Retinal Vein Occlusion–Background Knowledge and Foreground Knowledge Prospects—A Review
Abstract
:1. Introduction
Risk Factors for RVO | |
---|---|
Systemic | Ophthalmological |
Atherosclerosis: old age, hypertension, hyperlipidemia, diabetes, high body mass index, smoking | open-angle glaucoma and closed-angle glaucoma |
Vasculitis: systemic lupus erythematosus, sarcoid, syphilis | hyperopia |
Neoplasia: polycythemia rubra vera, multiple myeloma, leukemia | short axial length |
Thrombophilic disorders: hyperhomocysteinemia, antiphospholipid syndrome, factor V Leiden mutation, protein C and S deficiency, antithrombin deficiency, or prothrombin gene mutation (G20210A) | central serous chorioretinopathy |
retinal vasculitis |
2. Macular Edema in RVO
3. Diagnostics
3.1. OCT
3.2. OCTA
3.3. OCT-Leakage
3.4. Fluorescein Angiography (FA)
4. RVO Prevention—Diet
5. Treatment
5.1. Antithrombotic Therapy
5.2. Photocoagulation Therapy
5.3. Anti-VEGF Therapy
5.3.1. Ranibizumab
5.3.2. Aflibercept
5.3.3. Bewacizumab
5.3.4. Comparison of Ranibizumab, Aflibercept, and Bewacizumab
5.3.5. Faricimab
5.4. Steroids
5.4.1. Triamcinolone
5.4.2. Dexamethasone
5.5. Other Methods
5.6. Combined Therapies
5.6.1. Laser Photocoagulation and Anti-Vascular Endothelial Growth Factor Agents
5.6.2. Anti-VEGF Agents and Steroids
5.7. Treatment of Neovascular Glaucoma in the Course of Ischemic CRVO
5.8. Follow-Up Recommendations
5.9. Pharmacoeconomics
6. Future Directions
7. Conclusions
8. Method of Literature Search
Funding
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
AKT | protein kinase B |
AMD/nAMD | Age-Related Macular Degeneration/neovascular Age-Related Macular Degeneration |
AMPK | AMP-activated protein kinase |
Ang-2 | angiopoietin-2 |
AQP4 | aquaporin 4 channels |
BA | bile acids |
BCVA | best-corrected visual acuity |
BRVO | branch retinal vein occlusion |
BVOS | Branch Vein Occlusion Study |
bFGF | basic fibroblast growth factor |
CCL2 | chemokine ligand 2 |
CD54 | cluster of differentiation 54 |
CLP | conventional laser photocoagulation |
CME | cystoid macular edema |
CMT | central macular thickness |
CRP | c-reactive protein |
CRT | central retinal thickness |
CRVO | central retinal vein occlusion |
CVOS | Central Vein Occlusion Study |
CXCL-10 | C-X-C motif chemokine 10 |
DDD | defined daily doses |
DEX | dexamethasone |
DME | diabetic macular edema |
DRIL | disorganisation of retinal inner layers |
EC | endothelial cell |
EMA | European Medicines Agency |
ETDRS | Early Treatment Diabetic Retinopathy Study |
EZ | ellipsoid zone |
FA | fluorescein angiography |
FAK | focal adhesion kinase |
FAZ | foveal avascular zone |
FDA | The United States Food and Drug Administration |
FMT | fecal microbiota transplantation |
GABA | gamma-aminobutyric acid |
HF | hyperreflective foci |
HIF-1 | hypoxia-inducible factor-1 |
HRVO | hemi-retinal vein occlusion |
IAI | intravitreal aflibercept |
I-CRVO | ischemic central retinal vein occlusion |
IDA | iron deficiency anemia |
IGF-1 | insulin-like growth factor 1 |
IL | interleukin |
IOP | intraocular pressure |
IP10 | interferon gamma-induced protein 10 |
IRF | intraretinal fluid |
ISI | ischemic index |
LMWH | low molecular weight heparins |
lncRNA | long non-coding RNAs |
LPA-ATX | lysophosphatidic acid-autotaxin |
LPS | lipopolysaccharides |
MAPK | mitogen-activated protein kinase |
MCP-1 | monocyte chemoattractant protein 1 |
ME | macular edema |
MMP | metalloproteinase |
NLR | neutrophil-to-lymphocyte ratio |
NI-CRVO | non-ischemic central retinal vein occlusion |
NOAC | non-vitamin K-antagonist oral anticoagulant |
NV | neovascularisation |
NVG | neovascular glaucoma |
OCT | optical coherence tomography |
OCTA | optical coherence tomography angiography |
OLM | outer limiting membrane |
PAI-1 | plasminogen activator inhibitor-1 |
PAMM | severe acute macular neuroretinopathy |
PC | pericytes |
PDGF-AA | platelet derived growth factor |
PDS | Port Delivery System |
PEDF | pigment epithelium-derived factor |
PlGF | placental growth factor |
PI3K | phosphatidylinositol 3-kinase |
PLC-γ | phospholipase C gamma |
PLR | platelet-to-lymphocyte ratio |
PRP | panretinal photocoagulation |
PVD | posterior vitreous detachment |
QALY | quality-adjusted life year |
RMG | Müller glial cells |
RPE | retinal pigment epithelium |
rtPA | systemic recombinant tissue plasminogen activator |
RVO | retinal vein occlusion |
SAA | serum amyloid A |
SCFA | short-chain fatty acids |
sICAM-1 | soluble intercellular adhesion molecule 1 |
SMLP | sub-threshold micropulse laser photocoagulation |
SRD | serous retinal detachment |
SRF | subretinal fluid |
SRT | selective retina therapy |
SVD | small vessel disease |
sVEGFR2 | soluble vascular endothelial growth factor receptor 2 |
TGF-β | transforming growth factor β |
TMAO | trimethylamine N-oxide |
TNF | tumor necrosis factor |
TRD | tractional retinal detachment |
TUDCA | tauroursodeoxycholate |
UWF-FA | ultra-widefield fluorescein angiography |
VA | visual acuity |
VALS | visual acuity letter score |
VEGF | vascular endothelial growth factor |
VH | vitreous hemorrhage |
ZO-1 | zonula occludens-1 |
References
- Song, P.; Xu, Y.; Zha, M.; Zhang, Y.; Rudan, I. Global Epidemiology of Retinal Vein Occlusion: A Systematic Review and Meta-Analysis of Prevalence, Incidence, and Risk Factors. J. Glob. Health 2019, 9, 010427. [Google Scholar] [CrossRef]
- Rehak, M.; Wiedemann, P. Retinal Vein Thrombosis: Pathogenesis and Management. J. Thromb. Haemost. 2010, 8, 1886–1894. [Google Scholar] [CrossRef]
- Tang, Y.; Cheng, Y.; Wang, S.; Wang, Y.; Liu, P.; Wu, H. Review: The Development of Risk Factors and Cytokines in Retinal Vein Occlusion. Front. Med. 2022, 9, 910600. [Google Scholar] [CrossRef] [PubMed]
- Şahin, M.; Elbey, B.; Şahin, A.; Yüksel, H.; Türkcü, F.M.; Çaça, İ. Neutrophil-To-Lymphocyte Ratio and Platelet-To-Lymphocyte Ratio in Retinal Vein Occlusion. Clin. Exp. Optom. 2020, 103, 490–494. [Google Scholar] [CrossRef]
- Kazantzis, D.; Machairoudia, G.; Kroupis, C.; Theodossiadis, G.; Theodossiadis, P.; Chatziralli, I. Complete Blood Count-Derived Inflammation Indices and Retinal Vein Occlusion: A Case–Control Study. Ophthalmol. Ther. 2022, 11, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Enoch, J.; McDonald, L.; Jones, L.; Jones, P.R.; Crabb, D.P. Evaluating Whether Sight Is the Most Valued Sense. JAMA Ophthalmol. 2019, 137, 1317–1320. [Google Scholar] [CrossRef]
- Ramin, S.; Rostami, F.; Ahmadieh, H.; Daftarian, N.; Nourinia, R.; Abbasi, A.; Kheiri, B.; Sabbaghi, H.; Sheibani, K. Vision-Related Quality of Life in Patients with Retinal Vein Occlusion. Int. Ophtalmol. 2024, 44, 114. [Google Scholar] [CrossRef]
- Dropinski, J. Cardiovascular and thrombophilic risk factors in patients with central retinal vein occlusion. J. Thromb. Haemost. 2011, 9, 874–875. [Google Scholar]
- Hayreh, S.S.; Zimmerman, M.B.; Podhajsky, P. Incidence of Various Types of Retinal Vein Occlusion and Their Recurrence and Demographic Characteristics. Am. J. Ophthalmol. 1994, 117, 429–441. [Google Scholar] [CrossRef]
- Wu, C.Y.; Riangwiwat, T.; Limpruttidham, N.; Rattanawong, P.; Rosen, R.B.; Deobhakta, A. Association of retinal vein occlusion with cardiovascular events and mortality: A Systematic Review and Meta-analysis. Retina 2019, 39, 1635–1645. [Google Scholar] [CrossRef]
- Park, S.J.; Choi, N.K.; Yang, B.R.; Park, K.H.; Woo, S.J. Risk of Stroke in Retinal Vein Occlusion. Neurology 2015, 85, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Kim, C.K.; Oh, K.; Oh, S.W.; Park, K.H.; Park, S.J. Retinal Vein Occlusion as the Surrogate Marker for Premature Brain Aging in Young Patients. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO82–BIO87. [Google Scholar] [CrossRef]
- Chen, T.Y.; Uppuluri, A.; Zarbin, M.A.; Bhagat, N. Risk Factors for Central Retinal Vein Occlusion in Young Adults. Eur. J. Ophthalmol. 2021, 31, 2546–2555. [Google Scholar] [CrossRef]
