.M.; Benezech, C.; Felton, J.M.; Thomson, A.; Caporali, A.; et al. Eosinophil Deficiency Promotes Aberrant Repair and Adverse Remodeling Following Acute Myocardial Infarction. JACC Basic. Transl. Sci. 2020, 5, 665–681. [Google Scholar] [CrossRef]
- Mo, D.G.; Wang, C.S.; Liu, J.H.; Li, T. The predictive value of eosinophil levels on no-reflow in patients with STEMI following PCI: A retrospective cohort study. Sci. Rep. 2022, 12, 17862. [Google Scholar] [CrossRef] [PubMed]
- Sasmita, B.R.; Zhu, Y.; Gan, H.; Hu, X.; Xue, Y.; Xiang, Z.; Liu, G.; Luo, S.; Huang, B. Leukocyte and its Subtypes as Predictors of Short-Term Outcome in Cardiogenic Shock Complicating Acute Myocardial Infarction: A Cohort Study. Shock 2022, 57, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Golino, M.; Moroni, F.; Del Buono, M.G.; Canada, J.M.; Talasaz, A.H.; Pinel, S.; Mbualungu, J.; Vecchie, A.; Ho, A.J.; Thomas, G.K.; et al. Change in Eosinophil Count in Patients with Heart Failure Treated with Anakinra. Cells 2023, 12, 1129. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Huang, Z.C.; Wang, H.S.; Liu, S.W.; You, S.J.; Hou, J.; Guo, Z.L.; Xiao, G.D. Eosinophil: A New Circulating Biomarker for Risk of Poor Outcome in Stroke Patients Undergoing Mechanical Thrombectomy. Clin. Interv. Aging 2023, 18, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Nadimi, A.E.; Ahmadi, J.; Mehrabian, M. Peripheral eosinophil count and allergy in patients with coronary artery disease. Acta Med. Indones. 2008, 40, 74–77. [Google Scholar] [PubMed]
- Soufras, G.D.; Tsigkas, G.; Hahalis, G.; Kounis, N.G. White blood count components as risk predictors for coronary heart disease: The role of eosinophils. Tex. Heart Inst. J. 2014, 41, 107. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Soufras, G.D.; Tsigkas, G.; Hahalis, G. White blood cell counts, leukocyte ratios, and eosinophils as inflammatory markers in patients with coronary artery disease. Clin. Appl. Thromb. Hemost. 2015, 21, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Pongdee, T.; Manemann, S.M.; Decker, P.A.; Larson, N.B.; Moon, S.; Killian, J.M.; Liu, H.; Kita, H.; Bielinski, S.J. Rethinking blood eosinophil counts: Epidemiology, associated chronic diseases, and increased risks of cardiovascular disease. J. Allergy Clin. Immunol. Glob. 2022, 1, 233–240. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Li, S.J.; Wang, D.Z.; Chen, B.X. Relationship of coronary collateral circulation with eosinophils in patients with unstable angina pectoris. Clin. Interv. Aging 2016, 11, 105–110. [Google Scholar] [CrossRef]
- Garbharran, U.; Chinthapalli, S.; Hopper, I.; George, M.; Back, D.L.; Dockery, F. Red cell distribution width is an independent predictor of mortality in hip fracture. Age Ageing 2013, 42, 258–261. [Google Scholar] [CrossRef]
- Tsuboi, S.; Miyauchi, K.; Kasai, T.; Ogita, M.; Dohi, T.; Miyazaki, T.; Yokoyama, T.; Kojima, T.; Yokoyama, K.; Kurata, T.; et al. Impact of red blood cell distribution width on long-term mortality in diabetic patients after percutaneous coronary intervention. Circ. J. 2013, 77, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Ma, C.S.; Liu, X.H.; Du, X.; Kang, J.P.; Zhang, Y.; Wu, J.H. Relationship between red blood cell distribution width and intermediate-term mortality in elderly patients after percutaneous coronary intervention. J. Geriatr. Cardiol. 2015, 12, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhang, L.; Long, A.; Mao, Z.; Shen, J.; Yin, P.; Li, M.; Zeng, C.; Zhang, L.; Tang, P. Red Cell Distribution Width as an Independent Predictor of Long-Term Mortality in Hip Fracture Patients: A Prospective Cohort Study. J. Bone Miner. Res. 2016, 31, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Akcal, M.A.; Eke, I. Post-Operative Red Cell Distribution Width Increase May Predict Mortality in Patients Operated for Hip Fracture. Clin. Lab. 2021, 67, 2568. [Google Scholar] [CrossRef]
- Karadeniz, S.; Yurtbay, A. Predicting mortality rate in elderly patients operated for hip fracture using red blood cell distribution width, neutrophil-to-lymphocyte ratio, and Nottingham Hip Fracture Score. Jt. Dis. Relat. Surg. 2022, 33, 538–546. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, B.; Li, X.; Cong, H. In-hospital changes in the red blood cell distribution width and mortality in critically ill patients with heart failure. ESC Heart Fail. 2023, 10, 3287–3298. [Google Scholar] [CrossRef]
- Wang, N.J.; Zhang, Y.M.; Zhang, B.F. The Association Between Red Cell Distribution Width (RDW) and All-Cause Mortality in Elderly Patients with Hip Fractures: A Retrospective Cohort Study. Int. J. Gen. Med. 2023, 16, 3555–3566. [Google Scholar] [CrossRef]
- Ozel, M.; Altintas, M.; Tatliparmak, A.C. Predictors of one-year mortality following hip fracture surgery in elderly. PeerJ 2023, 11, e16008. [Google Scholar] [CrossRef]
- Patel, K.V.; Semba, R.D.; Ferrucci, L.; Newman, A.B.; Fried, L.P.; Wallace, R.B.; Bandinelli, S.; Phillips, C.S.; Yu, B.; Connelly, S.; et al. Red cell distribution width and mortality in older adults: A meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 258–265. [Google Scholar] [CrossRef]
- Azab, B.; Torbey, E.; Hatoum, H.; Singh, J.; Khoueiry, G.; Bachir, R.; McGinn, J.T., Jr.; McCord, D.; Lafferty, J. Usefulness of red cell distribution width in predicting all-cause long-term mortality after non-ST-elevation myocardial infarction. Cardiology 2011, 119, 72–80. [Google Scholar] [CrossRef]
- Sangoi, M.B.; Guarda Ndos, S.; Rodel, A.P.; Zorzo, P.; Borges, P.O.; Cargnin, L.P.; De Carvalho, J.A.; Premaor, M.O.; Moresco, R.N. Prognostic value of red blood cell distribution width in prediction of in-hospital mortality in patients with acute myocardial infarction. Clin. Lab. 2014, 60, 1351–1356. [Google Scholar] [CrossRef]
- Uyarel, H.; Isik, T.; Ayhan, E.; Ergelen, M. Red cell distrubition width (RDW): A novel risk factor for cardiovascular disease. Int. J. Cardiol. 2012, 154, 351–352. [Google Scholar] [CrossRef] [PubMed]
- Gijsberts, C.M.; den Ruijter, H.M.; de Kleijn, D.P.V.; Huisman, A.; Ten Berg, M.J.; van Wijk, R.H.A.; Asselbergs, F.W.; Voskuil, M.; Pasterkamp, G.; van Solinge, W.W.; et al. Hematological Parameters Improve Prediction of Mortality and Secondary Adverse Events in Coronary Angiography Patients: A Longitudinal Cohort Study. Medicine 2015, 94, e1992. [Google Scholar] [CrossRef] [PubMed]
- Tajuddin, S.M.; Nalls, M.A.; Zonderman, A.B.; Evans, M.K. Association of red cell distribution width with all-cause and cardiovascular-specific mortality in African American and white adults: A prospective cohort study. J. Transl. Med. 2017, 15, 208. [Google Scholar] [CrossRef] [PubMed]
- Arkew, M.; Gemechu, K.; Haile, K.; Asmerom, H. Red Blood Cell Distribution Width as Novel Biomarker in Cardiovascular Diseases: A Literature Review. J. Blood Med. 2022, 13, 413–424. [Google Scholar] [CrossRef] [PubMed]
- O’Daly, B.J.; Walsh, J.C.; Quinlan, J.F.; Falk, G.A.; Stapleton, R.; Quinlan, W.R.; O’Rourke, S.K. Serum albumin and total lymphocyte count as predictors of outcome in hip fractures. Clin. Nutr. 2010, 29, 89–93. [Google Scholar] [CrossRef]
- Pimlott, B.J.; Jones, C.A.; Beaupre, L.A.; Johnston, D.W.; Majumdar, S.R. Prognostic impact of pre-operative albumin on short-term mortality and complications in patients with hip fracture. Arch. Gerontol. Geriatr. 2011, 53, 90–94. [Google Scholar] [CrossRef]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marin-Ciancas, F.; Malafarina, V. Serum albumin and health in older people: Review and meta analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef]
- Aldebeyan, S.; Nooh, A.; Aoude, A.; Weber, M.H.; Harvey, E.J. Hypoalbuminaemia-a marker of malnutrition and predictor of postoperative complications and mortality after hip fractures. Injury 2017, 48, 436–440. [Google Scholar] [CrossRef]
- Bohl, D.D.; Shen, M.R.; Hannon, C.P.; Fillingham, Y.A.; Darrith, B.; Della Valle, C.J. Serum Albumin Predicts Survival and Postoperative Course Following Surgery for Geriatric Hip Fracture. J. Bone Jt. Surg. Am. 2017, 99, 2110–2118. [Google Scholar] [CrossRef]
- Harrison, S.J.; Messner, J.; Leeder, D.J.; Stephenson, J.; Sidhom, S.A. Are Albumin Levels a Good Predictor of Mortality in Elderly Patients with Neck of Femur Fractures? J. Nutr. Health Aging 2017, 21, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Malafarina, V.; Reginster, J.Y.; Cabrerizo, S.; Bruyere, O.; Kanis, J.A.; Martinez, J.A.; Zulet, M.A. Nutritional Status and Nutritional Treatment Are Related to Outcomes and Mortality in Older Adults with Hip Fracture. Nutrients 2018, 10, 555. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Boissonneault, A.R.; Schwartz, A.M.; Staley, C.A.; Schenker, M.L. Frailty and Malnutrition Are Associated with Inpatient Postoperative Complications and Mortality in Hip Fracture Patients. J. Orthop. Trauma 2019, 33, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Lee, I.O. Preoperative laboratory testing in elderly patients. Curr. Opin. Anaesthesiol. 2021, 34, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Jiang, W.; Chen, X.; Yang, L.; Wang, H.; Liu, Y.H. Systemic immune-inflammation index independently predicts poor survival of older adults with hip fracture: A prospective cohort study. BMC Geriatr. 2021, 21, 155. [Google Scholar] [CrossRef]
- Borge, S.J.; Lauritzen, J.B.; Jorgensen, H.L. Hypoalbuminemia is associated with 30-day mortality in hip fracture patients independently of Body Mass Index. Scand. J. Clin. Lab. Investig. 2022, 82, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Popp, D.; Nia, A.; Biedermann, G.; Schmoelz, L.; Silvaieh, S.; Tiefenboeck, T.M.; Hajdu, S.; Widhalm, H.K. Predictive Validity of Mortality after Surgically Treated Proximal Femur Fractures Based on Four Nutrition Scores-A Retrospective Data Analysis. Nutrients 2023, 15, 3357. [Google Scholar] [CrossRef] [PubMed]
- Rutenberg, T.F.; Hershkovitz, A.; Jabareen, R.; Vitenberg, M.; Daglan, E.; Iflah, M.; Drexler, M.; Shemesh, S. Can nutritional and inflammatory indices predict 90-day mortality in fragility hip fracture patients? SICOT J. 2023, 9, 30. [Google Scholar] [CrossRef]
- Formiga, F.; Chivite, D.; Mascaro, J.; Ramon, J.M.; Pujol, R. No correlation between mini-nutritional assessment (short form) scale and clinical outcomes in 73 elderly patients admitted for hip fracture. Aging Clin. Exp. Res. 2005, 17, 343–346. [Google Scholar] [CrossRef]
- Karabag, Y.; Cagdas, M.; Rencuzogullari, I.; Karakoyun, S.; Artac, I.; Ilis, D.; Atalay, E.; Yesin, M.; Gursoy, M.O.; Halil Tanboga, I. Relationship between C-reactive protein/albumin ratio and coronary artery disease severity in patients with stable angina pectoris. J. Clin. Lab. Anal. 2018, 32, e22457. [Google Scholar] [CrossRef]
- Biccire, F.G.; Pastori, D.; Tanzilli, A.; Pignatelli, P.; Viceconte, N.; Barilla, F.; Versaci, F.; Gaudio, C.; Violi, F.; Tanzilli, G. Low serum albumin levels and in-hospital outcomes in patients with ST segment elevation myocardial infarction. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2904–2911. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cen, K.; Sun, W.; Feng, B. Prognostic value of geriatric nutritional risk index in elderly patients with heart failure: A meta-analysis. Aging Clin. Exp. Res. 2021, 33, 1477–1486. [Google Scholar] [CrossRef]
- Gradel, K.O. Interpretations of the Role of Plasma Albumin in Prognostic Indices: A Literature Review. J. Clin. Med. 2023, 12, 6132. [Google Scholar] [CrossRef] [PubMed]
