Radiomic Pipelines for Prostate Cancer in External Beam Radiation Therapy: A Review of Methods and Future Directions
Abstract
:1. Introduction
2. Methodology and Results
2.1. Datasets
2.2. Imaging
2.2.1. Ultrasound
2.2.2. Positron Emission Tomography
2.2.3. Magnetic Resonance Imaging
2.2.4. Computed Tomography
2.2.5. Cone Beam Computed Tomography
2.2.6. Summary
2.3. Segmentation
2.4. Feature Extraction
2.5. Feature Selection and Model Building
2.6. Best Models
3. Discussion and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | Apparent Diffusion Coefficient |
ADT | Androgen Deprivation Therapy |
AUROC | Area Under the Receiver Operating Characteristic |
BCR | Biochemical Recurrence |
bmMRI | biparametric MRI |
BPH | Benign Prostatic Hyperplasia |
CBCT | Cone Beam Computed Tomography |
CNN | Convolutional Neural Network |
CT | Computed Tomography |
DA | Discriminant Analysis |
DCE | Dynamic Contrast Enhanced |
DWI | Diffusion-weighted Imaging |
EBRT | External Beam Radiotherapy |
EPE | Extraprostatic Extension |
F-18 FDG | Fluorodeoxyglucose |
GG | Grade Group |
GS | Gleason Score |
IBSI | Image Biomarker Standardisation Initiative |
ICC | InterCorrelation Coefficient |
IMRT | Intensity Modulated Radiation Therapy |
IPSS | International Prostate Symptom Score |
KNN | K-nearest Neighbors |
LASSO | Least Absolute Shrinkage and Selection Operator |
LR | Linear Regression |
mpMRI | multi-parametric Magnetic Resonance Imaging |
MRI | Magnetic Resonance Imaging |
MRMR | Minimum-Redundancy-Maximum-Relevance |
OAR | Organ At Risk |
PCA | Principal Component Analysis |
PCa | Prostate Cancer |
PET | Positron Emission Tomography |
PIRADS | Prostate Imaging Reporting and Data System |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PSA | Prostate Specific Antigen |
PSMA | Prostate-Specific Membrane Antigen |
RF | Random Forest |
RFE-SVM | Recursive Feature Elimination Support Vector Machine |
RG | Risk Group |
ROI | Region Of Interest |
SUV | Standardized Uptake Value |
SVM | Support Vector Machine |
TPS | Treatment Planning System |
TRUS | Transrectal Ultrasound-Guided Biopsy |
US | Ultrasound |
References
- Dal Pra, A.; Souhami, L. Prostate cancer radiation therapy: A physician’s perspective. Phys. Medica 2016, 32, 438–445. [Google Scholar] [CrossRef]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.C.; Tendulkar, R.D.; Ciezki, J.P.; Klein, E.A. Future directions from past experience: A century of prostate radiotherapy. Clin. Genitourin. Cancer 2014, 12, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Escobar, D.; Wang, L.; Banton, J.; Cowan, J.E.; Washington, S.L.; Mohamad, O.; Menon, M.; Carroll, P. Long-term rates of biochemical recurrence after primary external beam radiation therapy (EBRT) for prostate cancer. J. Clin. Oncol. 2023, 41, 393. [Google Scholar] [CrossRef]
- Calais, J.; Cao, M.; Nickols, N.G. The utility of PET/CT in the planning of external radiation therapy for prostate cancer. J. Nucl. Med. 2018, 59, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; Van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n7. [Google Scholar] [CrossRef]
- Covidence. Covidence Systematic Review Software, Veritas Health Innovation: Melbourne, Australia, 2024.