- Paciullo, F.; Valeriani, E.; Porfidia, A.; Di Nisio, M.; Donadini, M.P.; Marcucci, R.; Prisco, D.; Cagini, C.; Gresele, P.; Ageno, W. Antithrombotic Treatment of Retinal Vein Occlusion: A Position Statement from the Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus. 2022, 20, 341–347. [Google Scholar] [CrossRef]
- David, R.; Zangwill, L.; Badarna, M.; Yassur, Y. Epidemiology of Retinal Vein Occlusion and Its Association with Glaucoma and Increased Intraocular Pressure. Ophthalmologica 1988, 197, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Chang, C.; Weng, S.F.; Wang, J.J.; Jan, R.L. Risk of retinal vein occlusion with central serous chorioretinopathy. Retina 2016, 36, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Ariturk, N.; Oge, Y.; Erkan, D.; Süllü, Y.; Mohajerý, F. Relation between Retinal Vein Occlusions and Axial Length. Br. J. Ophthalmol. 1996, 80, 633–636. [Google Scholar] [CrossRef]
- Bandello, F.; Tavola, A.; Pierro, L.; Modorati, G.; Azzolini, C.; Brancato, R. Axial Length and Refraction in Retinal Vein Occlusions. Ophthalmologica 1998, 212, 133–135. [Google Scholar] [CrossRef]
- Rogers, S.L.; McIntosh, R.L.; Lim, L.; Mitchell, P.; Cheung, N.; Kowalski, J.W.; Nguyen, H.P.; Wang, J.J.; Wong, T.Y. Natural History of Branch Retinal Vein Occlusion: An Evidence-Based Systematic Review. Ophthalmology 2010, 117, 1094–1101. [Google Scholar] [CrossRef]
- McIntosh, R.L.; Rogers, S.L.; Lim, L.; Cheung, N.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.P.; Wong, T.Y. Natural History of Central Retinal Vein Occlusion: An Evidence-Based Systematic Review. Ophthalmology 2010, 117, 1113–1123. [Google Scholar] [CrossRef]
- Tranos, P.G.; Wickremasinghe, S.S.; Stangos, N.T.; Topouzis, F.; Tsinopoulos, I.; Pavesio, C.E. Macular Edema. Surv. Ophthalmol. 2004, 49, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, M.; Dun, C.; Schein, O.D.; Lum, F.; Woreta, F. Cystoid Macular Edema after Cataract Surgery in the United States. Ophthalmology 2023, 130, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Oh, J.; Togloom, A.; Kim, S.W.; Huh, K. Characteristics of cystoid spaces in type 2 idiopathic macular telangiectasia on spectral domain optical coherence tomography images. Retina 2014, 34, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Matet, A.; Daruich, A.; Dirani, A.; Ambresin, A.; Behar-Cohen, F. Macular Telangiectasia Type 1: Capillary Density and Microvascular Abnormalities Assessed by Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2016, 167, 18–30. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Rayess, H.; Steinle, N. Topical Dorzolamide Therapy for Taxane-Related Macular Oedema. Eye 2012, 27, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; McGimpsey, S.; Mullholland, D.A. Cystoid Macular Oedema and Renal Failure. Med. Hypotheses 2006, 66, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.; McIntosh, R.L.; Cheung, N.; Lim, L.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.; Wong, T.Y.; International Eye Disease Consortium. The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia. Ophthalmology 2010, 117, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Q.; Xu, L.; Wang, S.; Wang, Y.X.; You, Q.S.; Tu, Y.; Yang, H.; Jonas, J.B. The 10-Year Incidence and Risk Factors of Retinal Vein Occlusion: The Beijing Eye Study. Ophthalmology 2013, 120, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Vaz, J. The Blood-Retinal Barrier in the Management of Retinal Disease: EURETINA Award Lecture. Ophthalmologica 2017, 237, 1–10. [Google Scholar] [CrossRef]
- Daruich, A.; Matet, A.; Moulin, A.; Kowalczuk, L.; Nicolas, M.; Sellam, A.; Rothschild, P.R.; Omri, S.; Gélizé, E.; Jonet, L.; et al. Mechanisms of Macular Edema: Beyond the Surface. Prog. Retin. Eye Res. 2018, 63, 20–68. [Google Scholar] [CrossRef]
- Spaide, R.F. Retinal vascular cystoid macular edema: Review and New Theory. Retina 2016, 36, 1823–1842. [Google Scholar] [CrossRef] [PubMed]
- Haydinger, C.D.; Ferreira, L.B.; Williams, K.A.; Smith, J.R. Mechanisms of Macular Edema. Front. Med. 2023, 10, 1128811. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Lee, J.K.; Klancnik, J.M.; Gross, N.E. Optical coherence tomography of branch retinal vein occlusion. Retina 2003, 23, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Otani, T.; Yamaguchi, Y.; Kishi, S. Correlation between visual acuity and foveal microstructural changes in diabetic macular edema. Retina 2010, 30, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Okamoto, F.; Iida, M.; Sugiura, Y.; Okamoto, Y.; Hiraoka, T.; Oshika, T. Relationship between Metamorphopsia and Foveal Microstructure in Patients with Branch Retinal Vein Occlusion and Cystoid Macular Edema. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, J. Astrocytes in mammalian retina. Prog. Retin. Res. 1988, 7, 209–231. [Google Scholar] [CrossRef]
- Reichenbach, A.; Bringmann, A. New Functions of Müller Cells. Glia 2013, 61, 651–678. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, A.; Grosche, A.; Pannicke, T.; Reichenbach, A. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells. Front. Endocrinol. 2013, 4, 48. [Google Scholar] [CrossRef] [PubMed]
- Nagelhus, E.A.; Mathiisen, T.M.; Ottersen, O.P. Aquaporin-4 in the Central Nervous System: Cellular and Subcellular Distribution and Coexpression with KIR4.1. Neuroscience 2004, 129, 905–913. [Google Scholar] [CrossRef]
- Jin, B.J.; Rossi, A.; Verkman, A.S. Model of Aquaporin-4 Supramolecular Assembly in Orthogonal Arrays Based on Heterotetrameric Association of M1-M23 Isoforms. Biophys. J. 2011, 100, 2936–2945. [Google Scholar] [CrossRef]
- Newman, E.A. A Physiological Measure of Carbonic Anhydrase in Müller Cells. Glia 1994, 11, 291–299. [Google Scholar] [CrossRef]
- Ochrietor, J.D.; Clamp, M.F.; Moroz, T.P.; Grubb, J.H.; Shah, G.N.; Waheed, A.; Sly, W.S.; Linser, P.J. Carbonic Anhydrase XIV Identified as the Membrane CA in Mouse Retina: Strong Expression in Müller Cells and the RPE. Exp. Eye Res. 2005, 81, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Behzadian, M.A.; Wang, X.L.; Windsor, L.J.; Ghaly, N.; Caldwell, R.B. TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: Possible role of glial cells in endothelial barrier function. Investig. Ophthalmol. Vis. Sci. 2001, 42, 853–859. [Google Scholar]
- Hauck, S.M.; von Toerne, C.; Ueffing, M. The Neuroprotective Potential of Retinal Müller Glial Cells. Adv. Exp. Med. Biol. 2014, 801, 381–387. [Google Scholar] [CrossRef]
- Zhang, M.; Tombran-Tink, J.; Yang, S.; Zhang, X.; Li, X.; Barnstable, C.J. PEDF Is an Endogenous Inhibitor of VEGF-R2 Angiogenesis Signaling in Endothelial Cells. Exp. Eye Res. 2021, 213, 108828. [Google Scholar] [CrossRef]
- Ablonczy, Z.; Prakasam, A.; Fant, J.; Fauq, A.; Crosson, C.; Sambamurti, K. Pigment Epithelium-Derived Factor Maintains Retinal Pigment Epithelium Function by Inhibiting Vascular Endothelial Growth Factor-R2 Signaling through γ-Secretase. J. Biol. Chem. 2009, 284, 30177–30186. [Google Scholar] [CrossRef]
- Yang, J.; Duh, E.J.; Caldwell, R.B.; Behzadian, M.A. Antipermeability Function of PEDF Involves Blockade of the MAP Kinase/GSK/β-Catenin Signaling Pathway and UPAR Expression. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3273–3280. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, E.; Raoul, W.; Calippe, B.; Sahel, J.A.; Guillonneau, X.; Paques, M.; Sennlaub, F. Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization. PLoS ONE 2015, 10, e0132644. [Google Scholar] [CrossRef]
- Danis, R.P.; Wallow, I.H. Microvascular Changes in Experimental Branch Retinal Vein Occlusion. Ophthalmology 1987, 94, 1213–1221. [Google Scholar] [CrossRef]