- Schupp, T.; Behnes, M.; Rusnak, J.; Ruka, M.; Dudda, J.; Forner, J.; Egner-Walter, S.; Barre, M.; Abumayyaleh, M.; Bertsch, T.; et al. Does Albumin Predict the Risk of Mortality in Patients with Cardiogenic Shock? Int. J. Mol. Sci. 2023, 24, 7375. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.T.; Sun, C.K.; Wu, J.Y.; Yu, C.H.; Chang, Y.J.; Lin, M.C.; Lan, K.M.; Chen, I.W.; Hung, K.C. Association of prognostic nutritional index with long-term mortality in patients receiving percutaneous coronary intervention for acute coronary syndrome: A meta-analysis. Sci. Rep. 2023, 13, 13102. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meng, S.; Chen, W.; Lei, X.; Kong, X.; Zhu, H. Comparison of Different Systemic Inflammatory Markers in Predicting Clinical Outcomes with Syntax Score in Patients with Non-ST Segment Elevation Myocardial Infarction: A Retrospective Study. Int. J. Gen. Med. 2023, 16, 2595–2607. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Srikusalanukul, W.; Fisher, L.; Smith, P. The Neutrophil to Lymphocyte Ratio on Admission and Short-Term Outcomes in Orthogeriatric Patients. Int. J. Med. Sci. 2016, 13, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Forget, P.; Dillien, P.; Engel, H.; Cornu, O.; De Kock, M.; Yombi, J.C. Use of the neutrophil-to-lymphocyte ratio as a component of a score to predict postoperative mortality after surgery for hip fracture in elderly subjects. BMC Res. Notes 2016, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- Temiz, A.; Ersozlu, S. Admission neutrophil-to-lymphocyte ratio and postoperative mortality in elderly patients with hip fracture. Ulus. Travma Acil Cerrahi Derg. 2019, 25, 71–74. [Google Scholar] [CrossRef]
- Bingol, O.; Ozdemir, G.; Kulakoglu, B.; Keskin, O.H.; Korkmaz, I.; Kilic, E. Admission neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio to predict 30-day and 1-year mortality in geriatric hip fractures. Injury 2020, 51, 2663–2667. [Google Scholar] [CrossRef]
- Ozbek, E.A.; Ayanoglu, T.; Olcar, H.A.; Yalvac, E.S. Is the preoperative neutrophil-to-lymphocyte ratio a predictive value for postoperative mortality in orthogeriatric patients who underwent proximal femoral nail surgery for pertrochanteric fractures? Ulus. Travma Acil Cerrahi Derg. 2020, 26, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Atlas, A.; Duran, E.; Pehlivan, B.; Pehlivan, V.F.; Erol, M.K.; Altay, N. The Effect of Increased Neutrophil Lymphocyte Ratio on Mortality in Patients Operated on Due to Hip Fracture. Cureus 2020, 12, e6543. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chou, C.H.; Su, H.H.; Tsai, Y.T.; Chiang, M.H.; Kuo, Y.J.; Chen, Y.P. Correlation between neutrophil-to-lymphocyte ratio and postoperative mortality in elderly patients with hip fracture: A meta-analysis. J. Orthop. Surg. Res. 2021, 16, 681. [Google Scholar] [CrossRef] [PubMed]
- Bekki, H.; Arizono, T.; Hama, D.; Inokuchi, A.; Hamada, T.; Imamura, R. Association of Postoperative Neutrophil Lymphocyte Ratio (NLR) and Monocyte Lymphocyte Ratio (MLR) with the Presence of Osteoporosis in Japanese Patients after Hip Fracture Surgery: A Retrospective Cohort Study. J. Osteoporos. 2021, 2021, 5524069. [Google Scholar] [CrossRef]
- Hong, S.W.; Jeong, H.C.; Kim, S.H. The Neutrophil-to-Lymphocyte Ratio and Preoperative Pulmonary Function Test Results as Predictors of In-Hospital Postoperative Complications after Hip Fracture Surgery in Older Adults. J. Clin. Med. 2022, 12, 108. [Google Scholar] [CrossRef]
- Tekin, S.B.; Bozgeyik, B.; Mert, A. Relationship between admission neutrophil/lymphocyte, thrombocyte/lymphocyte, and monocyte/lymphocyte ratios and 1-year mortality in geriatric hip fractures: Triple comparison. Ulus. Travma Acil Cerrahi Derg. 2022, 28, 1634–1640. [Google Scholar] [CrossRef] [PubMed]
- Turgut, N.; Unal, A.M. Standard and Newly Defined Prognostic Factors Affecting Early Mortality After Hip Fractures. Cureus 2022, 14, e21464. [Google Scholar] [CrossRef] [PubMed]
- Celiksoz, A.; Kavak, M.; Tarlacik, A.O. Inflammatory Index as a Predictor of Mortality in Elderly Patients with Intracapsular Femoral Neck Fracture. Cureus 2023, 15, e46318. [Google Scholar] [CrossRef] [PubMed]
- Sedlar, M.; Kvasnicka, J.; Krska, Z.; Tomankova, T.; Linhart, A. Early and subacute inflammatory response and long-term survival after hip trauma and surgery. Arch. Gerontol. Geriatr. 2015, 60, 431–436. [Google Scholar] [CrossRef]
- Niessen, R.; Bihin, B.; Gourdin, M.; Yombi, J.C.; Cornu, O.; Forget, P. Prediction of postoperative mortality in elderly patient with hip fractures: A single-centre, retrospective cohort study. BMC Anesthesiol. 2018, 18, 183. [Google Scholar] [CrossRef]
- Nunez, J.; Nunez, E.; Bodi, V.; Sanchis, J.; Minana, G.; Mainar, L.; Santas, E.; Merlos, P.; Rumiz, E.; Darmofal, H.; et al. Usefulness of the neutrophil to lymphocyte ratio in predicting long-term mortality in ST segment elevation myocardial infarction. Am. J. Cardiol. 2008, 101, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Celikbilek, A.; Ismailogullari, S.; Zararsiz, G. Neutrophil to lymphocyte ratio predicts poor prognosis in ischemic cerebrovascular disease. J. Clin. Lab. Anal. 2014, 28, 27–31. [Google Scholar] [CrossRef]
- Kurtul, S.; Sarli, B.; Baktir, A.O.; Demirbas, M.; Saglam, H.; Dogan, Y.; Sahin, O.; Akpek, M.; Odabas, H.; Arinc, H.; et al. Neutrophil to lymphocyte ratio predicts SYNTAX score in patients with non-ST segment elevation myocardial infarction. Int. Heart J. 2015, 56, 18–21. [Google Scholar] [CrossRef]
- Azab, B.; Zaher, M.; Weiserbs, K.F.; Torbey, E.; Lacossiere, K.; Gaddam, S.; Gobunsuy, R.; Jadonath, S.; Baldari, D.; McCord, D.; et al. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction. Am. J. Cardiol. 2010, 106, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.P.; Arekapudi, A.; Metha, J.; Prasad, A.; Venkatraghavan, L. Neutrophil-lymphocyte ratio as predictor of mortality and morbidity in cardiovascular surgery: A systematic review. ANZ J. Surg. 2015, 85, 414–419. [Google Scholar] [CrossRef]
- Balta, S.; Celik, T.; Mikhailidis, D.P.; Ozturk, C.; Demirkol, S.; Aparci, M.; Iyisoy, A. The Relation Between Atherosclerosis and the Neutrophil-Lymphocyte Ratio. Clin. Appl. Thromb. Hemost. 2016, 22, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Tahto, E.; Jadric, R.; Pojskic, L.; Kicic, E. Neutrophil-to-lymphocyte Ratio and Its Relation with Markers of Inflammation and Myocardial Necrosis in Patients with Acute Coronary Syndrome. Med. Arch. 2017, 71, 312–315. [Google Scholar] [CrossRef]
- Sharma, K.; Patel, A.K.; Shah, K.H.; Konat, A. Is Neutrophil-to-Lymphocyte Ratio a Predictor of Coronary Artery Disease in Western Indians? Int. J. Inflam. 2017, 2017, 4136126. [Google Scholar] [CrossRef]
- Zhang, S.; Diao, J.; Qi, C.; Jin, J.; Li, L.; Gao, X.; Gong, L.; Wu, W. Predictive value of neutrophil to lymphocyte ratio in patients with acute ST segment elevation myocardial infarction after percutaneous coronary intervention: A meta-analysis. BMC Cardiovasc. Disord. 2018, 18, 75. [Google Scholar] [CrossRef]
- Machado, G.P.; Araujo, G.N.; Carpes, C.K.; Lech, M.; Mariani, S.; Valle, F.H.; Bergoli, L.C.C.; Goncalves, S.C.; Wainstein, R.V.; Wainstein, M.V. Comparison of neutrophil-to-lymphocyte ratio and mean platelet volume in the prediction of adverse events after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. Atherosclerosis 2018, 274, 212–217. [Google Scholar] [CrossRef]
- Sun, H.; Que, J.; Peng, Y.; Ye, H.; Xiang, H.; Han, Y.; Wang, J.; Ji, K. The neutrophil-lymphocyte ratio: A promising predictor of mortality in coronary care unit patients—A cohort study. Int. Immunopharmacol. 2019, 74, 105692. [Google Scholar] [CrossRef]
- Wada, H.; Dohi, T.; Miyauchi, K.; Nishio, R.; Takeuchi, M.; Takahashi, N.; Endo, H.; Ogita, M.; Iwata, H.; Kasai, T.; et al. Neutrophil to Lymphocyte Ratio and Long-Term Cardiovascular Outcomes in Coronary Artery Disease Patients with Low High-Sensitivity C-Reactive Protein Level. Int. Heart J. 2020, 61, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.N.; Jin, J.L.; Zhang, M.; Hong, L.F.; Guo, Y.L.; Wu, N.Q.; Zhu, C.G.; Dong, Q.; Li, J.J. Differential leukocyte counts and cardiovascular mortality in very old patients with acute myocardial infarction: A Chinese cohort study. BMC Cardiovasc. Disord. 2020, 20, 465. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, H.Y.; Zhang, Y.H. Correlation between neutrophil-to-lymphocyte ratio and kidney dysfunction in undiagnosed hypertensive population from general health checkup. J. Clin. Hypertens. 2020, 22, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Lek. Listy 2021, 122, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.; Ielapi, N.; Licastro, N.; Provenzano, M.; Andreucci, M.; Bracale, U.M.; Jiritano, F.; de Franciscis, S.; Mastroroberto, P.; Serraino, G.F. Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio as Biomarkers for Cardiovascular Surgery Procedures: A Literature Review. Rev. Recent. Clin. Trials 2021, 16, 173–179. [Google Scholar] [CrossRef]
- Trtica Majnaric, L.; Guljas, S.; Bosnic, Z.; Seric, V.; Wittlinger, T. Neutrophil-to-Lymphocyte Ratio as a Cardiovascular Risk Marker May Be Less Efficient in Women Than in Men. Biomolecules 2021, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Olasinska-Wisniewska, A.; Michalak, M.; Rodzki, M.; Witkowska, A.; Straburzynska-Migaj, E.; Perek, B.; Jemielity, M. The Prognostic Significance of Neutrophil to Lymphocyte Ratio (NLR), Monocyte to Lymphocyte Ratio (MLR) and Platelet to Lymphocyte Ratio (PLR) on Long-Term Survival in Off-Pump Coronary Artery Bypass Grafting (OPCAB) Procedures. Biology 2021, 11, 34. [Google Scholar] [CrossRef]
- Altinba, S.O.; Demiryurek, S.; Isik, M.; Tanyeli, O.; Dereli, Y.; Gormus, N. Predictive Value of Neutrophil-to-Lymphocyte, Aspartate-to-Alanine Aminotransferase, Lymphocyte-to-Monocyte and Platelet-to-Lymphocyte Ratios in Severity and Side of Carotid Artery Stenosis: Are Those Significant? Heart Surg. Forum 2021, 24, E072–E078. [Google Scholar] [CrossRef]
- Bala, M.M. The benefit of dynamic neutrophil-lymphocyte ratio and systemic immune-inflammation index in predicting survival in patients undergoing hemiarthroplasty. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3878–3885. [Google Scholar] [CrossRef]
- Isik, F.; Soner, S. Platelet-to-Hemoglobin Ratio Is an Important Predictor of In-Hospital Mortality in Patients with ST-Segment Elevation Myocardial Infarction. Cureus 2022, 14, e26833. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, S.; Yi, Y.; Qu, T.; Gao, S.; Lin, Y.; Zhu, H. Neutrophil-to-lymphocyte ratio as a predictor for cardiovascular diseases: A cohort study in Tianjin, China. J. Hum. Hypertens. 2023, 37, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Bi, Y.; Liu, B.; Zhu, T. Assessment of prognostic value of preoperative neutrophil-to-lymphocyte ratio for postoperative mortality and morbidity. Front. Med. 2023, 10, 1102733. [Google Scholar] [CrossRef]
- Khan, U.H.; Pala, M.R.; Hafeez, I.; Shabir, A.; Dhar, A.; Rather, H.A. Prognostic value of hematological parameters in older adult patients with acute coronary syndrome undergoing coronary intervention: A single centre prospective study. J. Geriatr. Cardiol. 2023, 20, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Tudurachi, B.S.; Anghel, L.; Tudurachi, A.; Sascau, R.A.; Statescu, C. Assessment of Inflammatory Hematological Ratios (NLR, PLR, MLR, LMR and Monocyte/HDL-Cholesterol Ratio) in Acute Myocardial Infarction and Particularities in Young Patients. Int. J. Mol. Sci. 2023, 24, 14378. [Google Scholar] [CrossRef]
- Sadeghi, M.T.; Esgandarian, I.; Nouri-Vaskeh, M.; Golmohammadi, A.; Rahvar, N.; Teimourizad, A. Role of circulatory leukocyte based indices in short-term mortality of patients with heart failure with reduced ejection fraction. Med. Pharm. Rep. 2020, 93, 351–356. [Google Scholar] [CrossRef]
- Joshi, A.; Bhambhani, A.; Barure, R.; Gonuguntla, S.; Sarathi, V.; Attia, A.M.; Shrestha, A.B.; Jaiswal, V. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as markers of stable ischemic heart disease in diabetic patients: An observational study. Medicine 2023, 102, e32735. [Google Scholar] [CrossRef]
- Mathur, K.; Kurbanova, N.; Qayyum, R. Platelet-lymphocyte ratio (PLR) and all-cause mortality in general population: Insights from national health and nutrition education survey. Platelets 2019, 30, 1036–1041. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Yang, L.; Jiang, W.; Chen, X.; Liu, Y. High platelet-to-lymphocyte ratio predicts poor survival of elderly patients with hip fracture. Int. Orthop. 2021, 45, 13–21. [Google Scholar] [CrossRef]
- Kurtul, A.; Yarlioglues, M.; Murat, S.N.; Ergun, G.; Duran, M.; Kasapkara, H.A.; Demircelik, M.B.; Cetin, M.; Ocek, A.H. Usefulness of the platelet-to-lymphocyte ratio in predicting angiographic reflow after primary percutaneous coronary intervention in patients with acute ST-segment elevation myocardial infarction. Am. J. Cardiol. 2014, 114, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Huang, A.; Liu, L. Platelet-to-lymphocyte ratio and prognosis in STEMI: A meta-analysis. Eur. J. Clin. Investig. 2021, 51, e13386. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, Z. Prognostic value of platelet/lymphocyte ratio and CAMI-STEMI score for major adverse cardiac events in patients with acute ST segment elevation myocardial infarction after percutaneous coronary intervention: A prospective observational study. Medicine 2021, 100, e26942. [Google Scholar] [CrossRef]
