Associations of Intact and C-Terminal FGF23 with Inflammatory Markers in Older Patients Affected by Advanced Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Design of the Study
2.2. Specific Biomarkers Quantification
2.3. Normal Range of Laboratory Parameters
2.4. Statistical Analysis
3. Results
3.1. General and Biochemical Characteristics of the Study Group
3.2. Correlations of FGF23 Isoforms with General and Laboratory Parameters
3.3. Correlations of Inflammatory Cytokines with General and Laboratory Parameters
3.4. Multivariate Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Charles, C.; Ferris, A.H. Chronic Kidney Disease. Prim. Care 2020, 47, 585–595. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F. The cardiovascular–renal link and the health burden of kidney failure. Eur. Heart J. 2023, 44, 1167–1169. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Salusky, I.B.; Hewison, M. Beyond mineral metabolism, is there an interplay between FGF23 and vitamin D in innate immunity? Pediatr. Nephrol. 2013, 28, 577–582. [Google Scholar] [CrossRef]
- Kadatane, S.P.; Satariano, M.; Massey, M.; Mongan, K.; Raina, R. The Role of Inflammation in CKD. Cells 2023, 12, 1581. [Google Scholar] [CrossRef]
- Wee, H.N.; Liu, J.-J.; Ching, J.; Kovalik, J.-P.; Lim, S.C. The Kynurenine Pathway in Acute Kidney Injury and Chronic Kidney Disease. Am. J. Nephrol. 2021, 52, 771–787. [Google Scholar] [CrossRef] [PubMed]
- Graterol Torres, F.; Molina, M.; Soler-Majoral, J.; Romero-González, G.; Chitiva, N.R.; Troya-Saborido, M.; Rullan, G.S.; Burgos, E.; Martínez, J.P.; Jou, M.U.; et al. Evolving Concepts on Inflammatory Biomarkers and Malnutrition in Chronic Kidney Disease. Nutrients 2022, 14, 4297. [Google Scholar] [CrossRef]
- Munoz Mendoza, J.; Isakova, T.; Cai, X.; Bayes, L.Y.; Faul, C.; Scialla, J.J.; Lash, J.P.; Chen, J.; He, J.; Navaneethan, S.; et al. Inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors for death in chronic kidney disease. Kidney Int. 2017, 91, 711–719. [Google Scholar] [CrossRef]
- Mitsnefes, M.M.; Betoko, A.; Schneider, M.F.; Salusky, I.B.; Wolf, M.S.; Jüppner, H.; Warady, B.A.; Furth, S.L.; Portale, A.A. FGF23 and Left Ventricular Hypertrophy in Children with CKD. Clin. J. Am. Soc. Nephrol. 2018, 13, 45–52. [Google Scholar] [CrossRef]
- Musgrove, J.; Wolf, M. Regulation and Effects of FGF23 in Chronic Kidney Disease. Annu. Rev. Physiol. 2020, 82, 365–390. [Google Scholar] [CrossRef]