- Celık, E.; Doğan, E.; Turkoglu, E.B.; Çakır, B.; Alagoz, G. Serous Retinal Detachment in Patients with Macular Edema Secondary to Branch Retinal Vein Occlusion. Arq. Bras. Oftalmol. 2016, 79, 9–11. [Google Scholar] [CrossRef]
- Rehak, M.; Hollborn, M.; Iandiev, I.; Pannicke, T.; Karl, A.; Wurm, A.; Kohen, L.; Reichenbach, A.; Wiedemann, P.; Bringmann, A. Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2359–2367. [Google Scholar] [CrossRef]
- Distler, C.; Dreher, Z. Glia Cells of the Monkey Retina—II. Müller Cells. Vision. Res. 1996, 36, 2381–2394. [Google Scholar] [CrossRef] [PubMed]
- Omri, S.; Omri, B.; Savoldelli, M.; Jonet, L.; Thillaye-Goldenberg, B.; Thuret, G.; Gain, P.; Jeanny, J.C.; Crisanti, P.; Behar-Cohen, F. The outer limiting membrane (OLM) revisited: Clinical implications. Clin. Ophthalmol. 2010, 4, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, E.; Gupta, N.; Ahari, A.; Zhou, X.; Hanna, J.; Yücel, Y.H. Evidence for Cerebrospinal Fluid Entry into the Optic Nerve via a Glymphatic Pathway. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4784–4791. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Liu, D.T.L.; Lam, D.S.C.; Jonas, J.B. Retinal vein occlusions, from basics to the latest treatment. Retina 2016, 36, 432–448. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Fratterigo, L.; Jonas, J. Central Retinal Vein Occlusion Associated with Cilioretinal Artery Occlusion. Retina 2008, 28, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Phasukkijwatana, N.; Rahimi, M.; Iafe, N.; Sarraf, D. Central Retinal Vein Occlusion and Paracentral Acute Middle Maculopathy Diagnosed with En Face Optical Coherence Tomography. Ophthalmic Surg. Lasers Imaging Retina 2016, 47, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.U.; Oden, N.L.; VanVeldhuisen, P.C.; Ip, M.S.; Blodi, B. A; SCORE2 Investigator Group. SCORE2 Report 24: Nonlinear Relationship of Retinal Thickness and Visual Acuity in Central Retinal and Hemiretinal Vein Occlusion. Ophthalmology 2023, 130, 1066–1072. [Google Scholar] [CrossRef]
- Etheridge, T.; Blodi, B.; Oden, N.; Van Veldhuisen, P.; Scott, I.U.; Ip, M.S.; Mititelu, M.; Domalpally, A. Spectral Domain OCT Predictors of Visual Acuity in the Study of COmparative Treatments for REtinal Vein Occlusion 2: SCORE 2 Report 15. Ophthalmol. Retina 2021, 5, 991–998. [Google Scholar] [CrossRef]
- Lloyd Clark, W.; Liu, M.; Kitchens, J.; Wang, P.W.; Haskova, Z. Baseline Characteristics Associated with Early Visual Acuity Gains after Ranibizumab Treatment for Retinal Vein Occlusion. BMC Ophthalmol. 2019, 19, 11. [Google Scholar] [CrossRef]
- Chatziralli, I.P.; Sergentanis, T.N.; Sivaprasad, S. Hyperreflective foci as an independent visual outcome predictor in macular edema due to retinal vascular diseases treated with intravitreal dexamethasone or ranibizumab. Retina 2016, 36, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.W.; Lee, H.; Chung, H.; Kim, H.C. Correlation between Optical Coherence Tomographic Hyperreflective Foci and Visual Outcomes after Intravitreal Bevacizumab for Macular Edema in Branch Retinal Vein Occlusion. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.R.; Costa, M.Â.; Schwartz, C.; Alves, D.; Figueira, J.; Silva, R.; Cunha-Vaz, J.G. Optical coherence tomography baseline predictors for initial best-corrected visual acuity response to intravitreal anti-vascular endothelial growth factor treatment in eyes with diabetic macular edema: The Chartres Study. Retina 2018, 38, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Mimouni, M.; Segev, O.; Dori, D.; Geffen, N.; Flores, V.; Segal, O. Disorganization of the Retinal Inner Layers as a Predictor of Visual Acuity in Eyes with Macular Edema Secondary to Vein Occlusion. Am. J. Ophthalmol. 2017, 182, 160–167. [Google Scholar] [CrossRef]
- Babiuch, A.S.; Han, M.; Conti, F.F.; Wai, K.; Silva, F.Q.; Singh, R.P. Association of Disorganization of Retinal Inner Layers with Visual Acuity Response to Anti–Vascular Endothelial Growth Factor Therapy for Macular Edema Secondary to Retinal Vein Occlusion. JAMA Ophthalmol. 2019, 137, 38–46. [Google Scholar] [CrossRef]
- Chan, E.W.; Eldeeb, M.; Sun, V.; Thomas, D.; Omar, A.; Kapusta, M.A.; Galic, I.J.; Chen, J.C. Disorganization of Retinal Inner Layers and Ellipsoid Zone Disruption Predict Visual Outcomes in Central Retinal Vein Occlusion. Ophthalmol. Retina 2019, 3, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Yiu, G.; Welch, R.J.; Wang, Y.; Wang, Z.; Wang, P.W.; Haskova, Z. Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmol. Retina 2020, 4, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Avunduk, A.M.; Çetinkaya, K.; Kapicioǧlu, Z.; Kaya, C. The Effect of Posterior Vitreous Detachment on the Prognosis of Branch Retinal Vein Occlusion. Acta Ophthalmol. Scand. 1997, 75, 441–442. [Google Scholar] [CrossRef]
- Samara, W.A.; Shahlaee, A.; Sridhar, J.; Khan, M.A.; Ho, A.C.; Hsu, J. Quantitative Optical Coherence Tomography Angiography Features and Visual Function in Eyes with Branch Retinal Vein Occlusion. Am. J. Ophthalmol. 2016, 166, 76–83. [Google Scholar] [CrossRef]
- Casselholmde Salles, M.; Kvanta, A.; Amrén, U.; Epstein, D. Optical Coherence Tomography Angiography in Central Retinal Vein Occlusion: Correlation between the Foveal Avascular Zone and Visual Acuity. Investig. Opthalmol. Vis. Sci. 2016, 57, OCT242–OCT246. [Google Scholar] [CrossRef]
- Kang, J.W.; Yoo, R.; Jo, Y.H.; Kim, H.C. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina 2017, 37, 1700–1709. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T.; Sato, T.; Hara-Ueno, C.; Fukushima, Y.; Sayanagi, K.; Shiraki, N.; Sawa, M.; Ikuno, Y.; Sakaguchi, H.; Nishida, K. Retinal Microvasculature and Visual Acuity in Eyes with Branch Retinal Vein Occlusion: Imaging Analysis by Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Hirano, Y.; Tomiyasu, T.; Kurobe, R.; Yasuda, Y.; Esaki, Y.; Yasukawa, T.; Yoshida, M.; Ogura, Y. Collateral Vessels on Optical Coherence Tomography Angiography in Eyes with Branch Retinal Vein Occlusion. Br. J. Ophthalmol. 2019, 103, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Farinha, C.; Santos, T.; Marques, I.P.; Marques, J.P.; Ribeiro, L.; Figueira, J.; Silva, R.; Cunha-Vaz, J. OCT-Leakage Mapping: A New Automated Method of OCT Data Analysis to Identify and Locate Abnormal Fluid in Retinal Edema. Ophthalmol. Retina 2017, 1, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.R.; Abbey, A.M.; Yonekawa, Y.; Khandan, S.; Wolfe, J.D.; Trese, M.T.; Williams, G.A.; Capone, A. Widefield fluorescein angiography in patients without peripheral disease: A Study of Normal Peripheral Findings. Retina 2016, 36, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.S.; Thomas, M.K.; Finn, A.P.; Fekrat, S. Use of the ischemic index on widefield fluorescein angiography to characterize a central retinal vein occlusion as ischemic or nonischemic. Retina 2019, 39, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Yannuzzi, L.A.; Rohrer, K.T.; Tindel, L.J.; Sobel, R.S.; Costanza, M.A.; Shields, W.; Zang, E. Fluorescein Angiography Complication Survey. Ophthalmology 1986, 93, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Lendzioszek, M.; Mrugacz, M.; Bryl, A.; Poppe, E.; Zorena, K. Prevention and Treatment of Retinal Vein Occlusion: The Role of Diet—A Review. Nutrients 2023, 15, 3237. [Google Scholar] [CrossRef]
- Salehin, S.; Rasmussen, P.; Mai, S.; Mushtaq, M.; Agarwal, M.; Hasan, S.M.; Salehin, S.; Raja, M.; Gilani, S.; Khalife, W.I. Plant Based Diet and Its Effect on Cardiovascular Disease. Int. J. Environ. Res. Public Health 2023, 20, 3337. [Google Scholar] [CrossRef]
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean Diet and Cardiovascular Health: Teachings of the PREDIMED Study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef]
- Casas, R.; Castro-Barquero, S.; Estruch, R.; Sacanella, E. Nutrition and Cardiovascular Health. Int. J. Mol. Sci. 2018, 19, 3988. [Google Scholar] [CrossRef] [PubMed]