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.H.; Haworth, A.; Wang, A.; Osanlouy, M.; Williams, S.; Mitchell, C.; Hofman, M.S.; Hicks, R.J.; Murphy, D.G.; Reynolds, H.M. Detecting localised prostate cancer using radiomic features in PSMA PET and multiparametric MRI for biologically targeted radiation therapy. Eur. J. Nucl. Med. Mol. Imaging 2023, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Z.; Liang, X.; Xu, J.; Cai, Y.; Huang, C.; Zhang, M.; Yao, J.; Song, B. Radiomic Machine Learning and External Validation Based on 3.0 T mpMRI for Prediction of Intraductal Carcinoma of Prostate with Different Proportion. Front. Oncol. 2022, 12, 934291. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.; Santinha, J.; Galvão, B.; Matos, C.; Couto, F.M.; Papanikolaou, N. Prediction of Prostate Cancer Disease Aggressiveness Using Bi-Parametric Mri Radiomics. Cancers 2021, 13, 6065. [Google Scholar] [CrossRef] [PubMed]
- Woźnicki, P.; Westhoff, N.; Huber, T.; Riffel, P.; Froelich, M.F.; Gresser, E.; von Hardenberg, J.; Mühlberg, A.; Michel, M.S.; Schoenberg, S.O.; et al. Multiparametric MRI for Prostate Cancer Characterization: Combined Use of Radiomics Model with PI-RADS and Clinical Parameters. Cancers 2020, 12, 1767. [Google Scholar] [CrossRef]
- Wildeboer, R.R.; Mannaerts, C.K.; van Sloun, R.J.G.; Budäus, L.; Tilki, D.; Wijkstra, H.; Salomon, G.; Mischi, M. Automated multiparametric localization of prostate cancer based on B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Eur. Radiol. 2020, 30, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Zhi, X.; Sun, Y.; Li, H.; Wang, J.; Xu, J.; Guo, J. A Nomogram Based on a Multiparametric Ultrasound Radiomics Model for Discrimination Between Malignant and Benign Prostate Lesions. Front. Oncol. 2021, 11, 610785. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fang, J.; Shi, Y.; Li, H.; Wang, J.; Xu, J.; Zhang, B.; Liang, L. Machine learning based on radiomics features combing B-mode transrectal ultrasound and contrast-enhanced ultrasound to improve peripheral zone prostate cancer detection. Abdom. Radiol. 2024, 49, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, P.; Feng, B.; Tu, J.; Hu, Z.; Zhang, M.; Yang, J.; Zhan, Y.; Yao, J.; Xu, D. Machine learning prediction of prostate cancer from transrectal ultrasound video clips. Front. Oncol. 2022, 12, 948662. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Wang, K.; Feng, B.; Sun, X.; Yang, J.; Hu, Z.; Zhang, M.; Lv, C.; Jin, L.; Zhou, L.; et al. Comparison of machine learning models based on multi-parametric magnetic resonance imaging and ultrasound videos for the prediction of prostate cancer. Front. Oncol. 2023, 13, 1157949. [Google Scholar] [CrossRef] [PubMed]
- Merisaari, H.; Taimen, P.; Shiradkar, R.; Ettala, O.; Pesola, M.; Saunavaara, J.; Boström, P.J.; Madabhushi, A.; Aronen, H.J.; Jambor, I. Repeatability of radiomics and machine learning for DWI: Short-term repeatability study of 112 patients with prostate cancer. Magn. Reson. Med. 2020, 83, 2293–2309. [Google Scholar] [CrossRef] [PubMed]
- Alongi, P.; Stefano, A.; Comelli, A.; Laudicella, R.; Scalisi, S.; Arnone, G.; Barone, S.; Spada, M.; Purpura, P.; Bartolotta, T.V.; et al. Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: An explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 2021, 31, 4595–4605. [Google Scholar] [CrossRef] [PubMed]