- Fliser, D.; Kollerits, B.; Neyer, U.; Ankerst, D.P.; Lhotta, K.; Lingenhel, A.; Ritz, E.; Kronenberg, F. Fibroblast Growth Factor 23 (FGF23) Predicts Progression of Chronic Kidney Disease: The Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 2007, 18, 2601–2608. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, J.; Unruh, M.; Zarbock, A. Fibroblast growth factor 23 actions in inflammation: A key factor in CKD outcomes. Nephrol. Dial. Transplant. 2017, 32, 1448–1453. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.; Faul, C. FGF23 Actions on Target Tissues-with and without Klotho. Front. Endocrinol. 2018, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Mattinzoli, D.; Ikehata, M.; Tsugawa, K.; Alfieri, C.M.; Dongiovanni, P.; Trombetta, E.; Valenti, L.; Puliti, A.; Lazzari, L.; Messa, P. FGF23 and Fetuin-A Interaction in the Liver and in the Circulation. Int. J. Biol. Sci. 2018, 14, 586–598. [Google Scholar] [CrossRef]
- Czaya, B.; Faul, C. FGF23 and inflammation—A vicious coalition in CKD. Kidney Int. 2019, 96, 813–815. [Google Scholar] [CrossRef]
- David, V.; Martin, A.; Isakova, T.; Spaulding, C.; Qi, L.; Ramirez, V.; Zumbrennen-Bullough, K.B.; Sun, C.C.; Lin, H.Y.; Babitt, J.L.; et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016, 89, 135–146. [Google Scholar] [CrossRef]
- Czaya, B.; Faul, C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int. J. Mol. Sci. 2019, 20, 4195. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, J.; Umbach, A.T.; Fakhri, H.; Fajol, A.; Schmidt, S.; Salker, M.S.; Chen, H.; Alexander, D.; Spichtig, D.; et al. NFκB-sensitive Orai1 expression in the regulation of FGF23 release. J. Mol. Med. 2016, 94, 557–566. [Google Scholar] [CrossRef]
- Durlacher-Betzer, K.; Hassan, A.; Levi, R.; Axelrod, J.; Silver, J.; Naveh-Many, T. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 2018, 94, 315–325. [Google Scholar] [CrossRef]
- Mattinzoli, D.; Molinari, P.; Romero-González, G.; Bover, J.; Cicero, E.; Pesce, F.; Abinti, M.; Conti, C.; Castellano, G.; Alfieri, C. Is there a role in acute kidney injury for FGF23 and Klotho? Clin. Kidney J. 2023, 16, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Mattinzoli, D.; Turolo, S.; Alfieri, C.M.; Ikehata, M.; Caldiroli, L.; Armelloni, S.; Montini, G.; Agostoni, C.; Messa, P.; Vettoretti, S.; et al. MCP1 Could Mediate FGF23 and Omega 6/Omega 3 Correlation Inversion in CKD. J. Clin. Med. 2022, 11, 7099. [Google Scholar] [CrossRef] [PubMed]
- Puthumana, J.; Thiessen-Philbrook, H.; Xu, L.; Coca, S.G.; Garg, A.X.; Himmelfarb, J.; Bhatraju, P.K.; Ikizler, T.A.; Siew, E.D.; Ware, L.B.; et al. Biomarkers of inflammation and repair in kidney disease progression. J. Clin. Investig. 2021, 131, e139927. [Google Scholar] [CrossRef]
- Wheeler, J.A.; Clinkenbeard, E.L. Regulation of Fibroblast Growth Factor 23 by Iron, EPO, and HIF. Curr. Mol. Biol. Rep. 2019, 5, 8–17. [Google Scholar] [CrossRef]
- Simic, P.; Babitt, J.L. Regulation of FGF23: Beyond Bone. Curr. Osteoporos. Rep. 2021, 19, 563–573. [Google Scholar] [CrossRef]