- Kwan, Y.H.; Woong, N.L.; Foo, R.C.M.; Balakrishnan, T. COVID-19 Lockdown Measures Induced Severe Iron-Deficiency Anaemia Resulting in Central Retinal Vein Occlusion and Amenorrhea. BMJ Case Rep. 2021, 14, e242639. [Google Scholar] [CrossRef] [PubMed]
- Yang, V.; Turner, L.D.; Imrie, F. Central Retinal Vein Occlusion Secondary to Severe Iron-Deficiency Anaemia Resulting from a Plant-Based Diet and Menorrhagia: A Case Presentation. BMC Ophthalmol. 2020, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, C.; Huang, A.M.; Zhang, J.; Yang, R.; Sha, X.; Liu, Z. Combined Central Retinal Vascular Occlusion as the Presenting Feature in β-Thalassemia with Iron Deficiency Anemia. Retin. Cases Brief Rep. 2022, 18, 10–1097. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.L. Iron Deficiency Anemia: A Common and Curable Disease. Cold Spring Harb. Perspect. Med. 2013, 3, a011866. [Google Scholar] [CrossRef] [PubMed]
- Al Wadani, F.; Khandekar, R.; Salim, G.; Al Ali, M.; Ramzi, S. Hyperhomocysteinia Is a Risk Factor for Retinal Venous Occlusion: A Case Control Study. Indian J. Ophthalmol. 2014, 62, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Lei, C.; Zhang, M. Folate and Retinal Vascular Diseases. BMC Ophthal. 2023, 23, 413. [Google Scholar] [CrossRef] [PubMed]
- Paciullo, F.; Menduno, P.S.; Tucci, D.; Caricato, A.; Cagini, C.; Gresele, P. Vitamin B12 Levels in Patients with Retinal Vein Occlusion and Their Relation with Clinical Outcome: A Retrospective Study. Intern. Emerg. Med. 2022, 17, 1065–1071. [Google Scholar] [CrossRef]
- Kazantzis, D.; Theodossiadis, P.; Kroupis, C.; Theodossiadis, G.; Chatziralli, I. Vitamin B12 and Folate as Risk Factors for Retinal Vein Occlusion: A Meta-Analysis. Klin. Monatsblätter Augenheilkd. 2022, 239, 709–716. [Google Scholar] [CrossRef]
- Mohamed, R.; Sharma, I.; Ibrahim, A.S.; Saleh, H.; Elsherbiny, N.M.; Fulzele, S.; Elmasry, K.; Smith, S.B.; Al-Shabrawey, M.; Tawfik, A. Hyperhomocysteinemia Alters Retinal Endothelial Cells Barrier Function and Angiogenic Potential via Activation of Oxidative Stress. Sci. Rep. 2017, 7, 11952. [Google Scholar] [CrossRef]
- Elsherbiny, N.M.; Sharma, I.; Kira, D.; Alhusban, S.; Samra, Y.A.; Jadeja, R.; Martin, P.; Al-Shabrawey, M.; Tawfik, A. Homocysteine Induces Inflammation in Retina and Brain. Biomolecules 2020, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.C.; Yang, S.H.; Chang, C.Y.; Wang, L.K.; Lin, Y.T.; Yu, C.H.; Chuang, M.H.; Chen, J.Y. Is Circulating Vitamin D Status Associated with the Risk of Venous Thromboembolism? A Meta-Analysis of Observational Studies. Nutrients 2023, 15, 1113. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.S.; Tsai, C.Y.; Liou, S.W.; Tsai, R.J.; Lin, H.C. Seasonal Variations in the Occurrence of Retinal Vein Occlusion: A Five-Year Nationwide Population-Based Study from Taiwan. Am. J. Ophthalmol. 2008, 145, 722–728. [Google Scholar] [CrossRef]
- Karimi, S.; Parvizi, F.; Arabi, A.; Shahraki, T.; Safi, S. Oral Vitamin D Supplementation and Clinical Outcomes of Intravitreal Bevacizumab Injection for Macular Edema Secondary to Retinal Vein Occlusions. J. Ophthalmic Vis. Res. 2022, 17, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Edo, A.; Ibrahim, D.G.; Hirooka, K.; Toda, R.; Kamaruddin, M.I.; Kawano, R.; Nagao, A.; Ohno, H.; Yoneda, M.; Kiuchi, Y. Dietary Vitamins A, C, and Potassium Intake Is Associated with Narrower Retinal Venular Caliber. Front. Med. 2022, 9, 818139. [Google Scholar] [CrossRef] [PubMed]
- Ursell, L.K.; Haiser, H.J.; Van Treuren, W.; Garg, N.; Reddivari, L.; Vanamala, J.; Dorrestein, P.C.; Turnbaugh, P.J.; Knight, R. The Intestinal Metabolome: An Intersection between Microbiota and Host. Gastroenterology 2014, 146, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yao, M.; Lv, L.; Ling, Z.; Li, L. The human microbiota in health and disease. Engineering 2017, 3, 71–82. [Google Scholar] [CrossRef]
- Zysset-Burri, D.C.; Morandi, S.; Herzog, E.L.; Berger, L.E.; Zinkernagel, M.S. The Role of the Gut Microbiome in Eye Diseases. Prog. Retin. Eye Res. 2023, 92, 101117. [Google Scholar] [CrossRef]
- Zinkernagel, M.S.; Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Leichtle, A.B.; Largiadèr, C.R.; Fiedler, G.M.; Wolf, S. Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration. Sci. Rep. 2017, 7, 40826. [Google Scholar] [CrossRef]
- Napolitano, P.; Filippelli, M.; Davinelli, S.; Bartollino, S.; dell’Omo, R.; Costagliola, C. Influence of Gut Microbiota on Eye Diseases: An Overview. Ann. Med. 2021, 53, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, U.; Boachie-Mensah, M.; Zhang, J.; Skondra, D. Gut Microbiome and Retinal Diseases. Curr. Opin. Ophthalmol. 2022, 33, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, U.; Xie, B.; Movahedan, A.; D’Souza, M.; Barba, H.; Deng, N.; Leone, V.A.; Chang, E.; Sulakhe, D.; Skondra, D. High Throughput RNA Sequencing of Germ-Free Mouse Retina Reveals Metabolic Pathways Involved in the Gut-Retina Axis. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Neyer, P.J.; Steuer, C.; Wolf, S.; Zinkernagel, M.S. Retinal Artery Occlusion Is Associated with Compositional and Functional Shifts in the Gut Microbiome and Altered Trimethylamine-N-Oxide Levels. Sci. Rep. 2019, 9, 15303. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, Z.; Ma, H.; Ji, S.; Chen, Z.; Cui, Z.; Chen, J.; Tang, S. Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Front. Cell Infect. Microbiol. 2021, 11, 646348. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Zhang, X.; Xu, Y.; Xu, J.; Song, X.; Yao, K. Alterations of the Gut Microbiome and Metabolome in Patients with Proliferative Diabetic Retinopathy. Front. Microbiol. 2021, 12, 667632. [Google Scholar] [CrossRef]
- Lincke, J.B.; Christe, L.; Unterlauft, J.D.; Zinkernagel, M.S.; Zysset-Burri, D.C. Microbiome and Retinal Vascular Diseases. Am. J. Pathol. 2023, 193, 1675–1682. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Avery, E.G.; Bartolomaeus, H.; Maifeld, A.; Marko, L.; Wiig, H.; Wilck, N.; Rosshart, S.P.; Forslund, S.K.; Müller, D.N. The Gut Microbiome in Hypertension: Recent Advances and Future Perspectives. Circ. Res. 2021, 128, 934–950. [Google Scholar] [CrossRef]
- de Groot, P.; Nikolic, T.; Pellegrini, S.; Sordi, V.; Imangaliyev, S.; Rampanelli, E.; Hanssen, N.; Attaye, I.; Bakker, G.; Duinkerken, G.; et al. Faecal Microbiota Transplantation Halts Progression of Human New-Onset Type 1 Diabetes in a Randomised Controlled Trial. Gut 2021, 70, 92–105. [Google Scholar] [CrossRef]
- Ni, Y.; Zheng, A.; Hu, Y.; Rong, N.; Zhang, Q.; Long, W.; Yang, S.; Nan, S.; Zhang, L.; Zhou, K.; et al. Compound Dietary Fiber and High-Grade Protein Diet Improves Glycemic Control and Ameliorates Diabetes and Its Comorbidities through Remodeling the Gut Microbiota in Mice. Front. Nutr. 2022, 9, 959703. [Google Scholar] [CrossRef] [PubMed]
- Beli, E.; Yan, Y.; Moldovan, L.; Vieira, C.P.; Gao, R.; Duan, Y.; Prasad, R.; Bhatwadekar, A.; White, F.A.; Townsend, S.D.; et al. Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival Indb/DbMice. Diabetes 2018, 67, 1867–1879. [Google Scholar] [CrossRef] [PubMed]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of Antibiotics on the Human Microbiome and Consequences for Host Health. MicrobiologyOpen 2022, 11, e1260. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global Increase and Geographic Convergence in Antibiotic Consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, 3463–3470. [Google Scholar] [CrossRef] [PubMed]
- Draft Political Declaration of the High-Level Meeting of the General Assembly on Antimicrobial Resistance. Available online: https://www.un.org/pga/71/wp-content/uploads/sites/40/2016/09/DGACM_GAEAD_ESCAB-AMR-Draft-Political-Declaration-1616108E.pdf (accessed on 31 March 2024).