- Cysouw, M.C.F.; Jansen, B.H.E.; van de Brug, T.; Oprea-Lager, D.E.; Pfaehler, E.; de Vries, B.M.; van Moorselaar, R.J.A.; Hoekstra, O.S.; Vis, A.N.; Boellaard, R. Machine learning-based analysis of. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Erle, A.; Moazemi, S.; Lütje, S.; Essler, M.; Schultz, T.; Bundschuh, R.A. Evaluating a Machine Learning Tool for the Classification of Pathological Uptake in Whole-Body PSMA-PET-CT Scans. Tomography 2021, 7, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Moazemi, S.; Erle, A.; Khurshid, Z.; Lütje, S.; Muders, M.; Essler, M.; Schultz, T.; Bundschuh, R.A. Decision-support for treatment with. Ann. Transl. Med. 2021, 9, 818. [Google Scholar] [CrossRef] [PubMed]
- Papp, L.; Spielvogel, C.P.; Grubmüller, B.; Grahovac, M.; Krajnc, D.; Ecsedi, B.; Sareshgi, R.A.M.; Mohamad, D.; Hamboeck, M.; Rausch, I.; et al. Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, G.; Matrone, F.; Chiovati, P.; Manente, S.; Drigo, A.; Donofrio, A.; Cappelletto, C.; Borsatti, E.; Dassie, A.; Bortolus, R.; et al. Predicting Local Failure after Partial Prostate Re-Irradiation Using a Dosiomic-Based Machine Learning Model. J. Pers. Med. 2022, 12, 1491. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Bian, S.; Zhu, D.; Yuan, Y.; Pan, K.; Pan, Z.; Feng, X.; Tang, K.; Yang, Y. Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: Comparison among different volume segmentation thresholds. Radiol. Medica 2022, 127, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Luining, W.I.; Oprea-Lager, D.E.; Vis, A.N.; van Moorselaar, R.J.A.; Knol, R.J.J.; Wondergem, M.; Boellaard, R.; Cysouw, M.C.F. Optimization and validation of 18F-DCFPyL PET radiomics-based machine learning models in intermediate- to high-risk primary prostate cancer. PLoS ONE 2023, 18, e0293672. [Google Scholar] [CrossRef] [PubMed]
- Nai, Y.H.; Cheong, D.L.H.; Roy, S.; Kok, T.; Stephenson, M.C.; Schaefferkoetter, J.; Totman, J.J.; Conti, M.; Eriksson, L.; Robins, E.G.; et al. Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions. Magn. Reson. Imaging 2023, 100, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, H.; Mofid, B.; Shiri, I.; Razzaghdoust, A.; Saadipoor, A.; Mahdavi, A.; Galandooz, H.M.; Mahdavi, S.R. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol. Medica 2019, 124, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Bourbonne, V.; Vallières, M.; Lucia, F.; Doucet, L.; Visvikis, D.; Tissot, V.; Pradier, O.; Hatt, M.; Schick, U. MRI-Derived Radiomics to Guide Post-operative Management for High-Risk Prostate Cancer. Front. Oncol. 2019, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, M.; Gu, Y.; Zhang, Y.; Yang, S.; Wei, C.; Wu, J.; Li, X.; Zhao, W.; Shen, J. Prostate Cancer Differentiation and Aggressiveness: Assessment with a Radiomic-Based Model vs. PI-RADS v2. J. Magn. Reson. Imaging 2019, 49, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Li, M.; Dong, D.; Feng, Z.; Zhang, P.; Ke, Z.; You, H.; Han, F.; Ma, H.; Tian, J.; et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method. Eur. J. Radiol. 2019, 115, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Parra, N.A.; Lu, H.; Choi, J.; Gage, K.; Pow-Sang, J.; Gillies, R.J.; Balagurunathan, Y. Habitats in DCE-MRI to Predict Clinically Significant Prostate Cancers. Tomography 2019, 5, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Toivonen, J.; Montoya Perez, I.; Movahedi, P.; Merisaari, H.; Pesola, M.; Taimen, P.; Boström, P.J.; Pohjankukka, J.; Kiviniemi, A.; Pahikkala, T.; et al. Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization. PLoS ONE 2019, 14, e0217702. [Google Scholar] [CrossRef] [PubMed]