- Chen, H.; Li, M.; Liu, L.; Dang, X.; Zhu, D.; Tian, G. Monocyte/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients with non-ST-elevation myocardial infarction. Medicine 2019, 98, e16267. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, E.A.; Gasior, J.S.; Tuzimek, A.; Kochman, W. Blood Count-Derived Inflammatory Markers and Acute Complications of Ischemic Heart Disease in Elderly Women. J. Clin. Med. 2023, 12, 1369. [Google Scholar] [CrossRef] [PubMed]
- Vakhshoori, M.; Nemati, S.; Sabouhi, S.; Shakarami, M.; Yavari, B.; Emami, S.A.; Bondariyan, N.; Shafie, D. Prognostic impact of monocyte-to-lymphocyte ratio in coronary heart disease: A systematic review and meta-analysis. J. Int. Med. Res. 2023, 51, 3000605231204469. [Google Scholar] [CrossRef]
- Guan, J.; Wang, Q.; Hu, J.; Hu, Y.; Lan, Q.; Xiao, G.; Zhou, B.; Guan, H. Nomogram-Based Prediction of the Futile Recanalization Risk Among Acute Ischemic Stroke Patients Before and After Endovascular Therapy: A Retrospective Study. Neuropsychiatr. Dis. Treat. 2023, 19, 879–894. [Google Scholar] [CrossRef]
- Karadeniz, F.O.; Karadeniz, Y.; Altuntas, E. Systemic immune-inflammation index, and neutrophilto-lymphocyte and platelet-to-lymphocyte ratios can predict clinical outcomes in patients with acute coronary syndrome. Cardiovasc. J. Afr. 2023, 34, 1–7. [Google Scholar] [CrossRef]
- Moldovan, F.; Ivanescu, A.D.; Fodor, P.; Moldovan, L.; Bataga, T. Correlation between Inflammatory Systemic Biomarkers and Surgical Trauma in Elderly Patients with Hip Fractures. J. Clin. Med. 2023, 12, 5147. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wu, C.H.; Hsu, P.F.; Chen, S.C.; Huang, S.S.; Chan, W.L.; Lin, S.J.; Chou, C.Y.; Chen, J.W.; Pan, J.P.; et al. Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur. J. Clin. Investig. 2020, 50, e13230. [Google Scholar] [CrossRef]
- Hou, D.; Wang, C.; Luo, Y.; Ye, X.; Han, X.; Feng, Y.; Zhong, P.; Wu, D. Systemic immune-inflammation index (SII) but not platelet-albumin-bilirubin (PALBI) grade is associated with severity of acute ischemic stroke (AIS). Int. J. Neurosci. 2021, 131, 1203–1208. [Google Scholar] [CrossRef]
- Parmana, I.M.A.; Boom, C.E.; Poernomo, H.; Gani, C.; Nugroho, B.; Cintyandy, R.; Sanjaya, L.; Hadinata, Y.; Parna, D.R.; Hanafy, D.A. Systemic Immune-Inflammation Index Predicts Prolonged Mechanical Ventilation and Intensive Care Unit Stay After off-Pump Coronary Artery Bypass Graft Surgery: A Single-Center Retrospective Study. Vasc. Health Risk Manag. 2023, 19, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Xia, C.; Wu, L.; Li, Z.; Li, H.; Zhang, J. Systemic Immune Inflammation Index (SII), System Inflammation Response Index (SIRI) and Risk of All-Cause Mortality and Cardiovascular Mortality: A 20-Year Follow-Up Cohort Study of 42,875 US Adults. J. Clin. Med. 2023, 12, 1128. [Google Scholar] [CrossRef] [PubMed]
- Akin, Y.; Karasu, M.; Deniz, A.; Mirzaoglu, C.; Bolayir, H.A. Predictive value of the systemic immune inflammatory index in cardiac syndrome x. BMC Cardiovasc. Disord. 2023, 23, 146. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qin, Z.; Yuan, R.; Guo, J.; Xu, S.; Lv, Y.; Xu, Y.; Lu, Y.; Gao, J.; Yu, F.; et al. Systemic immune-inflammation index as a prognostic marker for advanced chronic heart failure with renal dysfunction. ESC Heart Fail. 2023, 10, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Luo, Y.; Wang, D.; Liu, Y.; Wang, D.; Wang, Y.; Zhao, J. Systemic inflammation response index predicts 3-month outcome in patients with mild acute ischemic stroke receiving intravenous thrombolysis. Front. Neurol. 2023, 14, 1095668. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bai, G.; Gao, Y.; Guo, Z.; Chen, X.; Liu, T.; Li, G. The Systemic Immune Inflammatory Response Index Can Predict the Clinical Prognosis of Patients with Initially Diagnosed Coronary Artery Disease. J. Inflamm. Res. 2023, 16, 5069–5082. [Google Scholar] [CrossRef]
- Mangalesh, S.; Dudani, S.; Mahesh, N.K. Development of a Novel Inflammatory Index to Predict Coronary Artery Disease Severity in Patients with Acute Coronary Syndrome. Angiology 2024, 75, 231–239. [Google Scholar] [CrossRef]
- Deng, X.; Wang, X.; Shen, L.; Yao, K.; Ge, L.; Ma, J.; Zhang, F.; Qian, J.; Ge, J. Association of eosinophil-to-monocyte ratio with 1-month and long-term all-cause mortality in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. J. Thorac. Dis. 2018, 10, 5449–5458. [Google Scholar] [CrossRef]
- Kulahcioglu, S.; Tokgoz, H.C.; Akbal, O.Y.; Keskin, B.; Kultursay, B.; Tanyeri, S.; Ceneli, D.; Biyikli, K.; Karagoz, A.; Efe, S.C.; et al. Eosinophil-to-Monocyte Ratio as a Candidate for a Novel Prognostic Marker in Acute Pulmonary Embolism: Is it a Consumptive Mechanism? Anatol. J. Cardiol. 2022, 26, 717–724. [Google Scholar] [CrossRef]
- Gunes, M. Is neutrophil/eosinophil ratio at admission a prognostic marker for in-hospital mortality of acute ischemic stroke? J. Stroke Cerebrovasc. Dis. 2020, 29, 104999. [Google Scholar] [CrossRef]
- Cai, H.; Huang, H.; Yang, C.; Ren, J.; Wang, J.; Gao, B.; Pan, W.; Sun, F.; Zhou, X.; Zeng, T.; et al. Eosinophil-to-Neutrophil Ratio Predicts Poor Prognosis of Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Front. Neurol. 2021, 12, 665827. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Zhou, J.; Feng, Z.; Huang, J.; Chen, L.; Li, Z.; Meng, Q. The role of neutrophil percentage to albumin ratio in predicting 1-year mortality in elderly patients with hip fracture and external validation. Front. Immunol. 2023, 14, 1223464. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Shen, H.; Guo, Q.; Yang, J.; Zhai, G.; Zhang, J.; Zhang, B.; Ding, Y.; Cai, C.; Zhou, Y. Association between Neutrophil Percentage-to-Albumin Ratio and All-Cause Mortality in Critically Ill Patients with Coronary Artery Disease. Biomed. Res. Int. 2020, 2020, 8137576. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, Y.; Ling, X.; Huang, R.; Wang, S.; Min, J.; Xiao, J.; Zhang, Y.; Wang, Z. The Neutrophil Percentage-to-Albumin Ratio as a New Predictor of All-Cause Mortality in Patients with Cardiogenic Shock. Biomed. Res. Int. 2020, 2020, 7458451. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xie, D.; Li, Y.; Dai, Z.; Xiang, S.; Chen, Z.; Zhu, W. Neutrophil Albumin Ratio is Associated with All-Cause Mortality in Stroke Patients: A Retrospective Database Study. Int. J. Gen. Med. 2022, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lin, Y.; Yue, J.; Zou, Q. The neutrophil percentage-to-albumin ratio is associated with all-cause mortality in critically ill patients with acute myocardial infarction. BMC Cardiovasc. Disord. 2022, 22, 115. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Li, M.; Wang, W.; Luo, R.; Zhang, Z.; Liu, H. The Relationship Between the Neutrophil Percentage-to-Albumin Ratio and Rates of 28-Day Mortality in Atrial Fibrillation Patients 80 Years of Age or Older. J. Inflamm. Res. 2023, 16, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Hu, Y.; Zheng, X.; Yang, C.; Yang, M.; Li, X.; Shang, J.; Abe, K. Correlation Analysis of Neutrophil/Albumin Ratio and Leukocyte Count/Albumin Ratio with Ischemic Stroke Severity. Cardiol. Cardiovasc. Med. 2023, 7, 32–38. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Z.; Zhu, C.; Song, D.; Wu, B.; Ji, K.; Li, J. The Neutrophil Percentage-to-Albumin Ratio is Associated with All-Cause Mortality in Patients with Atrial Fibrillation: A Retrospective Study. J. Inflamm. Res. 2023, 16, 691–700. [Google Scholar] [CrossRef]
- Wu, C.C.; Wu, C.H.; Lee, C.H.; Cheng, C.I. Association between neutrophil percentage-to-albumin ratio (NPAR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and long-term mortality in community-dwelling adults with heart failure: Evidence from US NHANES 2005–2016. BMC Cardiovasc. Disord. 2023, 23, 312. [Google Scholar] [CrossRef]
- Long, J.; Xie, X.; Xu, D.; Huang, C.; Liu, Y.; Meng, X.; Cai, X.; Fang, X. Association Between Red Blood Cell Distribution Width-to-Albumin Ratio and Prognosis of Patients with Aortic Aneurysms. Int. J. Gen. Med. 2021, 14, 6287–6294. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Peng, Y.; Xu, Y.; Wang, L.; Wu, B.; Xiang, H.; Ji, K.; Guan, X. The Ratio of Red Blood Cell Distribution Width to Albumin Is Correlated with All-Cause Mortality of Patients After Percutaneous Coronary Intervention—A Retrospective Cohort Study. Front. Cardiovasc. Med. 2022, 9, 869816. [Google Scholar] [CrossRef]
- Li, D.; Ruan, Z.; Wu, B. Association of Red Blood Cell Distribution Width-Albumin Ratio for Acute Myocardial Infarction Patients with Mortality: A Retrospective Cohort Study. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221121286. [Google Scholar] [CrossRef]
- Liu, P.; Luo, S.; Duan, X.J.; Chen, X.; Zhou, Q.; Jiang, Y.; Liu, X. RDW-to-ALB Ratio Is an Independent Predictor for 30-Day All-Cause Mortality in Patients with Acute Ischemic Stroke: A Retrospective Analysis from the MIMIC-IV Database. Behav. Neurol. 2022, 2022, 3979213. [Google Scholar] [CrossRef]
- Meng, L.; Yang, H.; Xin, S.; Chang, C.; Liu, L.; Gu, G. Association of red blood cell distribution width-to-albumin ratio with mortality in patients undergoing transcatheter aortic valve replacement. PLoS ONE 2023, 18, e0286561. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Z.; Yang, H.; Li, H.; Chen, R.; Yu, J. Relationship between the Hemoglobin-to-Red Cell Distribution Width Ratio and All-Cause Mortality in Septic Patients with Atrial Fibrillation: Based on Propensity Score Matching Method. J. Cardiovasc. Dev. Dis. 2022, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J. Association between hemoglobin-to-red blood cell distribution width ratio and hospital mortality in patients with non-traumatic subarachnoid hemorrhage. Front. Neurol. 2023, 14, 1180912. [Google Scholar] [CrossRef]
- Zheng, R.J.; Guo, Q.Q.; Tang, J.N.; Yang, X.M.; Zhang, J.C.; Cheng, M.D.; Song, F.H.; Liu, Z.Y.; Wang, K.; Jiang, L.Z.; et al. ALT-to-Lymphocyte Ratio as a Predictor of Long-Term Mortality in Patients with Normal Liver Function Presenting Coronary Artery Disease after Undergoing PCI: A Retrospective Cohort Study. J. Interv. Cardiol. 2020, 2020, 4713591. [Google Scholar] [CrossRef]
- He, Z.; Wang, H.; Wang, S.; Li, L. Predictive Value of Platelet-to-Albumin Ratio (PAR) for the Cardiac-Associated Acute Kidney Injury and Prognosis of Patients in the Intensive Care Unit. Int. J. Gen. Med. 2022, 15, 8315–8326. [Google Scholar] [CrossRef]
- Baba, D.F.; Suciu, H.; Huma, L.; Avram, C.; Danilesco, A.; Moldovan, D.A.; Opincar, A.S.; Sin, A.I. Platelet-to-Albumin Ratio: The Prognostic Utility in the Prediction of 2-Month Postoperative Heart Transplant Complications. J. Cardiovasc. Dev. Dis. 2023, 10, 241. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, X.; Li, Y.; Hu, Q.; Zhang, Z.; Hu, T. Role of platelet to albumin ratio for predicting persistent acute kidney injury in patients admitted to the intensive care unit. BMC Anesthesiol. 2023, 23, 242. [Google Scholar] [CrossRef]
- Akuthota, P.; Wang, H.B.; Spencer, L.A.; Weller, P.F. Immunoregulatory roles of eosinophils: A new look at a familiar cell. Clin. Exp. Allergy 2008, 38, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Kita, H. Eosinophils: Multifaceted biological properties and roles in health and disease. Immunol. Rev. 2011, 242, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Klion, A.D.; Ackerman, S.J.; Bochner, B.S. Contributions of Eosinophils to Human Health and Disease. Annu. Rev. Pathol. 2020, 15, 179–209. [Google Scholar] [CrossRef]