- Smith, E.R.; Cai, M.M.; McMahon, L.P.; Holt, S.G. Biological Variability of Plasma Intact and C-Terminal FGF23 Measurements. J. Clin. Endocrinol. Metab. 2012, 97, 3357–3365. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.; David, V. Inflammation regulates fibroblast growth factor 23 production. Curr. Opin. Nephrol. Hypertens. 2016, 25, 325–332. [Google Scholar] [CrossRef]
- Rausch, S.; Föller, M. The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch. 2022, 474, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Figurek, A.; Rroji, M.; Spasovski, G. FGF23 in Chronic Kidney Disease: Bridging the Heart and Anemia. Cells 2023, 12, 609. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Katz, R.; Bullen, A.L.; Chaves, P.H.M.; de Leeuw, P.W.; Kroon, A.A.; Houben, A.J.H.M.; Shlipak, M.G.; Ix, J.H. Intact and C-Terminal FGF23 Assays-Do Kidney Function, Inflammation, and Low Iron Influence Relationships With Outcomes? J. Clin. Endocrinol. Metab. 2020, 105, e4875–e4885. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, J.W.; Kasozi, R.N.; Larson, T.S.; Lieske, J.C. Clinical Impact of the Refit CKD-EPI 2021 Creatinine-Based eGFR Equation. Clin. Chem. 2022, 68, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Mannstadt, M.; Isakova, T.; Rauh-Hain, J.A.; Tamez, H.; Shah, A.; Smith, K.; Lee, H.; Thadhani, R.; Jüppner, H.; et al. Fibroblast Growth Factor 23 and Mortality among Patients Undergoing Hemodialysis. New Engl. J. Med. 2008, 359, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Caldiroli, L.; Vettoretti, S.; Armelloni, S.; Mattinzoli, D.; Ikehata, M.; Molinari, P.; Alfieri, C.; Messa, P.; Castellano, G. Possible Benefits of a Low Protein Diet in Older Patients With CKD at Risk of Malnutrition: A Pilot Randomized Controlled Trial. Front. Nutr. 2022, 8, 782499. [Google Scholar] [CrossRef] [PubMed]
- Tanisawa, K.; Taniguchi, H.; Sun, X.; Ito, T.; Kawakami, R.; Sakamoto, S.; Higuchi, M. Visceral fat area is a strong predictor of leukocyte cell-derived chemotaxin 2, a potential biomarker of dyslipidemia. PLoS ONE 2017, 12, e0173310. [Google Scholar] [CrossRef] [PubMed]
- Margiotta, E.; Caldiroli, L.; Callegari, M.L.; Miragoli, F.; Zanoni, F.; Armelloni, S.; Rizzo, V.; Messa, P.; Vettoretti, S. Association of Sarcopenia and Gut Microbiota Composition in Older Patients with Advanced Chronic Kidney Disease, Investigation of the Interactions with Uremic Toxins, Inflammation and Oxidative Stress. Toxins 2021, 13, 472. [Google Scholar] [CrossRef] [PubMed]
- Vettoretti, S.; Caldiroli, L.; Armelloni, S.; Ferrari, C.; Cesari, M.; Messa, P. Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD. Nutrients 2019, 11, 1378. [Google Scholar] [CrossRef] [PubMed]
- Rymarz, A.; Romejko, K.; Matyjek, A.; Bartoszewicz, Z.; Niemczyk, S. Serum Osteoprotegerin Is an Independent Marker of Metabolic Complications in Non-Dialysis Dependent Chronic Kidney Disease Patients. Nutrients 2021, 13, 3609. [Google Scholar] [CrossRef] [PubMed]