- Varghese, B.; Chen, F.; Hwang, D.; Palmer, S.L.; De Castro Abreu, A.L.; Ukimura, O.; Aron, M.; Gill, I.; Duddalwar, V.; Pandey, G. Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. Sci. Rep. 2019, 9, 1570. [Google Scholar] [CrossRef]
- Algohary, A.; Shiradkar, R.; Pahwa, S.; Purysko, A.; Verma, S.; Moses, D.; Shnier, R.; Haynes, A.M.; Delprado, W.; Thompson, J.; et al. Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site Study. Cancers 2020, 12, 2200. [Google Scholar] [CrossRef] [PubMed]
- Bernatz, S.; Ackermann, J.; Mandel, P.; Kaltenbach, B.; Zhdanovich, Y.; Harter, P.N.; Döring, C.; Hammerstingl, R.; Bodelle, B.; Smith, K.; et al. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features. Eur. Radiol. 2020, 30, 6757–6769. [Google Scholar] [CrossRef] [PubMed]
- Bleker, J.; Kwee, T.C.; Dierckx, R.A.J.; de Jong, I.J.; Huisman, H.; Yakar, D. Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur. Radiol. 2020, 30, 1313–1324. [Google Scholar] [CrossRef]
- Bourbonne, V.; Fournier, G.; Vallières, M.; Lucia, F.; Doucet, L.; Tissot, V.; Cuvelier, G.; Hue, S.; Le Penn Du, H.; Perdriel, L.; et al. External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer. Cancers 2020, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Bao, M.L.; Wu, C.J.; Zhang, J.; Zhang, Y.D.; Shi, H.B. A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions. Abdom. Radiol. 2020, 45, 4223–4234. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, T.; Zhao, W.; Weil, C.; Li, X.; Duan, S.; Ji, L.; Lu, Z.; Shen, J. Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI. Quant. Imaging Med. Surg. 2020, 10, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Mottola, M.; Ferroni, F.; Rossi, A.; Gavelli, G.; Barone, D. The Primacy of High B-Value 3T-DWI Radiomics in the Prediction of Clinically Significant Prostate Cancer. Diagnostics 2021, 11, 739. [Google Scholar] [CrossRef]
- Bertelli, E.; Mercatelli, L.; Marzi, C.; Pachetti, E.; Baccini, M.; Barucci, A.; Colantonio, S.; Gherardini, L.; Lattavo, L.; Pascali, M.A.; et al. Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI. Front. Oncol. 2021, 11, 802964. [Google Scholar] [CrossRef] [PubMed]
- Castillo T, J.M.; Arif, M.; Starmans, M.P.A.; Niessen, W.J.; Bangma, C.H.; Schoots, I.G.; Veenland, J.F. Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics. Cancers 2021, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Castillo T, J.M.; Starmans, M.P.A.; Arif, M.; Niessen, W.J.; Klein, S.; Bangma, C.H.; Schoots, I.G.; Veenland, J.F. A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade. Diagnostics 2021, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Cuocolo, R.; Stanzione, A.; Faletti, R.; Gatti, M.; Calleris, G.; Fornari, A.; Gentile, F.; Motta, A.; Dell’Aversana, S.; Creta, M.; et al. MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: A multicenter study. Eur. Radiol. 2021, 31, 7575–7583. [Google Scholar] [CrossRef]
- Li, T.; Sun, L.; Li, Q.; Luo, X.; Luo, M.; Xie, H.; Wang, P. Development and Validation of a Radiomics Nomogram for Predicting Clinically Significant Prostate Cancer in PI-RADS 3 Lesions. Front. Oncol. 2021, 11, 825429. [Google Scholar] [CrossRef]
- Peng, T.; Xiao, J.; Li, L.; Pu, B.; Niu, X.; Zeng, X.; Wang, Z.; Gao, C.; Li, C.; Chen, L.; et al. Can machine learning-based analysis of multiparameter MRI and clinical parameters improve the performance of clinically significant prostate cancer diagnosis? Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 2235–2249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhe, X.; Tang, M.; Zhang, J.; Ren, J.; Zhang, X.; Li, L. Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature. Contrast Media Mol. Imaging 2021, 2021, 7830909. [Google Scholar] [CrossRef] [PubMed]