- Xu, W.J.; Wang, S.; Yuan, P.; Wang, L.; Huang, J.X.; Jiang, R. Arterial and venous thromboembolism risk associated with blood eosinophils: A systematic review and meta-analysis. Anim. Model. Exp. Med. 2022, 5, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Sweetnam, P.M.; Thomas, H.F.; Yarnell, J.W.; Baker, I.A.; Elwood, P.C. Total and differential leukocyte counts as predictors of ischemic heart disease: The Caerphilly and Speedwell studies. Am. J. Epidemiol. 1997, 145, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, G.; Ferrante, G.; Cosentino, N.; Conte, M.; Belloni, F.; Marino, M.; Baca, M.; Montone, R.A.; Sabato, V.; Schiavino, D.; et al. Eosinophil cationic protein: A new biomarker of coronary atherosclerosis. Atherosclerosis 2010, 211, 606–611. [Google Scholar] [CrossRef]
- Tanaka, M.; Fukui, M.; Tomiyasu, K.; Akabame, S.; Nakano, K.; Yamasaki, M.; Hasegawa, G.; Oda, Y.; Nakamura, N. Eosinophil count is positively correlated with coronary artery calcification. Hypertens. Res. 2012, 35, 325–328. [Google Scholar] [CrossRef]
- Xia, G.L.; Wang, Y.K.; Huang, Z.Q. The Correlation of Serum Myeloid-Related Protein-8/14 and Eosinophil Cationic Protein in Patients with Coronary Artery Disease. BioMed Res. Int. 2016, 2016, 4980251. [Google Scholar] [CrossRef] [PubMed]
- Moldakozhayev, A.; Gladyshev, V.N. Metabolism, homeostasis, and aging. Trends Endocrinol. Metab. 2023, 34, 158–169. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Pratico, D.; Vinciguerra, M.; Lip, G.Y.H.; Franceschi, C.; Ren, J. Inflammaging: Mechanisms and role in the cardiac and vasculature. Trends Endocrinol. Metab. 2023, 34, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Valderrabano, R.J.; Lui, L.Y.; Lee, J.; Cummings, S.R.; Orwoll, E.S.; Hoffman, A.R.; Wu, J.Y.; Osteoporotic Fractures in Men Study Research, G. Bone Density Loss Is Associated with Blood Cell Counts. J. Bone Miner. Res. 2017, 32, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zeng, Y.; Lu, J.; Zhang, X.; Zhang, Z.; Li, H.; Liu, P.; Ma, B.; Gu, Y.; Song, L. Correlation of hemoglobin with osteoporosis in elderly Chinese population: A cross-sectional study. Front. Public Health 2023, 11, 1073968. [Google Scholar] [CrossRef] [PubMed]
- Schyrr, F.; Marques-Vidal, P.; Hans, D.; Lamy, O.; Naveiras, O. Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis. JBMR Plus 2022, 6, e10669. [Google Scholar] [CrossRef] [PubMed]
- Di Monaco, M.; Di Monaco, R.; Manca, M.; Cavanna, A. Positive association between total lymphocyte count and femur bone mineral density in hip-fractured women. Gerontology 2002, 48, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Di Monaco, M.; Vallero, F.; Di Monaco, R.; Mautino, F.; Cavanna, A. Total lymphocyte count and femoral bone mineral density in postmenopausal women. J. Bone Miner. Metab. 2004, 22, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Cho, H.Y.; Park, I.Y.; Choi, J.M.; Kim, M.; Jang, H.J.; Hwang, S.M. The positive association between peripheral blood cell counts and bone mineral density in postmenopausal women. Yonsei Med. J. 2011, 52, 739–745. [Google Scholar] [CrossRef]
- Lu, Y.N.; Wang, L.; Zhang, Y.Z. The promising roles of macrophages in geriatric hip fracture. Front. Cell Dev. Biol. 2022, 10, 962990. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Huang, J.; Chen, C.; Wang, Y.; Hao, Z.; Chen, T.; Wang, J.; Li, J. Strategies of Macrophages to Maintain Bone Homeostasis and Promote Bone Repair: A Narrative Review. J. Funct. Biomater. 2022, 14, 18. [Google Scholar] [CrossRef]
- Qu, L.; Zuo, X.; Yu, J.; Duan, R.; Zhao, B. Association of inflammatory markers with all-cause mortality and cardiovascular mortality in postmenopausal women with osteoporosis or osteopenia. BMC Womens Health 2023, 23, 487. [Google Scholar] [CrossRef]
- Perlstein, T.S.; Weuve, J.; Pfeffer, M.A.; Beckman, J.A. Red blood cell distribution width and mortality risk in a community-based prospective cohort. Arch. Intern. Med. 2009, 169, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.V.; Ferrucci, L.; Ershler, W.B.; Longo, D.L.; Guralnik, J.M. Red blood cell distribution width and the risk of death in middle-aged and older adults. Arch. Intern. Med. 2009, 169, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Wiebe, N.; James, M.T.; Naugler, C.; Manns, B.J.; Klarenbach, S.W.; Hemmelgarn, B.R. Red cell distribution width associations with clinical outcomes: A population-based cohort study. PLoS ONE 2019, 14, e0212374. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Borne, Y.; Engstrom, G. The relationship between red cell distribution width and all-cause and cause-specific mortality in a general population. Sci. Rep. 2019, 9, 16208. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Lamiral, Z.; Bakris, G.; Mehta, C.; White, W.B.; Zannad, F. Red cell distribution width in patients with diabetes and myocardial infarction: An analysis from the EXAMINE trial. Diabetes Obes. Metab. 2021, 23, 1580–1587. [Google Scholar] [CrossRef]
- Seyhan, E.C.; Ozgul, M.A.; Tutar, N.; Omur, I.; Uysal, A.; Altin, S. Red blood cell distribution and survival in patients with chronic obstructive pulmonary disease. COPD 2013, 10, 416–424. [Google Scholar] [CrossRef]
- Hong, N.; Kim, C.O.; Youm, Y.; Choi, J.Y.; Kim, H.C.; Rhee, Y. Elevated Red Blood Cell Distribution Width Is Associated with Morphometric Vertebral Fracture in Community-Dwelling Older Adults, Independent of Anemia, Inflammation, and Nutritional Status: The Korean Urban Rural Elderly (KURE) Study. Calcif. Tissue Int. 2019, 104, 26–33. [Google Scholar] [CrossRef]
- Yoo, K.D.; Oh, H.J.; Park, S.; Kang, M.W.; Kim, Y.C.; Park, J.Y.; Lee, J.; Lee, J.S.; Kim, D.K.; Lim, C.S.; et al. Red blood cell distribution width as a predictor of mortality among patients regularly visiting the nephrology outpatient clinic. Sci. Rep. 2021, 11, 24310. [Google Scholar] [CrossRef]
- Butt, J.H.; McDowell, K.; Kondo, T.; Desai, A.S.; Lefkowitz, M.P.; Packer, M.; Petrie, M.C.; Pfeffer, M.A.; Rouleau, J.L.; Vaduganathan, M.; et al. Heart failure with preserved ejection fraction, red cell distribution width, and sacubitril/valsartan. ESC Heart Fail. 2024, 11, 65–77. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, L.; Zhang, Y.; Huang, S.; Jiang, H.; Wang, W. High red blood cell distribution width is associated with the mortality of critically ill cancer patients: A propensity-matching study. Adv. Clin. Exp. Med. 2023, 32, 31–41. [Google Scholar] [CrossRef]
- Pepe, J.; Colangelo, L.; De Martino, V.; Occhiuto, M.; Iervolino, D.; Pasqualetti, P.; Minisola, S.; Cipriani, C. Study of the link between hemotopoietic and skeletal systems in patients attending a referral center for osteoporosis. J. Endocrinol. Investig. 2023, 46, 2391–2397. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, Z.A.; Yesil, Y.; Kuyumcu, M.E.; Bilici, M.; Ozturk, N.; Yesil, N.K.; Ozkaya, M.; Kisacik, B.; Kepekci, Y.; Ariogul, S. Inverse relationship between neutrophil lymphocyte ratio (NLR) and bone mineral density (BMD) in elderly people. Arch. Gerontol. Geriatr. 2013, 57, 81–85. [Google Scholar] [CrossRef]
- Yilmaz, H.; Uyfun, M.; Yilmaz, T.S.; Namuslu, M.; Inan, O.; Taskin, A.; Cakmak, M.; Bilgic, M.A.; Bavbek, N.; Akcay, A.; et al. Neutrophil-lymphocyte ratio may be superior to C-reactive protein for predicting the occurrence of postmenopausal osteoporosis. Endocr. Regul. 2014, 48, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Ryu, S.Y.; Park, J.; Shin, M.H.; Han, M.A.; Choi, S.W. The Relationship of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio with Bone Mineral Density in Korean Postmenopausal Women. Chonnam Med. J. 2019, 55, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Yang, T.I.; Huang, S.W.; Kuo, Y.J.; Chen, Y.P. Associations of the Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio with Osteoporosis: A Meta-Analysis. Diagnostics 2022, 12, 2968. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, X.; Jin, J.; Zhou, G.; Li, Z. Association between inflammatory markers and bone mineral density: A cross-sectional study from NHANES 2007–2010. J. Orthop. Surg. Res. 2023, 18, 305. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, J.; Shi, L.; Han, S.; Chen, J.; Sheng, Z.; Deng, M.; Jin, X.; Zhang, Z. Systemic Inflammation Markers Associated with Bone Mineral Density in perimenopausal and Postmenopausal Women. J. Inflamm. Res. 2023, 16, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Cedeno-Veloz, B.A.; Lozano-Vicario, L.; Zambom-Ferraresi, F.; Fernandez-Irigoyen, J.; Santamaria, E.; Rodriguez-Garcia, A.; Romero-Ortuno, R.; Mondragon-Rubio, J.; Ruiz-Ruiz, J.; Ramirez-Velez, R.; et al. Effect of immunology biomarkers associated with hip fracture and fracture risk in older adults. Immun. Ageing 2023, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Xu, Z.; Wan, R.; Hu, D.; Huang, Y. Associations between blood inflammatory markers and bone mineral density and strength in the femoral neck: Findings from the MIDUS II study. Sci. Rep. 2023, 13, 10662. [Google Scholar] [CrossRef]
- Blodgett, J.M.; Perez-Zepeda, M.U.; Godin, J.; Kehler, D.S.; Andrew, M.K.; Kirkland, S.; Rockwood, K.; Theou, O. Prognostic accuracy of 70 individual frailty biomarkers in predicting mortality in the Canadian Longitudinal Study on Aging. Geroscience 2024, 46, 3061–3069. [Google Scholar] [CrossRef]
- Menezes, A.M.B.; Oliveira, P.D.; Goncalves, H.; Oliveira, I.O.; Assuncao, M.C.F.; Tovo-Rodrigues, L.; Ferreira, G.D.; Wehrmeister, F.C. Are cytokines (IL-6, CRP and adiponectin) associated with bone mineral density in a young adult birth cohort? BMC Musculoskelet. Disord. 2018, 19, 427. [Google Scholar] [CrossRef] [PubMed]
- Brozek, W.; Ulmer, H.; Pompella, A.; Nagel, G.; Leiherer, A.; Preyer, O.; Concin, H.; Zitt, E. Gamma-glutamyl-transferase is associated with incident hip fractures in women and men >/= 50 years: A large population-based cohort study. Osteoporos. Int. 2022, 33, 1295–1307. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Hong, N.; Yu, M.H.; Lee, S.; Shin, S.; Kim, S.G.; Rhee, Y. Elevated gamma-glutamyl transpeptidase level is associated with an increased risk of hip fracture in postmenopausal women. Sci. Rep. 2022, 12, 13947. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.H.; Lee, H.; Hong, I.; Chang, Y.; Song, T.J. Association of gamma-glutamyl transferase variability with risk of osteoporotic fractures: A nationwide cohort study. PLoS ONE 2023, 18, e0277452. [Google Scholar] [CrossRef] [PubMed]
- Di Monaco, M.; Vallero, F.; Di Monaco, R.; Mautino, F.; Cavanna, A. Biochemical markers of nutrition and bone mineral density in the elderly. Gerontology 2003, 49, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Srikusalanukul, W.; Davis, M.; Smith, P. Interactions between Serum Adipokines and Osteocalcin in Older Patients with Hip Fracture. Int. J. Endocrinol. 2012, 2012, 684323. [Google Scholar] [CrossRef]
- Fisher, A.; Srikusalanukul, W.; Davis, M.; Smith, P. Cardiovascular diseases in older patients with osteoporotic hip fracture: Prevalence, disturbances in mineral and bone metabolism, and bidirectional links. Clin. Interv. Aging 2013, 8, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Nielson, C.M.; Wiedrick, J.; Shen, J.; Jacobs, J.; Baker, E.S.; Baraff, A.; Piehowski, P.; Lee, C.G.; Baratt, A.; Petyuk, V.; et al. Identification of Hip BMD Loss and Fracture Risk Markers Through Population-Based Serum Proteomics. J. Bone Miner. Res. 2017, 32, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Fuggle, N.R.; Westbury, L.D.; Syddall, H.E.; Duggal, N.A.; Shaw, S.C.; Maslin, K.; Dennison, E.M.; Lord, J.; Cooper, C. Relationships between markers of inflammation and bone density: Findings from the Hertfordshire Cohort Study. Osteoporos. Int. 2018, 29, 1581–1589. [Google Scholar] [CrossRef]
- Al-Ansari, M.M.; Aleidi, S.M.; Masood, A.; Alnehmi, E.A.; Abdel Jabar, M.; Almogren, M.; Alshaker, M.; Benabdelkamel, H.; Abdel Rahman, A.M. Proteomics Profiling of Osteoporosis and Osteopenia Patients and Associated Network Analysis. Int. J. Mol. Sci. 2022, 23, 10200. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.H.; Jeon, Y.K.; Lee, J.S.; Kim, K.; Hwang, S.K.; Kim, J.H.; Goh, T.S.; Kim, Y.H. Effect of adipokine and ghrelin levels on BMD and fracture risk: An updated systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1044039. [Google Scholar] [CrossRef] [PubMed]
- Mangion, D.; Pace, N.P.; Formosa, M.M. The relationship between adipokine levels and bone mass-A systematic review. Endocrinol. Diabetes Metab. 2023, 6, e408. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Zhao, Y.; Naqvi, S.; Duan, R. The association between serum adipokines levels with senile osteoporosis: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1193181. [Google Scholar] [CrossRef] [PubMed]