- Haarhaus, M.; Fernström, A.; Qureshi, A.R.; Magnusson, P. The Novel Bone Alkaline Phosphatase Isoform B1x Is Associated with Improved 5-Year Survival in Chronic Kidney Disease. Nutrients 2021, 13, 4402. [Google Scholar] [CrossRef] [PubMed]
- Czaja-Stolc, S.; Potrykus, M.; Stankiewicz, M.; Kaska, Ł.; Małgorzewicz, S. Pro-Inflammatory Profile of Adipokines in Obesity Contributes to Pathogenesis, Nutritional Disorders, and Cardiovascular Risk in Chronic Kidney Disease. Nutrients 2022, 14, 1457. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Stenvinkel, P.; Shanahan, C.; Pacifici, R. Inflammation and gut dysbiosis as drivers of CKD–MBD. Nat. Rev. Nephrol. 2023, 19, 646–657. [Google Scholar] [CrossRef]
- Eisenga, M.F.; De Jong, M.A.; Van der Meer, P.; Leaf, D.E.; Huls, G.; Nolte, I.M.; Gaillard, C.A.J.M.; Bakker, S.J.L.; De Borst, M.H. Iron deficiency, elevated erythropoietin, fibroblast growth factor 23, and mortality in the general population of the Netherlands: A cohort study. PLOS Med. 2019, 16, e1002818. [Google Scholar] [CrossRef]
- Edmonston, D.; Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 2020, 16, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Courbon, G.; Thomas, J.J.; Calle, M.M.; Wang, X.; Spindler, J.; Von Drasek, J.; Hunt-Tobey, B.; Mehta, R.; Isakova, T.; Chang, W.; et al. Bone-derived C-terminal FGF23 cleaved peptides increase iron availability in acute inflammation. Blood 2023, 142, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Deger, S.M.; Erten, Y.; Pasaoglu, O.T.; Derici, U.B.; Reis, K.A.; Onec, K.; Pasaoglu, H. The effects of iron on FGF23-mediated Ca–P metabolism in CKD patients. Clin. Exp. Nephrol. 2013, 17, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Muras-Szwedziak, K.; Nowicki, M. Associations between Intravenous Iron, Inflammation and FGF23 in Non-Dialysis Patients with Chronic Kidney Disease Stages 3-5. Kidney Blood Press. Res. 2018, 43, 143–151. [Google Scholar] [CrossRef]
General characteristics | n. v. | |
Age (years) | 77 + 12 | n.a. |
BMI (Kg/m2) | 27.8 + 4.8 | 19–25 |
Sex (M/F), % | 71/29 | n.a. |
Hypertension (Yes/No), % | 88/12 | n.a. |
Diabetes mellitus (Yes/No), % | 55/45 | n.a. |
sCr (mg/dL) | 2.4 (1.9–3.1) | 0.72–1.18 |
eGFR (mL/min/1.73 m2) | 23 (16–31) | >90 |
Proteinuria (g/24 h) | 0.5 (0.2–1.3) | <0.14 |
Serum albumin (g/dL) | 4.1 + 0.4 | 3.4–4.8 |
Serum prealbumin (mg/dL) | 29 + 6 | 20–40 |
Bone-mineral metabolism | ||
s-Ca (mg/dL) | 9.2 + 0.5 | 8.4–10.2 |
Ca++ (mg/dL) | 4.7 + 0.5 | 4.8–5.6 |
s-P (mg/dL) | 3.6 + 0.6 | 2.7–4.5 |
PTH (pg/mL) | 61 (39–92) | 6.5–36.8 |
25-OH Vitamin D (ng/mL) | 26 (17–38) | >30 |
iFGF23, (pg/mL) | 117 (69–202) | 25–45 |
cFGF23, (RU/mL) | 133 (96–229) | 20–90 |
u-Ca (mg/24 h) | 118 + 73 | 100–300 |
u-P (mg/24 h) | 506 + 206 | 400–1300 |