- Global Action Plan on Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 31 March 2024).
- Singh, M.; George, A.K.; Homme, R.P.; Majumder, A.; Laha, A.; Metreveli, N.; Pushpakumar, S.B.; Tyagi, S.C. Probiotic Supplementation Mitigates Vascular Remodeling in the Retina. FASEB J. 2019, 33, 484.11. [Google Scholar] [CrossRef]
- O’Mahoney, P.R.; Wong, D.T.; Ray, J.G. Retinal Vein Occlusion and Traditional Risk Factors for Atherosclerosis. Arch. Ophthalmol. 2008, 126, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G. Retinal Vein Occlusions Preferred Practice Pattern®. Ophthalmology 2020, 127, 288–320. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.; Talks, S.J.; Amoaku, W.; Talks, K.; Sivaprasad, S. Retinal Vein Occlusion (RVO) Guideline: Executive Summary. Eye 2022, 36, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Ageno, W.; Beyer-Westendorf, J.; Garcia, D.A.; Lazo-Langner, A.; McBane, R.D.; Paciaroni, M. Guidance for the Management of Venous Thrombosis in Unusual Sites. J. Thromb. Thrombolysis 2016, 41, 129–143. [Google Scholar] [CrossRef]
- Houtsmuller, A.J.; Vermeulen, J.A.; Klompe, M.; Zahn, K.J.; Henkes, H.E.; Baarsma, G.S.; Tijssen, J. The influence of ticlopidine on the natural course of retinal vein occlusion. Agents Actions Suppl. 1984, 15, 219–229. [Google Scholar]
- Belcaro, G.; Dugall, M.; Bradford, H.D.; Cesarone, M.R.; Feragalli, B.; Gizzi, C.; Cotellese, R.; Hu, S.; Rodriguez, P.; Hosoi, M. Recurrent Retinal Vein Thrombosis: Prevention with Aspirin, Pycnogenol®, Ticlopidine, or Sulodexide. Minerva Cardioangiol. 2019, 67, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Lazo-Langner, A.; Hawel, J.; Ageno, W.; Kovacs, M.J. Low Molecular Weight Heparin for the Treatment of Retinal Vein Occlusion: A Systematic Review and Meta-Analysis of Randomized Trials. Haematologica 2010, 95, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Valeriani, E.; Paciullo, F.; Porfidia, A.; Pignatelli, P.; Candeloro, M.; Di Nisio, M.; Donadini, M.P.; Mastroianni, C.M.; Pola, R.; Gresele, P.; et al. Antithrombotic Treatment for Retinal Vein Occlusion: A Systematic Review and Meta-Analysis. J. Thromb. Haemost. 2023, 21, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, E.; Lee, K.; Park, B.; Chung, Y.R. Efficacy and Safety of Non-Vitamin K-Antagonist Oral Anticoagulants for Retinal Vascular Diseases in Patients with Atrial Fibrillation: Korean Cohort Study. Sci. Rep. 2020, 10, 4577. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, H.; Ferrara, D.C.; Bruè, C.; Spaide, R.F. Central Retinal Vein Occlusion Case-Control Study. Am. J. Ophthalmol. 2007, 144, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Stefánsson, E. The Therapeutic Effects of Retinal Laser Treatment and Vitrectomy. A Theory Based on Oxygen and Vascular Physiology. Acta Ophthalmol. Scand. 2001, 79, 435–440. [Google Scholar] [CrossRef]
- Branch Vein Occlusion Study Group. Argon Laser Photocoagulation for Macular Edema in Branch Vein Occlusion. Am. J. Ophthalmol. 2018, 196, xxx–xxxviii. [Google Scholar] [CrossRef] [PubMed]
- The Central Vein Occlusion Study Group. Natural History and Clinical Management of Central Retinal Vein Occlusion. Arch. Ophthalmol. 1997, 115, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Branch Vein Occlusion Study Group. Argon Laser Scatter Photocoagulation for Prevention of Neovascularization and Vitreous Hemorrhage in Branch Vein Occlusion. Arch. Ophthalmol. 1986, 104, 34–41. [Google Scholar] [CrossRef]
- Noma, H.; Funatsu, H.; Yamasaki, M.; Tsukamoto, H.; Mimura, T.; Sone, T.; Jian, K.; Sakamoto, I.; Nakano, K.; Yamashita, H.; et al. Pathogenesis of Macular Edema with Branch Retinal Vein Occlusion and Intraocular Levels of Vascular Endothelial Growth Factor and Interleukin-6. Am. J. Ophthalmol. 2005, 140, 256–261. [Google Scholar] [CrossRef]
- Pe’er, J.; Folberg, R.; Itin, A.; Gnessin, H.; Hemo, I.; Keshet, E. Vascular Endothelial Growth Factor Upregulation in Human Central Retinal Vein Occlusion. Ophthalmology 1998, 105, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Garcia-Arumi, J.; Gerendas, B.S.; Midena, E.; Sivaprasad, S.; Tadayoni, R.; Wolf, S.; Loewenstein, A. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2019, 242, 123–162. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.; Martin, J.; Ruan, Q.; Rafique, A.; Rosconi, M.P.; Shi, E.; Pyles, E.A.; Yancopoulos, G.D.; Stahl, N.; Wiegand, S.J. Binding and Neutralization of Vascular Endothelial Growth Factor (VEGF) and Related Ligands by VEGF Trap, Ranibizumab and Bevacizumab. Angiogenesis 2012, 15, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Heier, J.S.; Feiner, L.; Gray, S.; Saroj, N.; Rundle, A.C.; Murahashi, W.Y.; Rubio, R.G.; BRAVO Investigators. Ranibizumab for Macular Edema Following Branch Retinal Vein Occlusion: Six-month primary end point results of a phase III study. Ophthalmology 2010, 117, 1102–1112.e1. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Campochiaro, P.A.; Singh, R.P.; Li, Z.; Gray, S.; Saroj, N.; Rundle, A.C.; Rubio, R.G.; Murahashi, W.Y.; CRUISE Investigators. Ranibizumab for Macular Edema Following Central Retinal Vein Occlusion: Six-month primary end point results of a phase III study. Ophthalmology 2010, 117, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Clark, W.L.; Boyer, D.S.; Heier, J.S.; Brown, D.M.; Vitti, R.; Kazmi, H.; Berliner, A.J.; Erickson, K.; Chu, K.W.; et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion: The 24-week results of the VIBRANT study. Ophthalmology 2015, 122, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.L.; Boyer, D.S.; Heier, J.S.; Brown, D.M.; Haller, J.A.; Vitti, R.; Kazmi, H.; Berliner, A.J.; Erickson, K.; Chu, K.W.; et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion: 52-Week Results of the VIBRANT Study. Ophthalmology 2016, 123, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Korobelnik, J.F.; Holz, F.G.; Roider, J.; Ogura, Y.; Simader, C.; Schmidt-Erfurth, U.; Lorenz, K.; Honda, M.; Vitti, R.; Berliner, A.J.; et al. Intravitreal Aflibercept Injection for Macular Edema Resulting from Central Retinal Vein Occlusion: One-Year Results of the Phase 3 GALILEO Study. Ophthalmology 2014, 121, 202–208. [Google Scholar] [CrossRef]
- Brown, D.M.; Heier, J.S.; Clark, W.L.; Boyer, D.S.; Vitti, R.; Berliner, A.J.; Zeitz, O.; Sandbrink, R.; Zhu, X.; Haller, J.A. Intravitreal Aflibercept Injection for Macular Edema Secondary to Central Retinal Vein Occlusion: 1-Year Results from the Phase 3 COPERNICUS Study. Am. J. Ophthalmol. 2013, 155, 429–437. [Google Scholar] [CrossRef]
- Sharma, S.; Johnson, D.; Abouammoh, M.; Hollands, S.; Brissette, A. Rate of Serious Adverse Effects in a Series of Bevacizumab and Ranibizumab Injections. Can. J. Ophthalmol. 2012, 47, 275–279. [Google Scholar] [CrossRef]
- IVAN Study Investigators; Chakravarthy, U.; Harding, S.P.; Rogers, C.A.; Downes, S.M.; Lotery, A.J.; Wordsworth, S.; Reeves, B.C. Ranibizumab versus Bevacizumab to Treat Neovascular Age-Related Macular Degeneration: One-year findings from the IVAN randomized trial. Ophthalmology 2012, 119, 1399–1411. [Google Scholar] [CrossRef] [PubMed]
- Epstein, D.L.; Algvere, P.V.; von Wendt, G.; Seregard, S.; Kvanta, A. Bevacizumab for Macular Edema in Central Retinal Vein Occlusion: A Prospective, Randomized, Double-Masked Clinical Study. Ophthalmology 2012, 119, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.; Kim, S.J.; Ho, A.C.; Schoenberger, S.D.; Bakri, S.J.; Ehlers, J.P.; Thorne, J.E. Therapies for Macular Edema Associated with Central Retinal Vein Occlusion: A Report by the American Academy of Ophthalmology. Ophthalmology 2015, 122, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Kim, S.J.; Yeh, S.; Thorne, J.E.; Mruthyunjaya, P.; Schoenberger, S.D.; Bakri, S.J. Therapies for Macular Edema Associated with Branch Retinal Vein Occlusion: A Report by the American Academy of Ophthalmology. Ophthalmology 2017, 124, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.U.; VanVeldhuisen, P.C.; Ip, M.S.; Blodi, B.A.; Oden, N.L.; Awh, C.C.; Kunimoto, D.Y.; Marcus, D.M.; Wroblewski, J.J.; King, J.; et al. Effect of Bevacizumab vs Aflibercept on Visual Acuity among Patients with Macular Edema due to Central Retinal Vein Occlusion: The SCORE2 Randomized Clinical Trial. JAMA 2017, 317, 2072–2087. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.U.; Oden, N.L.; VanVeldhuisen, P.C.; Ip, M.S.; Blodi, B.A.; Chan, C.K. Month 24 Outcomes after Treatment Initiation with Anti–Vascular Endothelial Growth Factor Therapy for Macular Edema due to Central Retinal or Hemiretinal Vein Occlusion: SCORE2 Report 10: A Secondary Analysis of the SCORE2 Randomized Clinical Trial. JAMA Ophthalmol. 2019, 137, 1389. [Google Scholar] [CrossRef] [PubMed]
- Lucentis Prescribing Information—gene.com. Available online: https://www.gene.com/download/pdf/lucentis_prescribing.pdf (accessed on 25 June 2024).