- Burnett, J.R.; Vasikaran, S.D. Cardiovascular disease and osteoporosis: Is there a link between lipids and bone? Ann. Clin. Biochem. 2002, 39, 203–210. [Google Scholar] [CrossRef]
- Eastell, R.; Newman, C.; Crossman, D.C. Cardiovascular disease and bone. Arch. Biochem. Biophys. 2010, 503, 78–83. [Google Scholar] [CrossRef]
- Lello, S.; Capozzi, A.; Scambia, G. Osteoporosis and cardiovascular disease: An update. Gynecol. Endocrinol. 2015, 31, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Laroche, M.; Pecourneau, V.; Blain, H.; Breuil, V.; Chapurlat, R.; Cortet, B.; Sutter, B.; Degboe, Y.; GRIO Scientific Committee. Osteoporosis and ischemic cardiovascular disease. Jt. Bone Spine 2017, 84, 427–432. [Google Scholar] [CrossRef]
- Pickering, M.E. Cross-Talks between the Cardiovascular Disease-Sarcopenia-Osteoporosis Triad and Magnesium in Humans. Int. J. Mol. Sci. 2021, 22, 9102. [Google Scholar] [CrossRef]
- Takashi, Y.; Kawanami, D. The Role of Bone-Derived Hormones in Glucose Metabolism, Diabetic Kidney Disease, and Cardiovascular Disorders. Int. J. Mol. Sci. 2022, 23, 2376. [Google Scholar] [CrossRef]
- Azeez, T.A. Osteoporosis and cardiovascular disease: A review. Mol. Biol. Rep. 2023, 50, 1753–1763. [Google Scholar] [CrossRef]
- Bourke, R.; Doody, P.; Perez, S.; Moloney, D.; Lipsitz, L.A.; Kenny, R.A. Cardiovascular Disorders and Falls Among Older Adults: A Systematic Review and Meta-Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad221. [Google Scholar] [CrossRef] [PubMed]
- Pronk, A.C.; Wang, L.; van Poelgeest, E.P.; Leeflang, M.M.G.; Daams, J.G.; Hoekstra, A.G.; van der Velde, N. The impact of cardiovascular diagnostics and treatments on fall risk in older adults: A scoping review and evidence map. Geroscience 2024, 46, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Miyawaki, N.; Moon, J.; Kasselman, L.J.; Voloshyna, I.; D’Avino, R., Jr.; De Leon, J. CKD, arterial calcification, atherosclerosis and bone health: Inter-relationships and controversies. Atherosclerosis 2018, 278, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, S.; Bagordo, D.; De Martini, N.; Pasquali, M.; Rotondi, S.; Tartaglione, L.; Stenvinkel, P.; ERA-EDTA CKD-MBD Working Group. Inflammation, Oxidative Stress, and Bone in Chronic Kidney Disease in the Osteoimmunology Era. Calcif. Tissue Int. 2021, 108, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Bellone, F.; Cinquegrani, M.; Nicotera, R.; Carullo, N.; Casarella, A.; Presta, P.; Andreucci, M.; Squadrito, G.; Mandraffino, G.; Prunesti, M.; et al. Role of Vitamin K in Chronic Kidney Disease: A Focus on Bone and Cardiovascular Health. Int. J. Mol. Sci. 2022, 23, 5282. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, C.; Ix, J.H. Diagnosis and Management of Osteoporosis in Advanced Kidney Disease: A Review. Am. J. Kidney Dis. 2022, 79, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Mandai, S.; Naito, S.; Fujiki, T.; Mori, Y.; Ando, F.; Mori, T.; Susa, K.; Iimori, S.; Sohara, E.; et al. Effect of osteosarcopenia on longitudinal mortality risk and chronic kidney disease progression in older adults. Bone 2024, 179, 116975. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Onda, D.A.; Yang, C.H.; Lewis, J.R.; Levinger, I.; Loh, K. Roles of bone-derived hormones in type 2 diabetes and cardiovascular pathophysiology. Mol. Metab. 2020, 40, 101040. [Google Scholar] [CrossRef]
- Yang, Y.J.; Kim, D.J. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia. Int. J. Mol. Sci. 2021, 22, 2604. [Google Scholar] [CrossRef]
- Saeki, C.; Tsubota, A. Influencing Factors and Molecular Pathogenesis of Sarcopenia and Osteosarcopenia in Chronic Liver Disease. Life 2021, 11, 899. [Google Scholar] [CrossRef]
- Zhao, J.; Lei, H.; Wang, T.; Xiong, X. Liver-bone crosstalk in non-alcoholic fatty liver disease: Clinical implications and underlying pathophysiology. Front. Endocrinol. 2023, 14, 1161402. [Google Scholar] [CrossRef] [PubMed]
- Musio, A.; Perazza, F.; Leoni, L.; Stefanini, B.; Dajti, E.; Menozzi, R.; Petroni, M.L.; Colecchia, A.; Ravaioli, F. Osteosarcopenia in NAFLD/MAFLD: An Underappreciated Clinical Problem in Chronic Liver Disease. Int. J. Mol. Sci. 2023, 24, 7517. [Google Scholar] [CrossRef]
- Jadzic, J.; Djonic, D. Bone loss in chronic liver diseases: Could healthy liver be a requirement for good bone health? World J. Gastroenterol. 2023, 29, 825–833. [Google Scholar] [CrossRef]
- Thomson, M.; Scott, A.; Trost, S.; Lake, J.; Lim, N. Low screening rates and high prevalence of osteoporosis in cirrhosis: A real-world retrospective analysis. Aliment. Pharmacol. Ther. 2024, 59, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.N.; Zhang, Q.; Li, M. Alzheimer’s disease and its associated risk of bone fractures: A narrative review. Front. Endocrinol. 2023, 14, 1190762. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Jung, J.H.; Hwang, H.S.; Park, H.K.; Han, K.; Nam, G.E. Bone Mineral Density and the Risk of Parkinson’s Disease in Postmenopausal Women. Mov. Disord. 2023, 38, 1606–1614. [Google Scholar] [CrossRef]
- Xie, C.; Wang, C.; Luo, H. Increased risk of osteoporosis in patients with cognitive impairment: A systematic review and meta-analysis. BMC Geriatr. 2023, 23, 797. [Google Scholar] [CrossRef] [PubMed]
- Schurman, C.A.; Burton, J.B.; Rose, J.; Ellerby, L.M.; Alliston, T.; Schilling, B. Molecular and Cellular Crosstalk between Bone and Brain: Accessing Bidirectional Neural and Musculoskeletal Signaling during Aging and Disease. J. Bone Metab. 2023, 30, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yu, R.; Li, J.; Xiao, E.; Guo, J.; Wang, X.; Li, G.; Liu, P. Cross-sectional study and bioinformatics analysis to reveal the correlations of osteoporosis in patients with Parkinson’s disease. Exp. Gerontol. 2023, 173, 112111. [Google Scholar] [CrossRef] [PubMed]
- Kalc, P.; Dahnke, R.; Hoffstaedter, F.; Gaser, C. Low bone mineral density is associated with gray matter volume decrease in UK Biobank. Front. Aging Neurosci. 2023, 15, 1287304. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, I.; Inaba, M.; Inoue, D.; Uenishi, K.; Saito, M.; Shiraki, M.; Suzuki, A.; Takeuchi, Y.; Hagino, H.; Fujiwara, S.; et al. Executive summary of clinical practice guide on fracture risk in lifestyle diseases. J. Bone Miner. Metab. 2020, 38, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Fan, X.; Zhang, Y.; Xu, N.; Li, L. Risk of Fracture and Osteoporosis in Patients with COPD and Inhaled Corticosteroids Treatment. Respir. Care 2023, 68, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Tan, C.; Du, L.; Niu, Y.; Liu, X.; Wang, R. Effect of fracture risk in inhaled corticosteroids in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. BMC Pulm. Med. 2023, 23, 304. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.S.; Kumar, M.; Agrawal, P.K.; Thakur, D.K. Osteoporosis in Asthma and COPD. Indian. J. Orthop. 2023, 57, 200–208. [Google Scholar] [CrossRef]
- Bizzoca, D.; Solarino, G.; Vicenti, G.; Moretti, L.; Nappi, V.S.; Belluati, A.; Moretti, B. Novel directions in the study of osteoporosis: Focus on gut microbiota as a potential therapeutic target. J. Biol. Regul. Homeost. Agents 2020, 34, 29–35. [Google Scholar] [PubMed]
- Seely, K.D.; Kotelko, C.A.; Douglas, H.; Bealer, B.; Brooks, A.E. The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. Int. J. Mol. Sci. 2021, 22, 9452. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: A review. Osteoporos. Int. 2022, 33, 2495–2506. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X.; Zhang, C.; Liu, Z.; Li, C.; Ren, Z. Gut Microbiota and Bone Diseases: A Growing Partnership. Front. Microbiol. 2022, 13, 877776. [Google Scholar] [CrossRef] [PubMed]
- Waldbaum, J.D.H.; Xhumari, J.; Akinsuyi, O.S.; Arjmandi, B.; Anton, S.; Roesch, L.F.W. Association between Dysbiosis in the Gut Microbiota of Primary Osteoporosis Patients and Bone Loss. Aging Dis. 2023, 14, 2081–2095. [Google Scholar] [CrossRef]
- Gruner, N.; Ortlepp, A.L.; Mattner, J. Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut-Bone Physiology. Int. J. Mol. Sci. 2023, 24, 5161. [Google Scholar] [CrossRef]
- Ye, C.; Leslie, W.D. Fracture risk and assessment in adults with cancer. Osteoporos. Int. 2023, 34, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Sharma, A.; Gogia, A. Bone health in breast cancer. Curr. Probl. Cancer 2023, 47, 100959. [Google Scholar] [CrossRef] [PubMed]
- Dalla Volta, A.; Caramella, I.; Di Mauro, P.; Bergamini, M.; Cosentini, D.; Valcamonico, F.; Cappelli, C.; Lagana, M.; Di Meo, N.; Farina, D.; et al. Role of Body Composition in the Prediction of Skeletal Fragility Induced by Hormone Deprivation Therapies in Cancer Patients. Curr. Oncol. Rep. 2023, 25, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- Schwetz, V.; Pieber, T.; Obermayer-Pietsch, B. The endocrine role of the skeleton: Background and clinical evidence. Eur. J. Endocrinol. 2012, 166, 959–967. [Google Scholar] [CrossRef]
- Booth, S.L.; Centi, A.J.; Gundberg, C. Bone as an endocrine organ relevant to diabetes. Curr. Diab. Rep. 2014, 14, 556. [Google Scholar] [CrossRef]
- Wei, J.; Karsenty, G. An overview of the metabolic functions of osteocalcin. Curr. Osteoporos. Rep. 2015, 13, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.A.P.; Goncalves, L.M.L.; Brito, J.A.A. Relationships between Bone Turnover and Energy Metabolism. J. Diabetes Res. 2017, 2017, 9021314. [Google Scholar] [CrossRef]
- Vlot, M.C.; den Heijer, M.; de Jongh, R.T.; Vervloet, M.G.; Lems, W.F.; de Jonge, R.; Obermayer-Pietsch, B.; Heijboer, A.C. Clinical utility of bone markers in various diseases. Bone 2018, 114, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Battafarano, G.; Pepe, J.; Minisola, S.; Del Fattore, A. The Endocrine Function of Osteocalcin Regulated by Bone Resorption: A Lesson from Reduced and Increased Bone Mass Diseases. Int. J. Mol. Sci. 2019, 20, 4502. [Google Scholar] [CrossRef]
- Komori, T. Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle. Int. J. Mol. Sci. 2020, 21, 7513. [Google Scholar] [CrossRef]
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos. Rep. 2020, 18, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Shimonty, A.; Bonewald, L.F.; Huot, J.R. Metabolic Health and Disease: A Role of Osteokines? Calcif. Tissue Int. 2023, 113, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Bidwell, J.P.; Bonewald, L.; Robling, A.G. The Skeleton as a Secretory Organ. Calcif. Tissue Int. 2023, 113, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.Q.; Lin, J.L.; Huang, J.; Wu, T.; Song, C.L. Targeting aging with the healthy skeletal system: The endocrine role of bone. Rev. Endocr. Metab. Disord. 2023, 24, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Maciel, G.B.M.; Maciel, R.M.; Danesi, C.C. Bone cells and their role in physiological remodeling. Mol. Biol. Rep. 2023, 50, 2857–2863. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk, J.W. Metabolites of Life: Phosphate. Metabolites 2023, 13, 860. [Google Scholar] [CrossRef] [PubMed]
- Assmann, N.; Finlay, D.K. Metabolic regulation of immune responses: Therapeutic opportunities. J. Clin. Investig. 2016, 126, 2031–2039. [Google Scholar] [CrossRef]
- O’Neill, L.A.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016, 16, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Straub, R.H.; Pongratz, G.; Buttgereit, F.; Gaber, T. [Energy metabolism of the immune system: Consequences in chronic inflammation]. Z. Rheumatol. 2023, 82, 479–490. [Google Scholar] [CrossRef]
- Han, S.; Georgiev, P.; Ringel, A.E.; Sharpe, A.H.; Haigis, M.C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 2023, 35, 36–55. [Google Scholar] [CrossRef]
- Soriano-Baguet, L.; Brenner, D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol. 2023, 44, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.; Stevens, B.; Lynch, L. Interleukin-17 as a key player in neuroimmunometabolism. Nat. Metab. 2023, 5, 1088–1100. [Google Scholar] [CrossRef] [PubMed]
- Korczowska-Lacka, I.; Hurla, M.; Banaszek, N.; Kobylarek, D.; Szymanowicz, O.; Kozubski, W.; Dorszewska, J. Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases. Mol. Neurobiol. 2023, 60, 4132–4149. [Google Scholar] [CrossRef] [PubMed]