- Algohary, A.; Alhusseini, M.; Breto, A.L.; Kwon, D.; Xu, I.R.; Gaston, S.M.; Castillo, P.; Punnen, S.; Spieler, B.; Abramowitz, M.C.; et al. Longitudinal Changes and Predictive Value of Multiparametric MRI Features for Prostate Cancer Patients Treated with MRI-Guided Lattice Extreme Ablative Dose (LEAD) Boost Radiotherapy. Cancers 2022, 14, 4475. [Google Scholar] [CrossRef]
- Fan, X.; Xie, N.; Chen, J.; Li, T.; Cao, R.; Yu, H.; He, M.; Wang, Z.; Wang, Y.; Liu, H.; et al. Multiparametric MRI and Machine Learning Based Radiomic Models for Preoperative Prediction of Multiple Biological Characteristics in Prostate Cancer. Front. Oncol. 2022, 12, 839621. [Google Scholar] [CrossRef] [PubMed]
- Gaudiano, C.; Mottola, M.; Bianchi, L.; Corcioni, B.; Cattabriga, A.; Cocozza, M.A.; Palmeri, A.; Coppola, F.; Giunchi, F.; Schiavina, R.; et al. Beyond Multiparametric MRI and towards Radiomics to Detect Prostate Cancer: A Machine Learning Model to Predict Clinically Significant Lesions. Cancers 2022, 14, 6156. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, B.; Huang, H.; Leng, Q.; Wang, Q.; Zhong, R.; Huang, Y.; Li, C.; Yuan, R.; Zhang, Y. Biparametric MRI-based radiomics classifiers for the detection of prostate cancer in patients with PSA serum levels of 4 to 10 ng/mL. Front. Oncol. 2022, 12, 1020317. [Google Scholar] [CrossRef] [PubMed]
- Gresser, E.; Schachtner, B.; Stüber, A.T.; Solyanik, O.; Schreier, A.; Huber, T.; Froelich, M.F.; Magistro, G.; Kretschmer, A.; Stief, C.; et al. Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets. Quant. Imaging Med. Surg. 2022, 12, 4990–5003. [Google Scholar] [CrossRef] [PubMed]
- Jing, G.; Xing, P.; Li, Z.; Ma, X.; Lu, H.; Shao, C.; Lu, Y.; Lu, J.; Shen, F. Prediction of clinically significant prostate cancer with a multimodal MRI-based radiomics nomogram. Front. Oncol. 2022, 12, 918830. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Shu, X.; Qiao, X.F.; Ai, G.Y.; Liu, L.; Liao, J.; Qian, S.; He, X.J. Radiomics-Based Machine Learning Models for Predicting P504s/P63 Immunohistochemical Expression: A Noninvasive Diagnostic Tool for Prostate Cancer. Front. Oncol. 2022, 12, 911426. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, Q.; Yin, H.; Ang, X.; Li, Y.; Xie, G.; Li, G. Texture analysis based on PI-RADS 4/5-scored magnetic resonance images combined with machine learning to distinguish benign lesions from prostate cancer. Transl. Cancer Res. 2022, 11, 1146–1161. [Google Scholar] [CrossRef] [PubMed]
- Sushentsev, N.; Rundo, L.; Blyuss, O.; Nazarenko, T.; Suvorov, A.; Gnanapragasam, V.J.; Sala, E.; Barrett, T. Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance. Eur. Radiol. 2022, 32, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, I.; Rios-Ibacache, O.; Caprile, P.; Gonzalez, J.; San Francisco, I.F.; Besa, C. MRI-Based Surrogate Imaging Markers of Aggressiveness in Prostate Cancer: Development of a Machine Learning Model Based on Radiomic Features. Diagnostics 2023, 13, 2779. [Google Scholar] [CrossRef] [PubMed]
- Gaudiano, C.; Mottola, M.; Bianchi, L.; Corcioni, B.; Braccischi, L.; Tomassoni, M.T.; Cattabriga, A.; Cocozza, M.A.; Giunchi, F.; Schiavina, R.; et al. An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience. Cancers 2023, 15, 3438. [Google Scholar] [CrossRef]
- Isaksson, L.J.; Repetto, M.; Summers, P.E.; Pepa, M.; Zaffaroni, M.; Vincini, M.G.; Corrao, G.; Mazzola, G.C.; Rotondi, M.; Bellerba, F.; et al. High-performance prediction models for prostate cancer radiomics. Inform. Med. Unlocked 2023, 37, 101161. [Google Scholar] [CrossRef]