- Eylea Prescribing Information—accessdata.fda.gov. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125387lbl.pdf (accessed on 25 June 2024).
- Bevacizumab Administration and Dosing. Available online: https://eyewiki.aao.org/Bevacizumab (accessed on 25 June 2024).
- Klettner, A.; Roider, J. Comparison of Bevacizumab, Ranibizumab, and Pegaptanib in Vitro: Efficiency and Possible Additional Pathways. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4523–4527. [Google Scholar] [CrossRef] [PubMed]
- Klettner, A.; Recber, M.; Roider, J. Comparison of the Efficacy of Aflibercept, Ranibizumab, and Bevacizumab in an RPE/Choroid Organ Culture. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J.; Chakravarthy, U.; Reeves, B.C.; Rogers, C.A. Systemic Safety of Anti-VEGF Drugs: A Commentary. Expert. Opin. Drug Saf. 2015, 14, 379–388. [Google Scholar] [CrossRef]
- Benest, A.V.; Kruse, K.; Savant, S.; Thomas, M.; Laib, A.M.; Loos, E.K.; Fiedler, U.; Augustin, H.G. Angiopoietin-2 Is Critical for Cytokine-Induced Vascular Leakage. PLoS ONE 2013, 8, e70459. [Google Scholar] [CrossRef]
- Foxton, R.H.; Uhles, S.; Grüner, S.; Revelant, F.; Ullmer, C. Efficacy of Simultaneous VEGF-A/ANG-2 Neutralization in Suppressing Spontaneous Choroidal Neovascularization. EMBO Mol. Med. 2019, 11, e10204. [Google Scholar] [CrossRef] [PubMed]
- Regula, J.T.; Lundh von Leithner, P.; Foxton, R.; Barathi, V.A.; Cheung, C.M.; Bo Tun, S.B.; Wey, Y.S.; Iwata, D.; Dostalek, M.; Moelleken, J.; et al. Targeting Key Angiogenic Pathways with a Bispecific CrossMAb Optimized for Neovascular Eye Diseases. EMBO Mol. Med. 2016, 8, 1265–1288. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Khanani, A.M.; Quezada Ruiz, C.; Basu, K.; Ferrone, P.J.; Brittain, C.; Figueroa, M.S.; Lin, H.; Holz, F.G.; Patel, V.; et al. Efficacy, Durability, and Safety of Intravitreal Faricimab up to Every 16 Weeks for Neovascular Age-Related Macular Degeneration (TENAYA and LUCERNE): Two Randomised, Double-Masked, Phase 3, Non-Inferiority Trials. Lancet 2022, 399, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Eter, N.; Singh, R.P.; Abreu, F.; Asik, K.; Basu, K.; Baumal, C.; Chang, A.; Csaky, K.G.; Haskova, Z.; Lin, H.; et al. YOSEMITE and RHINE: Phase 3 Randomized Clinical Trials of Faricimab for Diabetic Macular Edema: Study Design and Rationale. Ophthalmol. Sci. 2021, 2, 100111. [Google Scholar] [CrossRef] [PubMed]
- Tadayoni, R.; Paris, L.P.; Danzig, C.J.; Abreu, F.; Khanani, A.M.; Brittain, C.; Lai, T.Y.Y.; Haskova, Z.; Sakamoto, T.; Kotecha, A.; et al. Efficacy and Safety of Faricimab for Macular Edema due to Retinal Vein Occlusion: 24-Week Results from the BALATON and COMINO Trials. Ophthalmology 2024, in press. [Google Scholar] [CrossRef]
- New Long-Term Data for Roche’s Vabysmo Show Sustained Retinal Drying and Vision Improvements in Retinal Vein Occlusion. Available online: https://www.ophthalmologytimes.com/view/new-long-term-data-for-roche-s-vabysmo-show-sustained-retinal-drying-and-vision-improvements-in-retinal-vein-occlusion (accessed on 31 March 2024).
- Vabysmo Prescribing Information—gene.com. Available online: https://www.gene.com/download/pdf/vabysmo_prescribing.pdf (accessed on 25 June 2024).
- Yao, X.L.; Cowan, M.J.; Gladwin, M.T.; Lawrence, M.M.; Angus, C.W.; Shelhamer, J.H. Dexamethasone Alters Arachidonate Release from Human Epithelial Cells by Induction of P11 Protein Synthesis and Inhibition of Phospholipase A2 Activity. J. Biol. Chem. 1999, 274, 17202–17208. [Google Scholar] [CrossRef] [PubMed]
- Rezar-Dreindl, S.; Eibenberger, K.; Pollreisz, A.; Bühl, W.; Georgopoulos, M.; Krall, C.; Dunavölgyi, R.; Weigert, G.; Kroh, M.E.; Schmidt-Erfurth, U.; et al. Effect of Intravitreal Dexamethasone Implant on Intra-Ocular Cytokines and Chemokines in Eyes with Retinal Vein Occlusion. Acta Ophthalmol. 2017, 95, 119–127. [Google Scholar] [CrossRef]
- Jeanneteau, F.; Garabedian, M.J.; Chao, M.V. Activation of Trk Neurotrophin Receptors by Glucocorticoids Provides a Neuroprotective Effect. Proc. Natl. Acad. Sci. USA 2008, 105, 4862–4867. [Google Scholar] [CrossRef] [PubMed]
- Ip, M.S.; Scott, I.U.; VanVeldhuisen, P.C.; Oden, N.L.; Blodi, B.A.; Fisher, M.; Singerman, L.J.; Tolentino, M.; Chan, C.K.; Gonzalez, V.H.; et al. A Randomized Trial Comparing the Efficacy and Safety of Intravitreal Triamcinolone with Observation to Treat Vision Loss Associated with Macular Edema Secondary to Central Retinal Vein Occlusion: The Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch. Ophthalmol. 2009, 127, 1101–1114. [Google Scholar] [CrossRef]
- Haller, J.A.; Bandello, F.; Belfort, R.; Blumenkranz, M.S.; Gillies, M.; Heier, J.; Loewenstein, A.; Yoon, Y.H.; Jiao, J.; Li, X.Y.; et al. Dexamethasone Intravitreal Implant in Patients with Macular Edema Related to Branch or Central Retinal Vein Occlusion: Twelve-Month Study Results. Ophthalmology 2011, 118, 2453–2460. [Google Scholar] [CrossRef]
- Scott, I.U.; Ip, M.S.; VanVeldhuisen, P.C.; Oden, N.L.; Blodi, B.A.; Fisher, M.; Chan, C.K.; Gonzalez, V.H.; Singerman, L.J.; Tolentino, M.; et al. A Randomized Trial Comparing the Efficacy and Safety of Intravitreal Triamcinolone with Standard Care to Treat Vision Loss Associated with Macular Edema Secondary to Branch Retinal Vein Occlusion: The Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch. Ophthalmol. 2009, 127, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Chang-Lin, J.E.; Attar, M.; Acheampong, A.A.; Robinson, M.R.; Whitcup, S.M.; Kuppermann, B.D.; Welty, D. Pharmacokinetics and Pharmacodynamics of a Sustained-Release Dexamethasone Intravitreal Implant. Investig. Ophthalmol. Vis. Sci. 2011, 52, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Bakri, S.J.; Omar, A.F.; Iezzi, R.; Kapoor, K.G. Evaluation of multiple dexamethasone intravitreal implants in patients with macular edema associated with retinal vein occlusion. Retina 2016, 36, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Eibenberger, K.; Schmetterer, L.; Rezar-Dreindl, S.; Wozniak, P.; Told, R.; Mylonas, G.; Krall, C.; Schmidt-Erfurth, U.; Sacu, S. Effects of Intravitreal Dexamethasone Implants on Retinal Oxygen Saturation, Vessel Diameter, and Retrobulbar Blood Flow Velocity in ME Secondary to RVO. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5022–5029. [Google Scholar] [CrossRef] [PubMed]
- Tadayoni, R.; Waldstein, S.M.; Boscia, F.; Gerding, H.; Gekkieva, M.; Barnes, E.; Das Gupta, A.; Wenzel, A.; Pearce, I.; BRIGHTER Study Group. Sustained Benefits of Ranibizumab with or without Laser in Branch Retinal Vein Occlusion: 24-Month Results of the Brighter Study. Ophthalmology 2017, 124, 1778–1787. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Yu, X.; Zhang, P.; Gu, X.; Dai, H. Combination of Ranibizumab with Macular Laser for Macular Edema Secondary to Branch Retinal Vein Occlusion: One-Year Results from a Randomized Controlled Double-Blind Trial. BMC Ophthalmol. 2020, 20, 241. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Kondo, M.; Inoue, M.; Nakao, S.; Osaka, R.; Shiragami, C.; Sogawa, K.; Mochizuki, A.; Shiraga, R.; Ohashi, Y.; et al. The Randomized ZIPANGU Trial of Ranibizumab and Adjunct Laser for Macular Edema Following Branch Retinal Vein Occlusion in Treatment-Naïve Patients. Sci. Rep. 2021, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Miura, Y.; Hirayama, K.; Kyo, A.; Kohno, T.; Theisen-Kunde, D.; Brinkmann, R.; Honda, S. Comparative Treatment Study on Macular Edema Secondary to Branch Retinal Vein Occlusion by Intravitreal Ranibizumab with and without Selective Retina Therapy. Life 2023, 13, 769. [Google Scholar] [CrossRef]