Erythropoiesis and iron metabolism | ||
Hb, g/dL | 12.5 + 1.5 | 13.5–17.5 |
Serum iron (mcg/dL) | 71 (56–93) | 59–158 |
Ferritin (mcg/L) | 118 (69–199) | 30–400 |
Transferrin/mg/dL) | 231 + 40 | 200–360 |
TSAT (%) | 23.5 + 8.5 | 15–50 |
Inflammatory markers | ||
CRP (mg/dL) | 0.2 (0.1–0.4) | <0.5 |
IL-6 (pg/mL) | 3.1 (1.6–5.4) | 0–17.3 |
TNFα (pg/mL) | 13.7 (9.3–18.5) | 1.5–20.5 |
MCP-1 (pg/mL) | 339 (270–515) | 199–486 |
iFGF23 (pg/mL) | cFGF23 (RU/mL) | FGF23 Ratio (RU/pg) | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
General characteristics | ||||||
Age (years) | 0.016 | 0.866 | 0.235 | 0.013 | 0.239 | 0.011 |
BMI (kg/m2) | −0.117 | 0.223 | −0.060 | 0.531 | 0.054 | 0.571 |
eGFR (mL/min/m2) | −0.605 | <0.001 | −0.483 | <0.001 | 0.127 | 0.113 |
Proteinuria (g/24 h) | 0.242 | 0.013 | 0.225 | 0.022 | −0.086 | 0.388 |
Serum albumin (g/dL) | −0.081 | 0.397 | −0.129 | 0.177 | −0.086 | 0.368 |
Serum prealbumin (mg/dL) | 0.077 | 0.424 | 0.014 | 0.886 | −0.132 | 0.167 |
Bone-mineral metabolism | ||||||
s-Ca (mg/dL) | −0.178 | 0.049 | −0.104 | 0.289 | 0.019 | 0.843 |
s-P (mg/dL) | 0.448 | <0.001 | 0.343 | <0.001 | −0−127 | 0.187 |
PTH (pg/mL) | 0.451 | <0.001 | 0.369 | <0.001 | −0.132 | 0.168 |
25-OH Vitamin D (ng/mL) | 0.197 | 0.038 | −0.025 | 0.797 | −0.267 | 0.005 |
uCa (mg/24 h) | −0.058 | 0.556 | 0.094 | 0.343 | 0.108 | 0.277 |
uP (mg/24 h) | −0.113 | 0.254 | −0.268 | 0.006 | −0.160 | 0.107 |
Erythropoiesis and iron metabolism | ||||||
Hb (g/dL) | −0.288 | 0.002 | −0.287 | 0.002 | −0.018 | 0.849 |
Serum iron (mcg/dL) | −0.218 | 0.023 | −0.092 | 0.341 | 0.125 | 0.194 |
Ferritin (μg/dL) | 0.074 | 0.441 | −0.074 | 0.444 | −0.169 | 0.048 |
Transferrin (mg/dL) | −0.132 | 0.170 | 0.016 | 0.867 | 0.125 | 0.194 |
TSAT (%) | −0.161 | 0.038 | −0.098 | 0.308 | 0.071 | 0.464 |
Inflammatory markers | ||||||
CRP (mg/dL) | −0.033 | 0.732 | −0.056 | 0.557 | 0.051 | 0.598 |
IL-6 (pg/mL) | 0.403 | <0.001 | 0.176 | 0.064 | −0.326 | <0.001 |
TNFα (pg/mL) | 0.401 | <0.001 | 0.110 | 0.251 | −0.183 | 0.045 |
MCP-1 (pg/mL) | 0.150 | 0.152 | 0.264 | 0.005 | 0.178 | 0.061 |
IL-6 (pg/mL) | TNFα (pg/mL) | MCP-1 (pg/mL) | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
General characteristics | ||||||
Age (years) | 0.116 | 0.227 | 0.057 | 0.551 | 0.154 | 0.106 |
BMI (kg/m2) | 0.055 | 0.569 | −0.056 | 0.559 | 0.291 | 0.002 |
eGFR (mL/min/m2) | −0.288 | 0.002 | −0.286 | 0.002 | −0.238 | 0.012 |
Proteinuria (g/24 h) | 0.088 | 0.376 | 0.174 | 0.077 | 0.046 | 0.642 |
Serum albumin (g/dL) | −0.162 | 0.089 | −0.196 | 0.039 | −0.097 | 0.310 |
Serum prealbumin (mg/dL) | −0.079 | 0.412 | −0.089 | 0.354 | −0.142 | 0.137 |
Bone-mineral metabolism | ||||||
s-Ca (mg/dL) | −0.039 | 0.687 | 0.059 | 0.540 | 0.026 | 0.788 |
s-P (mg/dL) | 0.200 | 0.036 | 0.299 | 0.002 | 0.052 | 0.591 |