- Kalailingam, P.; Mohd-Kahliab, K.H.; Ngan, S.C.; Iyappan, R.; Melekh, E.; Lu, T.; Zien, G.W.; Sharma, B.; Guo, T.; MacNeil, A.J.; et al. Immunotherapy targeting isoDGR-protein damage extends lifespan in a mouse model of protein deamidation. EMBO Mol. Med. 2023, 15, e18526. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Marcuzzo, G.; Marescotti, M.C.; de Kreutzenberg, S.V.; Avogaro, A. Elevated white blood cell count is associated with prevalence and development of the metabolic syndrome and its components in the general population. Acta Diabetol. 2012, 49, 445–451. [Google Scholar] [CrossRef]
- Raya-Cano, E.; Vaquero-Abellan, M.; Molina-Luque, R.; Molina-Recio, G.; Guzman-Garcia, J.M.; Jimenez-Merida, R.; Romero-Saldana, M. Association between Metabolic Syndrome and Leukocytes: Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 7044. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Sun, H.; Tu, X.; Li, W. The Predictive Role of Hematological Parameters in Hypertension. Angiology 2023, 33197231190423. [Google Scholar] [CrossRef] [PubMed]
- Haybar, H.; Pezeshki, S.M.S.; Saki, N. Evaluation of complete blood count parameters in cardiovascular diseases: An early indicator of prognosis? Exp. Mol. Pathol. 2019, 110, 104267. [Google Scholar] [CrossRef]
- Ainiwaer, A.; Kadier, K.; Abulizi, A.; Hou, W.Q.; Rehemuding, R.; Maimaiti, H.; Yakufu, M.; Ma, X.; Ma, Y.T. Association of red cell distribution width (RDW) and the RDW to platelet count ratio with cardiovascular disease among US adults: A cross-sectional study based on the National Health and Nutrition Examination Survey 1999–2020. BMJ Open 2023, 13, e068148. [Google Scholar] [CrossRef]
- Naghedi, A.; Varastehravan, H.; Haghaninejad, H.; Naghedi, A.; Farshadi, N. Importance of so called “novel cardiovascular risk factors” in severity of coronary artery calcification; how serious they should be taken: A systematic review and metaanalysis. Arch. Cardiol. Mex. 2023, 93, 212–222. [Google Scholar] [CrossRef]
- Song, M.; Graubard, B.I.; Rabkin, C.S.; Engels, E.A. Neutrophil-to-lymphocyte ratio and mortality in the United States general population. Sci. Rep. 2021, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Keskin, C.; Dilekci, E.N.; Uc, Z.A.; Cengiz, D.; Duran, C. Can the systemic immune-inflammation index be used as a novel diagnostic tool in the diagnosis of subacute thyroiditis? Biomark. Med. 2022, 16, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Ciftel, S.; Tuzun, Z. Could the Systemic Immune Inflammation Index Predict Diagnosis, Recovery Time, Hypothyroidism, and Recurrence Rates in Subacute Thyroiditis? Int. J. Gen. Med. 2023, 16, 1375–1382. [Google Scholar] [CrossRef]
- Cheang, I.; Zhu, X.; Lu, X.; Yue, X.; Tang, Y.; Gao, R.; Liao, S.; Yao, W.; Zhou, Y.; Zhang, H.; et al. Associations of Inflammation with Risk of Cardiovascular and All-Cause Mortality in Adults with Hypertension: An Inflammatory Prognostic Scoring System. J. Inflamm. Res. 2022, 15, 6125–6136. [Google Scholar] [CrossRef]
- Arroyo, V.; Garcia-Martinez, R.; Salvatella, X. Human serum albumin, systemic inflammation, and cirrhosis. J. Hepatol. 2014, 61, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Levitt, D.G.; Levitt, M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016, 9, 229–255. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, R.; Mateu, X.; Maseda, E.; Yebenes, J.C.; Aldecoa, C.; De Haro, C.; Ruiz-Rodriguez, J.C.; Garnacho-Montero, J. Non-oncotic properties of albumin. A multidisciplinary vision about the implications for critically ill patients. Expert. Rev. Clin. Pharmacol. 2018, 11, 125–137. [Google Scholar] [CrossRef]
- Otero, T.M.N.; Monlezun, D.J.; Christopher, K.B.; Camargo, C.A.; Quraishi, S.A. Vitamin D Status and Elevated Red Cell Distribution Width in Community-Dwelling Adults: Results from the National Health and Nutrition Examination Survey 2001–2006. J. Nutr. Health Aging 2017, 21, 1176–1182. [Google Scholar] [CrossRef]
- Bollen, S.E.; Bass, J.J.; Wilkinson, D.J.; Hewison, M.; Atherton, P.J. The impact of genetic variation within the vitamin D pathway upon skeletal muscle function: A systematic review. J. Steroid Biochem. Mol. Biol. 2023, 229, 106266. [Google Scholar] [CrossRef]
- Fang, A.; Zhao, Y.; Yang, P.; Zhang, X.; Giovannucci, E.L. Vitamin D and human health: Evidence from Mendelian randomization studies. Eur. J. Epidemiol. 2024, 39, 467–490. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Rosen, C.J. Vitamin D: 100 years of discoveries, yet controversy continues. Lancet Diabetes Endocrinol. 2023, 11, 362–374. [Google Scholar] [CrossRef]
- Ridker, P.M. From CANTOS to CIRT to COLCOT to Clinic: Will All Atherosclerosis Patients Soon Be Treated with Combination Lipid-Lowering and Inflammation-Inhibiting Agents? Circulation 2020, 141, 787–789. [Google Scholar] [CrossRef]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E.; Prominent, R.-I.; Investigators, S. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Mainous, A.G., 3rd; Sharma, P.; Jo, A. Systemic inflammation among adults with diagnosed and undiagnosed cardiometabolic conditions: A potential missed opportunity for cardiovascular disease prevention. Front. Med. 2023, 10, 1327205. [Google Scholar] [CrossRef] [PubMed]
- Shepstone, L.; Lenaghan, E.; Cooper, C.; Clarke, S.; Fong-Soe-Khioe, R.; Fordham, R.; Gittoes, N.; Harvey, I.; Harvey, N.; Heawood, A.; et al. Screening in the community to reduce fractures in older women (SCOOP): A randomised controlled trial. Lancet 2018, 391, 741–747. [Google Scholar] [CrossRef]
- McCloskey, E.V.; Chotiyarnwong, P.; Harvey, N.C.; Lorentzon, M.; Kanis, J.A.; International Osteoporosis Foundation Epidemiology/Quality of Life Working Group. Population screening for fracture risk in postmenopausal women—A logical step in reducing the osteoporotic fracture burden? Osteoporos. Int. 2022, 33, 1631–1637. [Google Scholar] [CrossRef]
- Leslie, W.D.; Moller, S.; Skjodt, M.K.; Yan, L.; Abrahamsen, B.; Lix, L.M.; McCloskey, E.V.; Johansson, H.; Harvey, N.C.; Kanis, J.A.; et al. FREM predicts 10-year incident fracture risk independent of FRAX(R) probability: A registry-based cohort study. Osteoporos. Int. 2022, 33, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Chotiyarnwong, P.; McCloskey, E.V.; Harvey, N.C.; Lorentzon, M.; Prieto-Alhambra, D.; Abrahamsen, B.; Adachi, J.D.; Borgstrom, F.; Bruyere, O.; Carey, J.J.; et al. Is it time to consider population screening for fracture risk in postmenopausal women? A position paper from the International Osteoporosis Foundation Epidemiology/Quality of Life Working Group. Arch. Osteoporos. 2022, 17, 87. [Google Scholar] [CrossRef]
- Grad, R.; Reynolds, D.L.; Antao, V.; Bell, N.R.; Dickinson, J.A.; Johansson, M.; Singh, H.; Szafran, O.; Theriault, G. Screening for primary prevention of fragility fractures: How much time does it take? Can. Fam. Physician 2023, 69, 537–541. [Google Scholar] [CrossRef]
- Wingood, M.; Criss, M.G.; Irwin, K.E.; Freshman, C.; Phillips, E.L.; Dhaliwal, P.; Chui, K.K. Screening for Osteoporosis Risk Among Community-Dwelling Older Adults: A Scoping Review. J. Geriatr. Phys. Ther. 2023, 46, E137–E147. [Google Scholar] [CrossRef]
- Gates, M.; Pillay, J.; Nuspl, M.; Wingert, A.; Vandermeer, B.; Hartling, L. Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: Systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools. Syst. Rev. 2023, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Theriault, G.; Limburg, H.; Klarenbach, S.; Reynolds, D.L.; Riva, J.J.; Thombs, B.D.; Tessier, L.A.; Grad, R.; Wilson, B.J.; Canadian Task Force on Preventive Health Care. Recommendations on screening for primary prevention of fragility fractures. CMAJ 2023, 195, E639–E649. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chao, J.; Bao, M.; Zhang, N. Predictive value of machine learning on fracture risk in osteoporosis: A systematic review and meta-analysis. BMJ Open 2023, 13, e071430. [Google Scholar] [CrossRef]
- Schini, M.; Johansson, H.; Harvey, N.C.; Lorentzon, M.; Kanis, J.A.; McCloskey, E.V. An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis. J. Endocrinol. Investig. 2024, 47, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Hillier, T.A.; Cauley, J.A.; Rizzo, J.H.; Pedula, K.L.; Ensrud, K.E.; Bauer, D.C.; Lui, L.Y.; Vesco, K.K.; Black, D.M.; Donaldson, M.G.; et al. WHO absolute fracture risk models (FRAX): Do clinical risk factors improve fracture prediction in older women without osteoporosis? J. Bone Miner. Res. 2011, 26, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Leib, E.S.; Winzenrieth, R. Bone status in glucocorticoid-treated men and women. Osteoporos. Int. 2016, 27, 39–48. [Google Scholar] [CrossRef]
- Schacter, G.I.; Leslie, W.D. DXA-Based Measurements in Diabetes: Can They Predict Fracture Risk? Calcif. Tissue Int. 2017, 100, 150–164. [Google Scholar] [CrossRef]
- Hans, D.; Stenova, E.; Lamy, O. The Trabecular Bone Score (TBS) Complements DXA and the FRAX as a Fracture Risk Assessment Tool in Routine Clinical Practice. Curr. Osteoporos. Rep. 2017, 15, 521–531. [Google Scholar] [CrossRef]
- Shevroja, E.; Cafarelli, F.P.; Guglielmi, G.; Hans, D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 2021, 74, 20–28. [Google Scholar] [CrossRef]
- Chakhtoura, M.; Dagher, H.; Sharara, S.; Ajjour, S.; Chamoun, N.; Cauley, J.; Mahfoud, Z.; Boudreau, R.; El Hajj Fuleihan, G. Systematic review of major osteoporotic fracture to hip fracture incidence rate ratios worldwide: Implications for Fracture Risk Assessment Tool (FRAX)-derived estimates. J. Bone Miner. Res. 2021, 36, 1942–1956. [Google Scholar] [CrossRef]
- Vandenput, L.; Johansson, H.; McCloskey, E.V.; Liu, E.; Akesson, K.E.; Anderson, F.A.; Azagra, R.; Bager, C.L.; Beaudart, C.; Bischoff-Ferrari, H.A.; et al. Update of the fracture risk prediction tool FRAX: A systematic review of potential cohorts and analysis plan. Osteoporos. Int. 2022, 33, 2103–2136. [Google Scholar] [CrossRef] [PubMed]
- Dapaah, D.; Martel, D.R.; Iranmanesh, F.; Seelemann, C.; Laing, A.C.; Willett, T. Fracture Toughness: Bridging the Gap Between Hip Fracture and Fracture Risk Assessment. Curr. Osteoporos. Rep. 2023, 21, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashimi, L.; Klotsche, J.; Ohrndorf, S.; Gaber, T.; Hoff, P. Trabecular Bone Score Significantly Influences Treatment Decisions in Secondary Osteoporosis. J. Clin. Med. 2023, 12, 4147. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, C.W.; Morin, P.E. Trends and Disparities in Osteoporosis Screening Among Women in the United States, 2008–2014. Am. J. Med. 2017, 130, 306–316. [Google Scholar] [CrossRef]
- Sabri, S.A.; Chavarria, J.C.; Ackert-Bicknell, C.; Swanson, C.; Burger, E. Osteoporosis: An Update on Screening, Diagnosis, Evaluation, and Treatment. Orthopedics 2023, 46, e20–e26. [Google Scholar] [CrossRef]
- Aguado-Maestro, I.; Panteli, M.; Garcia-Alonso, M.; Banuelos-Diaz, A.; Giannoudis, P.V. Incidence of bone protection and associated fragility injuries in patients with proximal femur fractures. Injury 2017, 48 (Suppl. S7), S27–S33. [Google Scholar] [CrossRef]
- Barton, D.W.; Behrend, C.J.; Carmouche, J.J. Rates of osteoporosis screening and treatment following vertebral fracture. Spine J. 2019, 19, 411–417. [Google Scholar] [CrossRef]
- LeBoff, M.S.; Greenspan, S.L.; Insogna, K.L.; Lewiecki, E.M.; Saag, K.G.; Singer, A.J.; Siris, E.S. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 2022, 33, 2049–2102. [Google Scholar] [CrossRef]
- Thomas, C.D.; Mayhew, P.M.; Power, J.; Poole, K.E.; Loveridge, N.; Clement, J.G.; Burgoyne, C.J.; Reeve, J. Femoral neck trabecular bone: Loss with aging and role in preventing fracture. J. Bone Miner. Res. 2009, 24, 1808–1818. [Google Scholar] [CrossRef]
- Mai, H.T.; Tran, T.S.; Ho-Le, T.P.; Center, J.R.; Eisman, J.A.; Nguyen, T.V. Two-Thirds of All Fractures Are Not Attributable to Osteoporosis and Advancing Age: Implications for Fracture Prevention. J. Clin. Endocrinol. Metab. 2019, 104, 3514–3520. [Google Scholar] [CrossRef]
- Leslie, W.D.; Majumdar, S.R.; Morin, S.N.; Lix, L.M. Why does rate of bone density loss not predict fracture risk? J. Clin. Endocrinol. Metab. 2015, 100, 679–683. [Google Scholar] [CrossRef]
- Schloemann, D.T.; Ricciardi, B.F.; Thirukumaran, C.P. Disparities in the Epidemiology and Management of Fragility Hip Fractures. Curr. Osteoporos. Rep. 2023, 21, 567–577. [Google Scholar] [CrossRef]