- Brinkmann, R.; Roider, J.; Birngruber, R. Selective retina therapy (SRT): A review on methods, techniques, preclinical and first clinical results. Bull. Soc. Belge. Ophtalmol. 2006, 302, 51–69. [Google Scholar]
- Terashima, H.; Hasebe, H.; Okamoto, F.; Matsuoka, N.; Sato, Y.; Fukuchi, T. Combination therapy of intravitreal ranibizumab and subthreshold Micropulse photocoagulation for macular edema secondary to branch retinal vein occlusion: 6-MONTH result. Retina 2019, 39, 1377–1384. [Google Scholar] [CrossRef]
- Gawęcki, M. Subthreshold Diode Micropulse Laser Combined with Intravitreal Therapy for Macular Edema—A Systematized Review and Critical Approach. J. Clin. Med. 2021, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Eng, V.A.; Leng, T. Subthreshold Laser Therapy for Macular Oedema from Branch Retinal Vein Occlusion: Focused Review. Br. Ophthalmol. 2020, 104, 1184–1189. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Wu, M.; Dan, A.; Yang, W.; Peng, Y.; Xiao, L. Efficacy of Subthreshold Micropulse Laser Photocoagulation Therapy versus Anti-Vascular Endothelial Growth Factor Therapy for Refractory Macular Edema Secondary to Non-Ischemic Branch Retinal Vein Occlusion. J. Int. Med. Res. 2023, 51, 3000605231194462. [Google Scholar] [CrossRef] [PubMed]
- Gawęcki, M. Micropulse Laser Treatment of Retinal Diseases. J. Clin. Med. 2019, 8, 242. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.A.; Jansen, M.E.; Tyler, L.; Woods, P.; Ansari, F.; Jain, U.; Singer, J.; Bell, D.; Krambeer, C. Long-Term Results of Combination Therapy Using Anti-VEGF Agents and Dexamethasone Intravitreal Implant for Retinal Vein Occlusion: An Investigational Case Series. Clin. Ophthalmol. 2016, 11, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Limon, U.; Sezgin Akçay, B.I. Add-on Effect of Simultaneous Intravitreal Dexamethasone to Intravitreal Bevacizumab in Patients with Macular Edema Secondary to Branch Retinal Vein Occlusion. J. Ocul. Pharmacol. Ther. 2022, 38, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Gong, H.; Zhang, H.; Zhang, X.; Liu, X.; Li, J.; Zhang, G. Evaluating the One-Year Efficacy of Combined Anti-VEGF and Dexamethasone Implant Treatment for Macular Edema in Retinal Vein Occlusions. Med. Sci. Monit. 2023, 29, e939277. [Google Scholar] [CrossRef] [PubMed]
- Mannina, A.; Olivier, M.; Patrianakos, T. Neovascular Glaucoma. Dis. Mon. 2021, 67, 101137. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Kim, K.A.; Sohn, S.W.; Yang, S.J. Association of Aqueous Humor Cytokines with the Development of Retinal Ischemia and Recurrent Macular Edema in Retinal Vein Occlusion. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2290–2296. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Zimmerman, M.B. Ocular neovascularization associated with central and Hemicentral retinal vein occlusion. Retina 2012, 32, 1553–1565. [Google Scholar] [CrossRef]
- Rong, A.J.; Swaminathan, S.S.; Vanner, E.A.; Parrish, R.K. Predictors of Neovascular Glaucoma in Central Retinal Vein Occlusion. Am. J. Ophthalmol. 2019, 204, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S. Photocoagulation for Retinal Vein Occlusion. Prog. Retin. Eye Res. 2021, 85, 100964. [Google Scholar] [CrossRef] [PubMed]
- Rittiphairoj, T.; Roberti, G.; Michelessi, M. Anti-Vascular Endothelial Growth Factor for Neovascular Glaucoma. Cochrane Database Syst. Rev. 2023, 4, CD007920. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Spirn, M.J.; Lam, A.; Sivalingam, A.; Samuel, M.A.; Tasman, W. Combination intravitreal bevacizumab/Panretinal photocoagulation versus panretinal photocoagulation alone in the treatment of neovascular glaucoma. Retina 2008, 28, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Vasudev, D.; Blair, M.P.; Galasso, J.M.; Kapur, R.; Vajaranant, T. Intravitreal Bevacizumab for Neovascular Glaucoma. J. Ocul. Pharmacol. Ther. 2009, 25, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Zou, Y.; Yang, L.; Wu, H. The Progress of Assessment Methods and Treatments of Neovascular Glaucoma Secondary to Central Retinal Vein Occlusion. Front. Med. 2024, 10, 1280776. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Tariq, F.; He, Y.D.; Zhang, S.; Wang, F. Intracameral Anti-VEGF Injection for Advanced Neovascular Glaucoma after Vitrectomy with Silicone Oil Tamponade. Int. J. Ophthalmol. 2021, 14, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Smiddy, W.E. Economic Considerations of Macular Edema Therapies. Ophthalmology 2011, 118, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, S.T.; Finn, A.P. Cost-Efficacy in the Study of Comparative Treatments for Retinal Vein Occlusion 2—Should We Consider Step Therapy for Retinal Vein Occlusion? JAMA Ophthalmol. 2023, 141, 561–563. [Google Scholar] [CrossRef]
- Suñer, I.J.; Margolis, J.; Ruiz, K.; Tran, I.; Lee, P. Direct medical costs and resource use for treating central and branch retinal vein occlusion in commercially insured working-age and Medicare populations. Retina 2014, 34, 2250–2258. [Google Scholar] [CrossRef]
- Ranade, S.V.; Wieland, M.R.; Tam, T.; Rea, J.C.; Horvath, J.; Hieb, A.R.; Jia, W.; Grace, L.; Barteselli, G.; Stewart, J.M. The Port Delivery System with Ranibizumab: A New Paradigm for Long-Acting Retinal Drug Delivery. Drug Deliv. 2022, 29, 1326–1334. [Google Scholar] [CrossRef]
- Holekamp, N.M.; Campochiaro, P.A.; Chang, M.A.; Miller, D.; Pieramici, D.; Adamis, A.P.; Brittain, C.; Evans, E.; Kaufman, D.; Maass, K.F.; et al. Archway Randomized Phase 3 Trial of the Port Delivery System with Ranibizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology 2022, 129, 295–307. [Google Scholar] [CrossRef]
- Park, S.S.; Bauer, G.; Abedi, M.; Pontow, S.; Panorgias, A.; Jonnal, R.; Zawadzki, R.J.; Werner, J.S.; Nolta, J. Intravitreal Autologous Bone Marrow CD34+ Cell Therapy for Ischemic and Degenerative Retinal Disorders: Preliminary Phase 1 Clinical Trial Findings. Investig. Ophthalmol. Vis. Sci. 2014, 56, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.A.; Nettesheim, E.R.; Connor, T.B.; Lipinski, D.M. Development of an Inducible Anti-VEGF rAAV Gene Therapy Strategy for the Treatment of Wet AMD. Sci. Rep. 2018, 8, 11763. [Google Scholar] [CrossRef]
- Huang, C.; Ji, L.; Kaur, A.; Tian, H.; Waduge, P.; Webster, K.A.; Li, W. Anti-Scg3 Gene Therapy to Treat Choroidal Neovascularization in Mice. Biomedicines 2023, 11, 1910. [Google Scholar] [CrossRef]
- Nguyen, H.; Lee, S.J.; Li, Y. Selective Activation of the Wnt-Signaling Pathway as a Novel Therapy for the Treatment of Diabetic Retinopathy and Other Retinal Vascular Diseases. Pharmaceutics 2022, 14, 2476. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, N.K. Long Non-Coding RNAs and Proliferative Retinal Diseases. Pharmaceutics 2023, 15, 1454. [Google Scholar] [CrossRef]