PTH (pg/mL) | 0.323 | <0.001 | 0.089 | 0.350 | 0.215 | 0.024 |
25-OH Vitamin D (ng/mL) | 0.034 | 0.720 | 0.201 | 0.035 | −0.020 | 0.835 |
uCa (mg/24 h) | −0.121 | 0.222 | 0.097 | 0.326 | 0.040 | 0.690 |
uP (mg/24 h) | −0.210 | 0.033 | −0.117 | 0.241 | −0.151 | 0.129 |
Erythropoiesis and iron metabolism | ||||||
Hb (g/dL) | −0.105 | 0.273 | −0.198 | 0.037 | −0.146 | 0.127 |
Serum iron (mcg/dL) | −0.326 | <0.001 | −0.146 | 0.130 | −0.113 | 0.243 |
Ferritin (μg/dL) | 0.100 | 0.297 | 0.054 | 0.573 | −0.114 | 0.235 |
Transferrin (mg/dL) | −0.137 | 0.152 | −0.073 | 0.451 | −0.146 | 0.127 |
TSAT (%) | −0.231 | 0.016 | −0.014 | 0.239 | −0.017 | 0.858 |
iFGF23 | ||
B (95% CI) | p | |
s-P (mg/dL) | 0.132 (0.049, 0.216) | 0.002 |
eGFR (mL/min/m2) | −0.009 (−0.015, −0.003) | 0.002 |
TNFα (pg/mL) | 0.012 (0.006, 0.019) | 0.003 |
PTH (pg/mL) | 0.001 (0.000, 0.003) | 0.008 |
cFGF23 | ||
B (95% CI) | p | |
eGFR (mL/min/m2) | −0.010 (−0.015, −0.005) | <0.001 |
s-P (mg/dL) | 0.117 (0.031, 0.202) | 0.008 |
MCP-1 (pg/mL) | 0.001 (0.000, 0.002) | 0.038 |
Age (years) | 0.004 (0.000, 0.009) | 0.041 |
FGF23 ratio | ||
B (95% CI) | p | |
25-OH Vitamin D (ng/mL) | −0.005 (−0.007, −0.002) | <0.001 |
Age (years) | 0.007 (0.003, 0.011) | <0.001 |
IL-6 (pg/mL) | −0.028 (−0.047, −0.010) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abinti, M.; Vettoretti, S.; Caldiroli, L.; Mattinzoli, D.; Ikehata, M.; Armelloni, S.; Molinari, P.; Alfieri, C.M.; Castellano, G.; Messa, P. Associations of Intact and C-Terminal FGF23 with Inflammatory Markers in Older Patients Affected by Advanced Chronic Kidney Disease. J. Clin. Med. 2024, 13, 3967. https://doi.org/10.3390/jcm13133967
Abinti M, Vettoretti S, Caldiroli L, Mattinzoli D, Ikehata M, Armelloni S, Molinari P, Alfieri CM, Castellano G, Messa P. Associations of Intact and C-Terminal FGF23 with Inflammatory Markers in Older Patients Affected by Advanced Chronic Kidney Disease. Journal of Clinical Medicine. 2024; 13(13):3967. https://doi.org/10.3390/jcm13133967
Chicago/Turabian StyleAbinti, Matteo, Simone Vettoretti, Lara Caldiroli, Deborah Mattinzoli, Masami Ikehata, Silvia Armelloni, Paolo Molinari, Carlo Maria Alfieri, Giuseppe Castellano, and Piergiorgio Messa. 2024. "Associations of Intact and C-Terminal FGF23 with Inflammatory Markers in Older Patients Affected by Advanced Chronic Kidney Disease" Journal of Clinical Medicine 13, no. 13: 3967. https://doi.org/10.3390/jcm13133967
APA StyleAbinti, M., Vettoretti, S., Caldiroli, L., Mattinzoli, D., Ikehata, M., Armelloni, S., Molinari, P., Alfieri, C. M., Castellano, G., & Messa, P. (2024). Associations of Intact and C-Terminal FGF23 with Inflammatory Markers in Older Patients Affected by Advanced Chronic Kidney Disease. Journal of Clinical Medicine, 13(13), 3967. https://doi.org/10.3390/jcm13133967