- Schett, G.; Kiechl, S.; Weger, S.; Pederiva, A.; Mayr, A.; Petrangeli, M.; Oberhollenzer, F.; Lorenzini, R.; Redlich, K.; Axmann, R.; et al. High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch. Intern. Med. 2006, 166, 2495–2501. [Google Scholar] [CrossRef]
- Cauley, J.A.; Danielson, M.E.; Boudreau, R.M.; Forrest, K.Y.; Zmuda, J.M.; Pahor, M.; Tylavsky, F.A.; Cummings, S.R.; Harris, T.B.; Newman, A.B.; et al. Inflammatory markers and incident fracture risk in older men and women: The Health Aging and Body Composition Study. J. Bone Miner. Res. 2007, 22, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Cauley, J.A.; Barbour, K.E.; Harrison, S.L.; Cloonan, Y.K.; Danielson, M.E.; Ensrud, K.E.; Fink, H.A.; Orwoll, E.S.; Boudreau, R. Inflammatory Markers and the Risk of Hip and Vertebral Fractures in Men: The Osteoporotic Fractures in Men (MrOS). J. Bone Miner. Res. 2016, 31, 2129–2138. [Google Scholar] [CrossRef]
- Guler-Yuksel, M.; Hoes, J.N.; Bultink, I.E.M.; Lems, W.F. Glucocorticoids, Inflammation and Bone. Calcif. Tissue Int. 2018, 102, 592–606. [Google Scholar] [CrossRef]
- Zhou, M.; Li, S.; Pathak, J.L. Pro-inflammatory Cytokines and Osteocytes. Curr. Osteoporos. Rep. 2019, 17, 97–104. [Google Scholar] [CrossRef]
- Brylka, L.J.; Schinke, T. Chemokines in Physiological and Pathological Bone Remodeling. Front. Immunol. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Torres, H.M.; Arnold, K.M.; Oviedo, M.; Westendorf, J.J.; Weaver, S.R. Inflammatory Processes Affecting Bone Health and Repair. Curr. Osteoporos. Rep. 2023, 21, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Maslen, C.; Vindlacheruvu, M.; Abel, R.L.; Bhattacharya, P.; Bromiley, P.A.; Clark, E.M.; Compston, J.E.; Crabtree, N.; Gregory, J.S.; et al. Digital health interventions for osteoporosis and post-fragility fracture care. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221083523. [Google Scholar] [CrossRef]
- Lippi, L.; Desimoni, F.; Canonico, M.; Massocco, G.; Turco, A.; Polverelli, M.; de Sire, A.; Invernizzi, M. System for Tracking and Evaluating Performance (Step-App(R)): Validation and clinical application of a mobile telemonitoring system in patients with knee and hip total arthroplasty. A prospective cohort study. Eur. J. Phys. Rehabil. Med. 2024, 60, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Dai, J. Enhanced osteoporotic fracture prediction in postmenopausal women using Bayesian optimization of machine learning models with genetic risk score. J. Bone Miner. Res. 2024, 39, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Zabihiyeganeh, M.; Mirzaei, A.; Tabrizian, P.; Rezaee, A.; Sheikhtaheri, A.; Kadijani, A.A.; Kadijani, B.A.; Sharifi Kia, A. Prediction of subsequent fragility fractures: Application of machine learning. BMC Musculoskelet. Disord. 2024, 25, 438. [Google Scholar] [CrossRef] [PubMed]
Single Parameters (Absolute Values) | |
RBC | <4.30 × 1012/L (lower limit of reference range) |
Anaemia | haemoglobin <130 g/L (men) and <120 g/L (women) |
Neutrophils | >7.5 × 109/L (upper limit of reference range) |
Lymphocytes | <1.1 × 109/L (lower limit of reference range) |
Monocytes | >1.0 × 109/L (upper limit of reference range) |
Platelets | >400 × 109/L (upper limit of reference range) |
Eosinophils | <0.5 × 109/L (median) |
Red cell distribution width (RDW) | >14.5% (upper limit of reference range) |
Albumin | <33 g/L (lower level of reference range) |
Composite parameters (ratios or products) | |
NLR | >7.5 (median) |
PLR | >280.0 (4th quartile), |
LMR | <1.1 (1st quartile) |
SII | 1620.0 (median) |
SIRI | >5.1 (median) |
Mon/Eos ratio | >13.0 (median) |
Neutr/Eos ratio | >156.3 (median) |
Neutr/Mon ratio | >12.1 (median) |
Neutr/Alb × 10 | >2.4 (median) |
Alb/RDW ratio | <2.6 (median), |
Hb/RDW ratio | <8.8 (median) |
RDW/Plt × 100 | >6.6 (median) |
Hb/Alb ratio | >4.6 (median) |
Alb × Lymph | <25.4 (median) |
ALT/Lymph ratio | <14.6 (median) |
GGT/Lymph ratio | >25.4 (median) |
Plt/Alb ratio | >5.9 (median) |
Plt/ALT ratio | >13.8 (median) |
Variable | Total Cohort (n = 1273) | With IHD (n = 361, 28.4%) | Without IHD (n = 912, 71.6%) | p Value |
---|---|---|---|---|
Age, mean ± SD, years | 82.9 ± 8.7 | 84.9 ± 7.2 | 82.2 ± 9.1 | <0.001 |
Aged > 80 years, % | 70.6 | 76.7 | 68.2 | 0.001 |
Female, % | 73.5 | 69.5 | 75.0 | 0.028 |
RBC < 4.30 × 1012, % | 69.3 | 72.9 | 67.9 | 0.047 |
Anaemia | 41.8 | 44.3 | 40.8 | 0.138 |
Neutr > 7.5 × 109, % | 60.1 | 57.6 | 61.1 | 0.142 |
Lymp < 1.2 × 109, % | 58.4 | 58.5 | 58.5 | 0.525 |
Eos < 0.5 × 109, % | 53.9 | 61.5 | 50.8 | <0.001 |
Mon > 1.0 × 109, % | 15.9 | 19.1 | 14.6 | 0.046 |
Plt > 400 × 109, % | 3.2 | 2.3 | 3.6 | 0.156 |
RDW > 14.5%, % | 37.5 | 49.6 | 32.7 | <0.001 |
Albumin < 33 g/L, % | 19.7 | 18.9 | 20.0 | 0.358 |
NLR > 7.5, % | 50.1 | 49.9 | 50.2 | 0.479 |
PLR > 280, % | 25.9 | 25.3 | 26.1 | 0.41 |
LMR < 1.1, % | 25.2 | 28.3 | 24 | 0.068 |
SII > 1620, % | 50.0 | 48.0 | 50.8 | 0.208 |
SIRI > 5.1, % | 50.0 | 51.3 | 49.5 | 0.303 |
Hb/RDW < 8.8, % | 50.0 | 57.3 | 47.2 | 0.001 |
RDW/Plt × 100 > 6.6, % | 50.0 | 57.9 | 46.9 | 0.001 |
Alb/RDW < 2.6, % | 50.0 | 55.8 | 47.7 | 0.005 |
Neutr/Eos > 156.3, % | 50.0 | 57.1 | 47.2 | 0.001 |
Neutr/Mon > 12.4, % | 50.0 | 47.4 | 51 | 0.135 |
Mon/Eos > 13.0, % | 50.1 | 57.1 | 47.1 | 0.001 |
Neutr/Alb × 10 > 2.4, % | 50.0 | 50.0 | 50.0 | 0.525 |
Hb/Alb > 4.6, % | 49.8 | 47.8 | 50.6 | 0.204 |
Plt/Alb > 5.9, % | 49.2 | 45.4 | 50.8 | 0.048 |
Plt/ALT > 13.8, % | 50.0 | 48.5 | 50.6 | 0.271 |
Alb/Lymp < 25.4,% | 50.0 | 49.7 | 50.1 | 0.475 |
ALT/Lymp < 14.6, % | 50.0 | 52.5 | 49.0 | 0.475 |
GGT/Lymp > 25.4,% | 49.9 | 52.8 | 48.8 | 0.112 |
Variable | Total Cohort (n = 1273) | Postoperative Myocardial Injury | p Value | Survivors (n = 1212, 95.2%) | Died (n = 61, 4.8%) | p Value | |
---|---|---|---|---|---|---|---|
Yes (n = 555, 43.6%) | No (n = 912, 71.6%) | ||||||
Age, mean ± SD, years | 82.9 ± 8.7 | 86.1 ± 6.8 | 80.8 ± 8.9 | <0.001 | 82.7 ± 8.7 | 88.1 ± 6.1 | <0.001 |
Aged > 80 years, % | 70.6 | 85.2 | 60.4 | <0.001 | 69.6 | 91.8 | <0.001 |
Female, % | 73.5 | 42.1 | 57.8 | 0.054 | 73.7 | 68.9 | 0.243 |
RBC < 4.30 × 1012/L, % | 69.3 | 70.3 | 68.8 | 0.306 | 69.4 | 67.2 | 0.408 |
Anaemia (Hb < 120/130 g/L), % | 41.8 | 46.0 | 38.4 | <0.001 | 41.2 | 54.1 | 0.032 |
Neutr > 7.5 × 109, % | 60.1 | 62.5 | 58.8 | 0.109 | 59.7 | 67.2 | 0.151 |
Lymp < 1.2 × 109, % | 58.4 | 62.9 | 55.5 | 0.006 | 58.2 | 63.9 | 0.225 |
Eos < 0.5 × 109, % | 53.9 | 47.7 | 44.7 | 0.165 | 45.3 | 62.3 | 0.007 |
Mon > 1.0 × 109, % | 15.9 | 18.7 | 13.6 | 0.009 | 15.9 | 14.8 | 0.489 |
Plt > 400 × 109, % | 3.2 | 2.7 | 3.5 | 0.247 | 3.1 | 5.0 | 0.298 |
RDW > 14.5%, % | 37.5 | 43.0 | 32.5 | <0.001 | 36.5 | 57.4 | 0.001 |
Albumin < 33 g/L, % | 19.7 | 18.1 | 20.1 | 0.198 | 19.5 | 23.0 | 0.303 |
NLR > 7.5, % | 50.1 | 55.7 | 46.7 | 0.001 | 49.4 | 63.9 | 0.018 |
PLR > 280, % | 25.9 | 30.2 | 22.5 | 0.002 | 25.0 | 43.3 | 0.002 |
LMR < 1.1, % | 25.2 | 31.5 | 20.6 | <0.001 | 24.3 | 42.6 | 0.002 |
SII > 1620.0, % | 50 | 54.9 | 46.3 | 0.002 | 49 | 70.0 | 0.001 |
SIRI > 5.1, % | 50 | 56.3 | 45.8 | <0.001 | 49.1 | 67.2 | 0.004 |
Hb/RDW < 8.8, % | 50 | 55.4 | 45.6 | 0.001 | 49 | 70.5 | 0.001 |
RDW/Plt × 100 > 6.6, % | 50 | 53.0 | 48.4 | 0.061 | 49.8 | 53.3 | 0.346 |
Alb/RDW < 2.6, % | 50 | 53.6 | 45.2 | 0.002 | 49.9 | 72.1 | <0.001 |
Neutr/Eos > 156.3, % | 50.1 | 51.4 | 48.4 | 0.302 | 49 | 70.5 | 0.001 |
Neutr/Mon > 12.4, % | 50 | 50.8 | 50.6 | 0.486 | 49.4 | 60.7 | 0.057 |
Mon/Eos > 13.0, % | 50.1 | 51.2 | 48.9 | 0.229 | 49.5 | 62.3 | 0.034 |
Neutr/Alb × 10 > 2.4, % | 50 | 53.4 | 46.8 | 0.013 | 49.4 | 62.3 | 0.033 |
Hb/Alb > 4.6, % | 49.8 | 47.9 | 52 | 0.087 | 50.5 | 36.1 | 0.019 |
Plt/Alb > 5.9, % | 49.2 | 47.2 | 49.4 | 0.245 | 48.5 | 63.3 | 0.017 |
Plt/ALT > 13.8, % | 50 | 51.2 | 49 | 0.235 | 49.7 | 55.0 | 0.252 |
Alb/Lymp < 25.4,% | 50 | 53.0 | 48.1 | 0.09 | 49.5 | 60.7 | 0.057 |
ALT/Lymp < 14.6, % | 50 | 51.2 | 48.3 | 0.176 | 49.5 | 60.7 | 0.088 |
GGT/Lymp >25.4, % | 49.9 | 49.3 | 50.3 | 0.381 | 49.3 | 62.3 | 0.032 |
Clinical Variables | Total Cohort (n = 533) | IHD | p Value | Laboratory Variables | IHD | p Value | ||
---|---|---|---|---|---|---|---|---|
Yes | No | Yes | No | |||||
Age, mean ± SD, years | 86.14 ± 6.8 | 86.7 ± 6.52 | 85.8 ± 6.99 | 0.157 | RBC < 4.30 × 1012, % | 75.1 | 67.5 | 0.061 |
Aged > 80 years, % | 83.5 | 83.1 | 83.7 | 0.845 | Anaemia, % | 49.3 | 44.0 | 0.236 |
Female, % | 71.1 | 66.2 | 74.1 | 0.050 | Neutr > 7.5 × 109, % | 59.7 | 64.2 | 0.303 |
PRCF resident, % | 38.7 | 39.3 | 38.4 | 0.830 | Lymp < 1.2 × 109, % | 61.2 | 63.9 | 0.538 |
HF type [trochanteric], % | 48.2 | 49.8 | 47.3 | 0.581 | Eos < 0.5 × 109, % | 61.7 | 46.7 | 0.001 |
History of AMI, % | 9.3 | 23.4 | NA | NA | Mon > 1.0 × 109, % | 19.9 | 18.1 | 0.600 |
Hypertension, % | 60.2 | 64.7 | 57.5 | 0.102 | Plt > 400 × 109, % | 1.5 | 3.4 | 0.204 |
CVA, % | 11.8 | 12.9 | 11.4 | 0.535 | RDW > 14.5%, % | 49.8 | 38.9 | 0.014 |
TIA, % | 12.6 | 11.9 | 13.0 | 0.733 | Albumin < 33 g/L, % | 16.4 | 19.0 | 0.447 |
CKD, % | 44.3 | 54.7 | 37.9 | <0.001 | NLR > 7.5, % | 54.2 | 56.6 | 0.589 |
COPD, % | 16.5 | 20.9 | 13.9 | 0.034 | PLR > 280, % | 28.8 | 31.1 | 0.576 |
Anaemia, % | 46.0 | 49.3 | 44.0 | 0.236 | LMR < 1.1, % | 31.8 | 31.3 | 0.901 |
T2DM, % | 24.1 | 28.0 | 21.3 | 0.068 | SII > 1620.0, % | 51.5 | 57.0 | 0.220 |
Dementia, % | 38.5 | 33.3 | 41.6 | 0.056 | SIRI > 5.1, % | 54.2 | 57.5 | 0.456 |
Parkinson’s disease, % | 3.8 | 2.5 | 4.5 | 0.232 | Hb/RDW < 8.8,% | 60.7 | 52.1 | 0.053 |
Smoker, % | 4.1 | 3.5 | 4.5 | 0.560 | RDW/Plt × 100 > 6.6, % | 59.1 | 49.4 | 0.031 |
Ex-smoker, % | 13.0 | 10.5 | 14.5 | 0.177 | Alb/RDW < 2.6, % | 55.7 | 52.3 | 0.438 |
* Alcohol over-user, % | 1.9 | 1.0 | 2.4 | 0.243 | Neutr/Eos > 156.3, % | 58.2 | 42.5 | <0.001 |
Walking aids user, % | 38.7 | 40.3 | 37.7 | 0.543 | Neutr/Mon > 12.1, % | 47.3 | 53.0 | 0.198 |
In-hospital mortality, % | 8.8 | 11.0 | 7.5 | 0.178 | Mon/Eos > 13.0, % | 57.8 | 40.3 | <0.001 |
Postoperative AMI, % | 15.4 | 19.9 | 12.7 | 0.025 | Neutr/Alb × 10 > 2.4, % | 53.2 | 53.5 | 0.957 |
LOS > 10 days, % | 61.4 | 59.2 | 62.7 | 0.428 | Hb/Alb > 4.6, % | 46.8 | 48.6 | 0.675 |
LOS > 20 days, % | 22.1 | 24.9 | 20.5 | 0.236 | Plt/Alb > 5.9, % | 41.9 | 50.5 | 0.057 |
CRP > 100 mg/L, % | 88 | 87.5 | 88.3 | 0.796 | Plt/ALT > 13.8, % | 49.5 | 52.3 | 0.534 |
CRP > 150 mg/L, % | 69.2 | 67.0 | 70.5 | 0.400 | Alb/Lymp < 25.4,% | 49.7 | 45.3 | 0.32 |
ALT/Lymp < 14.6, % | 50.3 | 47.1 | 0.485 | |||||
GGT/Lymp > 25.4, % | 54.2 | 46.2 | 0.073 |
Postoperative Myocardial Injury | ||||||
Variable | 1 Total Cohort (n = 1273) | 2 IHD (n = 361) | 3 IHD > 80 Years of Age (n = 277) | |||
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age > 80 years | 3.84 (2.83–4.99) | <0.001 | 3.95 (2.92–5.27) | <0.001 | NA | NA |
IHD | 2.30 (1.81–3.01) | <0.001 | NA | NA | 8.3 (5.58–12.36) | <0.001 |
LMR < 1.1 | 1.56 (1.18–2.06) | 0.002 | 3.84 (2.44–6.05) | <0.001 | 16.08 (8.54–30.29) | <0.001 |
PLR > 280.0 | 1.44 (1.09–1.90) | 0.01 | 3.87 (2.38–6.29) | <0.001 | 16.36 (8.44–11.74) | <0.001 |
Anaemia | 1.08 (0.84–1.38) | 0.568 | 3.37 (2.31–4.93) | <0.001 | 14.13 (8.06–24.78) | <0.001 |
Mon/Eos > 13.0 | 1.30 (1.01–1.66) | 0.038 | 2.50 (1.70–3.68) | <0.001 | 13.43 (6.81–26.49) | <0.001 |
NLR > 7.5 | 1.40 (1.10–1.79) | 0.006 | 3.47 (2.40–5.02) | <0.001 | 12.42 (7.03–21.94) | <0.001 |
Eos < 0.5 × 109/L | 1.38 (1.08–1.77) | 0.01 | 2.77 (1.85–4.14) | <0.001 | 12.29 (6.44–23.47) | <0.001 |
SIRI > 5.1 | 1.42 (1.11–1.81) | 0.005 | 3.44 (2.40–5.00) | <0.001 | 11.99 (6.81–21.09) | <0.001 |
Neutr/Alb × 10 > 2.4 | 1.25 (0.98–1.60) | 0.068 | 3.22 (2.22–4.65) | <0.001 | 11.74 (6.60–20.88) | <0.001 |
Lymp < 1.2 × 109/L | 1.26 (0.99–1.62) | 0.065 | 3.14 (2.20–4.48) | <0.001 | 11.69 (6.57–20.79) | <0.001 |
Monocytes > 1 × 109/L | 1.33 (0.96–1.85) | 0.089 | 2.93 (1.73–5.00) | <0.001 | 11.61 (5.72–23.56) | <0.001 |
GGT/Lymp > 25.4 | 0.95 (0.74–1.21) | 0.658 | 2.32 (1.63–3.30) | <0.001 | 11.17 (6.23–20.05) | <0.001 |
SII > 1650 | 1.41 (1.10–1.801) | 0.006 | 3.33 (2.41–5.16) | <0.001 | 10.51 (5.96–18.53) | <0.001 |
Alb/RDW < 2.6 | 1.09(0.85–1.39) | 0.493 | 2.94 (2.07–4.17) | <0.001 | 10.20 (6.01–17.33) | <0.001 |
RDW/Plt × 100 > 6.6 | 1.06 (0.83–1.36) | 0.642 | 2.50 (1.78–3.51 | <0.001 | 9.93 (5.74–17.17) | <0.001 |
Plt/ALT > 13.8 | 0.96 (0.75–1.23) | 0.750 | 2.69 (1.85–3.91) | <0.001 | 9.87 (5.65–12.27) | <0.001 |