- Avrutsky, M.I.; Chen, C.W.; Lawson, J.M.; Snipas, S.J.; Salvesen, G.S.; Troy, C.M. Caspase-9 Inhibition Confers Stronger Neuronal and Vascular Protection Compared to VEGF Neutralization in a Mouse Model of Retinal Vein Occlusion. Front. Neurosci. 2023, 17, 1209527. [Google Scholar] [CrossRef] [PubMed]
- Avrutsky, M.I.; Troy, C.M. Caspase-9: A Multimodal Therapeutic Target with Diverse Cellular Expression in Human Disease. Front. Pharmacol. 2021, 12, 701301. [Google Scholar] [CrossRef]
- Khan, S.M.; Liu, X.; Nath, S.; Korot, E.; Faes, L.; Wagner, S.K.; Keane, P.A.; Sebire, N.J.; Burton, M.J.; Denniston, A.K. A Global Review of Publicly Available Datasets for Ophthalmological Imaging: Barriers to Access, Usability, and Generalisability. Lancet Digit. Health. 2021, 3, e51–e66. [Google Scholar] [CrossRef]
- Arnould, L.; Mériaudeau, F.; Guenancia, C.; Germanèse, C.; Delcourt, C.; Kawasaki, R.; Cheung, C.Y.; Creuzot-Garcher, C.; Grzybowski, A. Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review. Ophthalmol. Ther. 2023, 12, 657–674. [Google Scholar] [CrossRef]
- Poplin, R.; Varadarajan, A.V.; Blumer, K.; Liu, Y.; McConnell, M.V.; Corrado, G.S.; Peng, L.; Webster, D.R. Prediction of Cardiovascular Risk Factors from Retinal Fundus Photographs via Deep Learning. Nat. Biomed. Eng. 2018, 2, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Pinto, A.; Ravikumar, N.; Attar, R.; Suinesiaputra, A.; Zhao, Y.; Levelt, E.; Dall’Armellina, E.; Lorenzi, M.; Chen, Q.; Keenan, T.D.L.; et al. Predicting Myocardial Infarction through Retinal Scans and Minimal Personal Information. Nat. Mach. Intell. 2022, 4, 55–61. [Google Scholar] [CrossRef]
- Arsalan, M.; Owais, M.; Mahmood, T.; Cho, S.W.; Park, K.R. Aiding the Diagnosis of Diabetic and Hypertensive Retinopathy Using Artificial Intelligence-Based Semantic Segmentation. J. Clin. Med. 2019, 8, 1446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.F.; Li, D.H.; Wei, Q.J.; Ding, D.Y.; Meng, L.H.; Wang, Y.L.; Zhao, X.Y.; Chen, Y. X The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy. Front. Med. 2022, 9, 839088. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Ding, X.; Hou, N.; Wan, J. A Deep-Learning-Based Collaborative Edge–Cloud Telemedicine System for Retinopathy of Prematurity. Sensors 2022, 23, 276. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhou, Q.; Zou, Y. Automatic Detection of Age-Related Macular Degeneration Based on Deep Learning and Local Outlier Factor Algorithm. Diagnostics 2022, 12, 532. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, O.; Sivaprasad, S.; Joussen, A.M.; Grzybowski, A. Systems Medicine and Artificial Intelligence in Retinal Disease. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Ji, Y.; Liu, Y.; Zhao, Y.; Zhang, L. Research Progress on Diagnosing Retinal Vascular Diseases Based on Artificial Intelligence and Fundus Images. Front. Cell Dev. Biol. 2023, 11, 1168327. [Google Scholar] [CrossRef]
- Madadi, Y.; Delsoz, M.; Khouri, A.S.; Boland, M.; Grzybowski, A.; Yousefi, S. Applications of Artificial Intelligence-Enabled Robots and Chatbots in Ophthalmology: Recent Advances and Future Trends. Curr. Opin. Ophthalmol. 2024, 35, 238–243. [Google Scholar] [CrossRef]
- Ji, Y.K.; Hua, R.R.; Liu, S.; Xie, C.J.; Zhang, S.C.; Yang, W.H. Intelligent Diagnosis of Retinal Vein Occlusion Based on Color Fundus Photographs. Int. J. Ophthalmol. 2024, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Feng, W.; Ran, R.; Gao, Y.; Lin, Y.; Fu, X.; Tao, Y.; Wang, T.; Wang, B.; Ju, L.; et al. Artificial Intelligence to Distinguish Retinal Vein Occlusion Patients Using Color Fundus Photographs. Eye 2023, 37, 2026–2032. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Yu, J.; Zou, W.; Su, N.; Peng, Z.; Wu, X.; Huang, J.; Fang, Y.; Yuan, S.; Xie, P.; et al. Deep Learning Models for Segmenting Non-Perfusion Area of Color Fundus Photographs in Patients with Branch Retinal Vein Occlusion. Front. Med. 2022, 9, 794045. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.; Munk, M.R.; Kurmann, T.; De Zanet, S.; Mosinska, A.; Karagoz, I.K.; Zinkernagel, M.S.; Wolf, S.; Sznitman, R. Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-And-Extend Regimen for Patients with NEovascular AMD, DME and RVO Associated Macular Edema. Ophthalmol. Retina 2021, 5, 604–624. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, T.; Beuth, F.; Meyer, T.; Kumar, A.S.; Stolze, G.; Furashova, O.; Engelmann, K.; Kowerko, D. Visual Acuity Prediction on Real-Life Patient Data Using a Machine Learning Based Multistage System. Sci. Rep. 2024, 14, 5532. [Google Scholar] [CrossRef]
- WHO. World Health Organization; Geneva: 8 October 2019. World Report on Vision. Available online: https://www.who.int/publications-detail/world-report-on-vision (accessed on 25 June 2024).
- GBD 2019 Blindness and Vision Impairment Collaborators, & Vision Loss Expert Group of the Global Burden of Disease Study. Trends in Prevalence of Blindness and Distance and near Vision Impairment over 30 Years: An Analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e130–e143. [Google Scholar] [CrossRef]
CRVO | IL-1β, IL-6, IL-8, TGF-β, VEGF, bFGF, CXCL-10 or IP10, CCL2 or MCP-1, PDGF-AA, SAA |
BRVO | IL-1β, IL-6, IL-8, IL-12, IL-15, IL-17, IL-2, TGF beta, VEGF, sVEGFR2, bFGF, sICAM-1 or CD54, CCL2 or MCP-1, sVEGFR, SAA |
Acute RVO | Chronic RVO |
---|---|
dilated, tortuous retinal veins intraretinal hemorrhages cotton wool spots optic disc edema retinal edema | intraretinal hard exudates shunt vessels cystoid macular edema epiretinal membrane neovascularisation of retina and/or optic disc and/or rubeosis iridis complications of neovascularisations: vitreous hemorrhages, retinal detachment, neovascular glaucoma |
Routine Investigations | Additional Investigations |
---|---|
|
|
Eye Condition in I-CRVO | Time of Monitoring |
---|---|
completed anti-VEGF therapy due to macular edema | monthly in the first year |
neovascularisation of the anterior segment | monthly in the first year |
significant ischemia without complications | monthly for the first 6 months, followed by check-ups every 3 months for 1 year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lendzioszek, M.; Bryl, A.; Poppe, E.; Zorena, K.; Mrugacz, M. Retinal Vein Occlusion–Background Knowledge and Foreground Knowledge Prospects—A Review. J. Clin. Med. 2024, 13, 3950. https://doi.org/10.3390/jcm13133950
Lendzioszek M, Bryl A, Poppe E, Zorena K, Mrugacz M. Retinal Vein Occlusion–Background Knowledge and Foreground Knowledge Prospects—A Review. Journal of Clinical Medicine. 2024; 13(13):3950. https://doi.org/10.3390/jcm13133950
Chicago/Turabian StyleLendzioszek, Maja, Anna Bryl, Ewa Poppe, Katarzyna Zorena, and Malgorzata Mrugacz. 2024. "Retinal Vein Occlusion–Background Knowledge and Foreground Knowledge Prospects—A Review" Journal of Clinical Medicine 13, no. 13: 3950. https://doi.org/10.3390/jcm13133950
APA StyleLendzioszek, M., Bryl, A., Poppe, E., Zorena, K., & Mrugacz, M. (2024). Retinal Vein Occlusion–Background Knowledge and Foreground Knowledge Prospects—A Review. Journal of Clinical Medicine, 13(13), 3950. https://doi.org/10.3390/jcm13133950