Neutr > 7.5 × 109/L | 1.21 (0.94–1.55) | 0.139 | 2.82 (1.97-4.05) | <0.001 | 9.61 (5.26–17.58) | <0.001 |
RDW > 14.5% | 1.17 (0.91–1.50) | 0.227 | 2.84 (2.00–4.04) | <0.001 | 9.51 (5.73–15.79) | <0.001 |
Neutr/Mon > 12.1 | 1.10 (0.86–1.41) | 0.434 | 2.37 (1.64–3.42) | <0.001 | 8.49 (4.74–15.21) | <0.001 |
ALT/Lymph < 14.6 | 1.28 (1.01–1.64) | 0.045 | 2.06 (1.45–2.93) | <0.001 | 7.23 (4.21–12.40) | <0.001 |
Alb < 33 g/L | 0.80 (0.59–1.09) | 0.162 | 1.80 (1.07–3.02) | 0.026 | 6.64 (3.37–13.08) | <0.001 |
Alb/Lymph/ < 25.4 | 0.96 (0.75–1.22) | 0.728 | 2.10 (1.46–3.01) | <0.001 | 6.56 (3.64–11.85) | <0.001 |
Plt/Alb ratio > 5.9 | 0.89 (0.70–1.1) | 0.351 | 2.12 (1.45–3.10) | <0.001 | 6.07 (3.50–10.53) | <0.001 |
Neutr/Eos > 156.3 | 1.38 (1.08–1.77) | 0.01 | 2.05 (1.46–2.87) | <0.001 | 5.34 (3.27–8.74) | <0.001 |
Hb/Alb > 4.6 | 1.07 (0.84–1.37) | 0.593 | 2.00 (1.39–2.88) | <0.001 | 6.03(3.34–10.89) | <0.001 |
Platelets > 400 × 109/L | 0.92 (0.46–1.89) | 0.835 | 0.99 (0.23–4.15) | 0.985 | 3.38 (0.73–15.62) | 0.099 |
Hb/RDW < 8.8 | 0.91 (0.71–1.17) | 0.465 | 1.64 (1.12–2.39) | 0.011 | 4.98 (2.60–9.51) | <0.001 |
In-Hospital Death | ||||||
Variable | 1 Total Cohort (n = 1273) | 2 IHD (n = 361) | 3 IHD > 80 Years of Age (n = 277) | |||
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age > 80 years | 4.90 (1.95–12.33) | 0.001 | 5.04 (1.96–12.62) | <0.001 | NA | NA |
IHD | 2.10 (1.24–3.51) | 0.005 | NA | NA | 7.4 (2.55–21.51) | <0.001 |
LMR < 1.1 | 2.03 (1.18–3.49) | 0.010 | 5.19 (2.65–10.15) | <0.001 | 28.67 (6.39–128.70) | <0.001 |
PLR > 280.0 | 2.16 (1.26–3.68) | 0.005 | 5.58 (2.79–11.16) | <0.001 | 29.21 (6.49–131.42) | <0.001 |
Anaemia | 1.35 (0.79–2.30) | 0.270 | 3.39 (1.64–7.02) | 0.001 | 13.24 (2.97–58.98) | 0.001 |
Mon/Eos > 13.0 | 2.02 (1.17–3.48) | 0.011 | 3.93 (1.86–8.30) | <0.001 | 10.99 (2.48–48.69) | <0.001 |
NLR > 7.5 | 1.72 (1.00–2.96) | 0.051 | 3.62 (1.84–7.10) | <0.001 | 5.50 (2.01–15.07) | <0.001 |
Eos < 0.5 × 109/L | 2.44 (1.42–4.21) | 0.001 | 4.76 (2.30–9.84) | <0.001 | 13.96 (3.16–61.61) | 0.001 |
SIRI > 5.1 | 2.13 (1.23–3.67) | 0.007 | 3.95 (2.03–7.66) | <0.001 | 6.18 (2.27–16.77) | <0.001 |
Neutr/Alb × 10 > 2.4 | 1.69 (1.00–2.88) | 0.051 | 3.46 (1.72–6.98) | 0.001 | 23.06(3.04–175.15) | 0.002 |
Lymp < 1.2 × 109/L | 1.18 (0.68–2.03) | 0.561 | 2.54 (1.27–5.08) | 0.008 | 18.6 (2.46–140.86) | 0.005 |
Monocytes > 1.0 × 109/L | 0.91 (0.44–1.89) | 0.807 | 1.22 (0.36–4.12) | 0.75 | 3.35 (0.54–20.56) | 0.192 |
GGT/Lymp > 25.4 | 1.70 (1.00–2.89) | 0.050 | 3.34 (1.66–6.72) | 0.001 | 20.53 (2.70–156.06) | 0.004 |
SII > 1650.0 | 2.33 (1.32–4.13) | 0.004 | 4.63 (2.26–9.48) | <0.001 | 5.33 (1.95–14.63) | <0.001 |
Alb/RDW < 2.6 | 2.71 (1.53–4.79) | 0.001 | 2.23 (1.25–3.98) | 0.007 | 5.42 (2.41–12.19) | <0.001 |
RDW/Plt × 100 > 6.6 | 1.04 (0.61–1.78) | 0.882 | 2.13 (1.04–4.35) | 0.038 | 5.23 (1.47–18.57) | 0.005 |
Plt/ALT > 13.8 | 1.24 (0.73–2.08) | 0.424 | 2.61 (1.34–5.11) | 0.005 | 4.87 (1.75–13.57) | 0.001 |
Neutrophils > 7.5 × 109/L | 1.39 (0.80–2.43) | 0.240 | 2.80 (1.36–5.75) | 0.005 | 14.83 (1.96–112.48) | 0.009 |
RDW > 14.5% | 1.86 (1.09–3.16) | 0.022 | 3.93 (1.98–7.79) | <0.001 | 12.10 (3.64–70.42) | <0.001 |
Neut/Mon > 12.1 | 1.68 (0.98–2.87) | 0.057 | 3.39 (1.67–6.89) | 0.001 | 9.94 (2.26–43.72) | 0.002 |
ALT/Lymph < 14.6 | 0.57 (0.33–0.97) | 0.037 | 1.30 (0.61–2.76) | 0.488 | 5.75 (1.24–26.69) | 0.026 |
Alb < 33 g/L | 1.23 (0.66–2.27) | 0.512 | 3.33 (1.45–7.64) | 0.004 | 15.17 (3.87–59.53) | <0.001 |
Alb × Lymph/ < 25.4 | 1.38 (0.81–2.38) | 0.233 | 1.05 (0.43–2.35) | 0.921 | 3.03 (0.62–14.88) | 0.173 |
Plt/Alb ratio > 5.9 | 1.82 (1.05–3.16) | 0.032 | 3.95 (1.83–8.55) | <0.001 | 4.36 (1.55–12.27) | 0.003 |
Neutr/Eos > 156.3 | 2.49 (2.42–4.37) | 0.001 | 3.13 (1.75–5.57) | <0.001 | 2.39 (0.61–9.43) | 0.199 |
Hb/Alb > 4.6 | 1.81 (1.06–3.09) | 0.030 | 1.13 (0.40–2.56) | 0.768 | 3.63 (0.75–17.47) | 0.108 |
Platelets > 400 × 109/L | 1.65 (0.49–3.51) | 0.417 | 8.43 (1.64–43.38) | 0.011 | 35.87 (4.87–263.95) | <0.001 |
Hb/RDW < 8.8 | 1.92 (1.08–3.40) | 0.025 | 1.33 (0.53–3.34) | 0.544 | 2.34 (0.46–11.88) | 0.292 |
Postoperative Myocardial Injury | |||||||||
---|---|---|---|---|---|---|---|---|---|
Biomarker | AUC (95% CI) | Sensitivity (%) | Specificity (%) | Accuracy (%) | PPV (%) | NPV (%) | LR+ | LR− | NNP |
LMR < 1.1 | 0.7625 (0.7086–0.8163) | 61.5 | 91.0 | 82.1 | 74.7 | 84.5 | 6.802 | 0.423 | 1.69 |
PLR > 280.0 | 0.7604 (0.7043–0.8165) | 60.7 | 91.4 | 82.2 | 75.0 | 84.5 | 7.036 | 0.430 | 1.68 |
Anaemia | 0.7879 (0.7400–0.8358) | 75.4 | 82.1 | 79.7 | 71.1 | 85.2 | 4.225 | 0.299 | 1.78 |
Mon/Eos > 13.0 | 0.7814 (0.7274–0.8354) | 83.1 | 73.2 | 76.7 | 63.3 | 88.6 | 3.097 | 0.231 | 1.93 |
NLR > 7.5 | 0.7784 (0.7299–0.8270) | 79.7 | 76.0 | 77.5 | 69.6 | 84.4 | 3.220 | 0.268 | 1.85 |
Eos < 0.5 × 109/L | 0.7780 (0.7223–0.8337) | 78.6 | 77.0 | 77.6 | 66.0 | 86.4 | 3.420 | 0.278 | 1.91 |
SIRI > 5.1 | 0.7753 (0.7667–0.8239) | 79.5 | 75.6 | 77.1 | 68.4 | 84.7 | 3.253 | 0.271 | 1.88 |
Neutr/Alb × 10 > 2.4 | 0.7732 (0.7236–0.8229) | 79.6 | 75.0 | 76.9 | 68.2 | 84.6 | 3.286 | 0.271 | 1.89 |
Lymp < 1.2 × 109/L | 0.7643 (0.7172–0.8114) | 84.3 | 68.6 | 75.3 | 66.5 | 85.5 | 2.684 | 0.230 | 1.92 |
Monocytes > 1.0 × 109/L | 0.6933 (0.6342–0.7525) | 45.3 | 93.3 | 80.7 | 70.8 | 82.7 | 6.800 | 0.586 | 1.90 |
GGT/Lymp > 25.4 | 0.7671 (0.7165–0.8177) | 80.9 | 72.5 | 76.1 | 68.9 | 83.5 | 2.946 | 0.264 | 1.91 |
SII > 1620.0 | 0.7638 (0.7130–0.8146) | 78.1 | 74.7 | 76.1 | 68.5 | 82.9 | 3.085 | 0.294 | 1.95 |
Alb/RDW < 2.6 | 0.7613 (0.7136–0.8090) | 77.5 | 74.8 | 75.8 | 63.7 | 85.3 | 3.071 | 0.301 | 2.04 |
RDW/Plt × 100 > 6.6 | 0.7557 (0.7075–0.8039) | 80.5 | 70.7 | 74.6 | 64.7 | 84.4 | 2.743 | 0.276 | 2.04 |
Plt/ALT > 13.8 | 0.7586 (0.7031–0.8098) | 76.1 | 75.6 | 75.8 | 65.9 | 83.6 | 3.117 | 0.316 | 2.02 |
Neutr > 7.5 × 109/L | 0.7380 (0.6873–0.7887) | 85.4 | 62.2 | 72.9 | 66.0 | 83.2 | 2.261 | 0.235 | 2.03 |
RDW > 14.5% | 0.7514 (0.7030–0.79970 | 69.9 | 80.4 | 76.7 | 66.2 | 82.9 | 3.559 | 0.374 | 2.04 |
Neutr/Mon > 12.1 | 0.7396 (0.6867–0.7924) | 80.2 | 67.7 | 72.7 | 62.5 | 83.6 | 2.484 | 0.293 | 2.17 |
ALT/Lymph > 14.6 | 0.7282 (0.6754–0.7810) | 75.2 | 70.4 | 72.3 | 63.0 | 81.0 | 2.542 | 0.352 | 2.27 |
Alb < 33 g/L | 0.6564 (0.5927–0.7201) | 40.6 | 90.7 | 79.1 | 56.5 | 83.6 | 4.347 | 0.655 | 2.50 |
Alb/Lymph/ < 25.4 | 0.7145 (0.6566–0.7723) | 78.1 | 64.8 | 70.9 | 65.1 | 77.9 | 2.219 | 0.338 | 2.33 |
Plt/Alb ratio > 5.9 | 0.7112 (0.6544–0.7681) | 71.0 | 71.3 | 71.2 | 60.7 | 79.7 | 2.479 | 0.407 | 2.48 |
Hb/RDW < 8.8 | 0.6813 (0.6165–0.7461) | 78.3 | 57.9 | 66.8 | 59.1 | 77.5 | 1.862 | 0.374 | 2.73 |
Hb/Alb < 4.6 | 0.7058 (0.6469–0.7647) | 77.5 | 63.7 | 69.9 | 63.7 | 77.5 | 2.134 | 0.354 | 2.43 |
Plt > 400 × 109/L | 0.5207 (0.4863–0.5552) | 6.0 | 98.1 | 80.8 | 42.9 | 81.9 | 3.249 | 0.959 | 4.03 |
Neutr/Eos > 156.3 | 0.6972 (0.6458–0.7487) | 72.6 | 66.9 | 69.4 | 62.8 | 76.0 | 2.190 | 0.410 | 2.58 |
In-Hospital Death | |||||||||
LMR < 1.1 | 0.8375 (0.7553–0.9197) | 88.2 | 79.3 | 79.7 | 19.5 | 99.2 | 4.255 | 0.148 | 5.35 |
PLR > 280.0 | 0.8390 (0.7566–0.9214) | 88.2 | 79.6 | 80.1 | 20.8 | 99.1 | 4.319 | 0.148 | 5.03 |
Anaemia | 0.7604 (0.6770–0.8438) | 88.2 | 63.8 | 65.1 | 11.9 | 99.0 | 2.440 | 0.184 | 9.17 |
Mon/Eos > 13.0 | 0.7293 (0.6514–0.8072) | 89.5 | 56.4 | 58.9 | 14.7 | 98.5 | 2.055 | 0.187 | 7.58 |
NLR > 7.5 | 0.6506 (0.5678–0.7335) | 80.0 | 57.9 | 59.7 | 14.3 | 97.1 | 1.900 | 0.345 | 8.77 |
Eos < 0.5 × 109/L | 0.7540 (0.6794–0.8285) | 90.0 | 60.8 | 63.2 | 16.8 | 98.6 | 2.296 | 0.164 | 6.49 |
SIRI > 5.1 | 0.6614 (0.5813–0.7416) | 81.5 | 58.4 | 60.4 | 15.9 | 97.1 | 1.958 | 0.317 | 7.69 |
Neutr/Alb × 10 > 2.4 | 0.7545 (0.6952–0.8138) | 94.7 | 56.2 | 58.6 | 12.9 | 99.4 | 2.161 | 0.094 | 8.13 |
Lymp < 1.2 × 109/L | 0.7224 (0.6656–0.7792) | 95.0 | 49.1 | 52.1 | 11.4 | 99.3 | 1.868 | 0.102 | 9.34 |
Monocytes > 1.0 × 109/L | 0.6169 (0.3760–0.8579) | 40.0 | 83.4 | 82.7 | 3.9 | 98.8 | 2.408 | 0.720 | 37.03 |
GGT/Lymp > 25.4 | 0.7401 (0.6802–0.8000) | 94.7 | 53.3 | 56.1 | 12.9 | 99.3 | 2.028 | 0.099 | 8.20 |
SII > 1620.0 | 0.6795 (0.5947–0.7643) | 80.0 | 57.1 | 59.1 | 14.6 | 96.9 | 1.867 | 0.350 | 8.70 |
Alb/RDW < 2.6 | 0.6991 (0.6093–0.7888) | 78.3 | 57.6 | 59.0 | 11.6 | 97.4 | 1.845 | 0.378 | 11.11 |
RDW/Plt × 100 > 6.6 | 0.6760 (0.5784–07736) | 82.4 | 52.8 | 54.4 | 9.0 | 98.1 | 1.746 | 0.334 | 14.08 |
Plt/ALT > 13.8 | 0.6103 (0.527–0.6939) | 77.3 | 58.9 | 60.2 | 12.6 | 97.1 | 1.879 | 0.386 | 11.49 |
Neutr > 7.5 × 109 | 0.6942 (0.6367–0.7518) | 95.0 | 43.8 | 47.5 | 11.5 | 99.1 | 1.692 | 0.114 | 9.26 |
RDW > 14.5% | 0.7739 (0.6987–0.8491) | 89.5 | 65.3 | 66.6 | 12.5 | 99.1 | 2.579 | 0.161 | 8.62 |
Neutr/Mon > 12.1 | 0.7125 (0.6385–0.7864) | 90.0 | 52.5 | 55.2 | 12.7 | 98.6 | 1.894 | 0.191 | 8.85 |
ALT/Lymph > 14.6 | 0.6840 (0.5702–0.7979) | 83.3 | 53.5 | 54.7 | 6.9 | 98.7 | 1.791 | 0.312 | 17.86 |
Alb < 33 g/L | 0.7889 (0.6493–0.9285) | 72.7 | 85.1 | 84.6 | 16.0 | 98.8 | 4.866 | 0.321 | 6.76 |
Alb/Lymph/ < 25.4 | 0.6208 (0.4733–0.7684) | 77.8 | 46.4 | 47.5 | 5.3 | 98.2 | 1.451 | 0.479 | 25.00 |
Plt/Alb > 5.9 | 0.6596 (0.5646–0.7546) | 76.2 | 57.7 | 59.1 | 12.7 | 96.8 | 1.801 | 0.413 | 10.53 |
Hb/RDW < 8.8 | 0.5941 (0.4299–0.7582) | 75.0 | 43.8 | 45.0 | 5.2 | 97.7 | 1.335 | 0.571 | 34.48 |
Hb/Alb < 4.6 | 0.6379 (0.5032–0.7726) | 80.0 | 47.6 | 48.9 | 6.3 | 98.2 | 1.526 | 0.420 | 22.20 |
Plt > 400 × 109 | 0.6909 (0.4507–0.9311) | 40.0 | 98.2 | 97.1 | 2.9 | 98.9 | 21.920 | 0.611 | 21.28 |
Neutr/Eos > 156.3 | 0.6032 (0.4510–0.7555) | 70.0 | 50.6 | 51.2 | 4.4 | 98.1 | 1.418 | 0.592 | 40.00 |
Parameter/Index | Hip Fracture (1) | IHD/CVDs (2) |
---|---|---|
Anaemia | [127,130,131,132,133,134,135,136,137] No: [122] | [138,139] No: [140] |
Neutrophils elevated | [141,142] | [143,144,145,146,147,148,149] |
Lymphocytes low | [130,131,150,151,152,153,154] | [147,155,156,157] * |
Monocytes elevated | [138,147,148,157,158,159,160,161,162,163] | |
Platelets low | [164] No: [165] | [164,166,167,168] No: [169,170,171,172] * |
Eosinophils low | [173] | [155,161,174,175,176,177,178,179,180,181,182,183,184] No: [146,156,157,185,186,187,188,189] |
Red cell distribution width (RDW) elevated | [134,190,191,192,193,194,195,196,197,198] | [148,170,197,199,200,201,202,203,204,205] |
Albumin low | [131,137,151,153,154,198,206,207,208,209,210,211,212,213,214,215,216,217,218] No: [219] | [220,221,222,223,224,225] No: [226] |
NLR elevated | [29,30,227,228,229,230,231,232,233,234,235,236,237,238] No: [137,239,240] | [31,32,149,161,227,238,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265] No: [266,267] |
PLR elevated | [218,236,268,269] No: [237] | [32,256,260,265,270,271,272] No: [266] |
LMR low | [230,234,236,238] | [160,238,258,259,265,273,274,275,276] |
SII elevated | [215,238,277,278] | [226,238,260,277,279,280,281,282,283,284] |
SIRI elevated | [282,285,286,287] | |
Mon/Eos ratio elevated | [288,289] | |
Neutr/Eos ratio elevated | [290,291] | |
Neut/Alb ratio elevated | [292] | [293,294,295,296,297,298,299,300] |
Alb/RDW ratio low | [37,38,301,302,303,304,305] | |
Hb/RDW ratio low | [306,307] | |
Alb × Lymph low | [131] | |
ALT/Lymph ratio low | [308] | |
Plt/Alb ratio elevated | [309,310,311] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisher, A.; Fisher, L.; Srikusalanukul, W. Prediction of Osteoporotic Hip Fracture Outcome: Comparative Accuracy of 27 Immune–Inflammatory–Metabolic Markers and Related Conceptual Issues. J. Clin. Med. 2024, 13, 3969. https://doi.org/10.3390/jcm13133969
Fisher A, Fisher L, Srikusalanukul W. Prediction of Osteoporotic Hip Fracture Outcome: Comparative Accuracy of 27 Immune–Inflammatory–Metabolic Markers and Related Conceptual Issues. Journal of Clinical Medicine. 2024; 13(13):3969. https://doi.org/10.3390/jcm13133969
Chicago/Turabian StyleFisher, Alexander, Leon Fisher, and Wichat Srikusalanukul. 2024. "Prediction of Osteoporotic Hip Fracture Outcome: Comparative Accuracy of 27 Immune–Inflammatory–Metabolic Markers and Related Conceptual Issues" Journal of Clinical Medicine 13, no. 13: 3969. https://doi.org/10.3390/jcm13133969
APA StyleFisher, A., Fisher, L., & Srikusalanukul, W. (2024). Prediction of Osteoporotic Hip Fracture Outcome: Comparative Accuracy of 27 Immune–Inflammatory–Metabolic Markers and Related Conceptual Issues. Journal of Clinical Medicine, 13(13), 3969. https://doi.org/10.3390/jcm13133969