- Jamshidi, G.; Abbasian Ardakani, A.; Ghafoori, M.; Babapour Mofrad, F.; Saligheh Rad, H. Radiomics-based machine-learning method to diagnose prostate cancer using mp-MRI: A comparison between conventional and fused models. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Shen, J.; Yang, L.; Zhang, J.; Shen, A.; Bao, J.; Wang, X. Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: A retrospective multi-center study. BMC Med. Imaging 2023, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shiradkar, R.; Tirumani, S.H.; Bittencourt, L.K.; Fu, P.; Mahran, A.; Buzzy, C.; Stricker, P.D.; Rastinehad, A.R.; Magi-Galluzzi, C.; et al. Novel radiomic analysis on bi-parametric MRI for characterizing differences between MR non-visible and visible clinically significant prostate cancer. Eur. J. Radiol. Open 2023, 10, 100496. [Google Scholar] [CrossRef] [PubMed]
- Li, S.T.; Zhang, L.; Guo, P.; Pan, H.Y.; Chen, P.Z.; Xie, H.F.; Xie, B.K.; Chen, J.; Lai, Q.Q.; Li, Y.Z.; et al. Prostate cancer of magnetic resonance imaging automatic segmentation and detection of based on 3D-Mask RCNN. J. Radiat. Res. Appl. Sci. 2023, 16, 100636. [Google Scholar] [CrossRef]
- Liu, Y. Comparison of Magnetic Resonance Imaging-Based Radiomics Features with Nomogram for Prediction of Prostate Cancer Invasion. Int. J. Gen. Med. 2023, 16, 3043–3051. [Google Scholar] [CrossRef] [PubMed]
- Midya, A.; Hiremath, A.; Huber, J.; Sankar Viswanathan, V.; Omil-Lima, D.; Mahran, A.; Bittencourt, L.; Harsha Tirumani, S.; Ponsky, L.; Shiradkar, R.; et al. Delta radiomic patterns on serial bi-parametric MRI are associated with pathologic upgrading in prostate cancer patients on active surveillance: Preliminary findings. Front. Oncol. 2023, 13, 1166047. [Google Scholar] [CrossRef] [PubMed]
- Prata, F.; Anceschi, U.; Cordelli, E.; Faiella, E.; Civitella, A.; Tuzzolo, P.; Iannuzzi, A.; Ragusa, A.; Esperto, F.; Prata, S.M.; et al. Radiomic Machine-Learning Analysis of Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer: New Combination of Textural and Clinical Features. Curr. Oncol. 2023, 30, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Gu, X.; Liu, Y.; Shu, X.; Ai, G.; Qian, S.; Liu, L.; He, X.; Zhang, J. MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer. Cancers 2023, 15, 4536. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Liu, Y.F.; Shu, X.; Qiao, X.F.; Ai, G.Y.; He, X.J. Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer. Acad. Radiol. 2023, 30 (Suppl. 1), S1–S13. [Google Scholar] [CrossRef]
- Rodrigues, A.; Rodrigues, N.; Santinha, J.; Lisitskaya, M.V.; Uysal, A.; Matos, C.; Domingues, I.; Papanikolaou, N. Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness. Sci. Rep. 2023, 13, 6206. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, R.; Zavala-Romero, O.; Kwon, D.; Breto, A.L.; Xu, I.R.; Algohary, A.; Alhusseini, M.; Gaston, S.M.; Castillo, P.; Kryvenko, O.N.; et al. Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI. Cancers 2023, 15, 5240. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, I.; Soeterik, T.F.W.; van der Hoeven, E.J.R.J.; Claassen, B.; Brink, W.M.; Baas, D.J.H.; Sedelaar, J.P.M.; Heine, L.; Tol, J.; van der Voort van Zyp, J.R.N.; et al. The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer. Cancers 2023, 15, 5452. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Yuan, J.; Lo, G.G.; Poon, D.M.C.; Chu, W.C.W. Evaluation of the Reliability and the Performance of Magnetic Resonance Imaging Radiomics in the Presence of Randomly Generated Irrelevant Features for Prostate Cancer. Diagnostics 2023, 13, 3580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Xiong, M.L.; Liu, Y.F.; Duan, L.J.; Chen, J.L.; Xing, Z.; Lin, Y.S.; Chen, T.H. Magnetic resonance imaging radiomics-based prediction of clinically significant prostate cancer in equivocal PI-RADS 3 lesions in the transitional zone. Front. Oncol. 2023, 13, 1247682. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Frood, R.; McWilliam, A.; Davey, A.; Shortall, J.; Swinton, M.; Hulson, O.; West, C.M.; Buckley, D.; Brown, S.; et al. Prediction of prostate tumour hypoxia using pre-treatment MRI-derived radiomics: Preliminary findings. Radiol. Med. 2023, 128, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, Y.F.; Guo, S.; Wang, D.; Lv, H.X.; Qiao, X.N.; Wang, R.; Chang, D.H.; Zhao, L.M.; Zhou, F.H. Multiparametric MRI radiomics in prostate cancer for predicting Ki-67 expression and Gleason score: A multicenter retrospective study. Discov. Oncol. 2023, 14, 133. [Google Scholar] [CrossRef] [PubMed]
- Osman, S.O.; Leijenaar, R.T.; Cole, A.J.; Lyons, C.A.; Hounsell, A.R.; Prise, K.M.; O’Sullivan, J.M.; Lambin, P.; McGarry, C.K.; Jain, S. Computed Tomography-based Radiomics for Risk Stratification in Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.; Domingues, I.; Silva, A.; Santos, J. Prostate Cancer Aggressiveness Prediction Using CT Images. Life 2021, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Ghilezan, M.; Yan, D.; Martinez, A. Adaptive radiation therapy for prostate cancer. Semin. Radiat. Oncol. 2010, 20, 130–137. [Google Scholar] [CrossRef]
- Bosetti, D.G.; Ruinelli, L.; Piliero, M.A.; van der Gaag, L.C.; Pesce, G.A.; Valli, M.; Bosetti, M.; Presilla, S.; Richetti, A.; Deantonio, L. Cone-beam computed tomography-based radiomics in prostate cancer: A mono-institutional study. Strahlenther. Onkol. 2020, 196, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Delgadillo, R.; Spieler, B.O.; Deana, A.M.; Ford, J.C.; Kwon, D.; Yang, F.; Studenski, M.T.; Padgett, K.R.; Abramowitz, M.C.; Dal Pra, A.; et al. Cone-beam CT delta-radiomics to predict genitourinary toxicities and international prostate symptom of prostate cancer patients: A pilot study. Sci. Rep. 2022, 12, 20136. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.; Domingues, I.; Dias, F.; Santos, J. Cone Beam Computed Tomography Radiomics for Prostate Cancer: Favourable vs. Unfavourable Prognosis Prediction. Appl. Sci. 2023, 13, 1378. [Google Scholar] [CrossRef]
- Kapur, T.; Pieper, S.; Fedorov, A.; Fillion-Robin, J.C.; Halle, M.; O’Donnell, L.; Lasso, A.; Ungi, T.; Pinter, C.; Finet, J.; et al. Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience. Med. Image Anal. 2016, 33, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Yushkevich, P.A.; Piven, J.; Cody Hazlett, H.; Gimpel Smith, R.; Ho, S.; Gee, J.C.; Gerig, G. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Jiang, H.; Song, B. Radiomics in prostate cancer: Basic concepts and current state-of-the-art. Chin. J. Acad. Radiol. 2020, 2, 47–55. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
Imaging | Article | Features | Classifier | Endpoint | AUC |
---|---|---|---|---|---|
US | Wildeboer et al. [15] | N.A. | RF | csPCa | 0.84 |
Liang et al. [16] | N.A. | LR | PCa | 0.90 | |
Wang et al. [18] | 14 | SVM | PCa | 0.85 | |
Qi et al. [19] | 13 | RF | PCa | 0.85 | |
Sun et al. [17] | 20 | L1 based | PZ PCa | 0.89 | |
PET | Merisaari et al. [20] | 2 | DA | RG | 0.75 |
Alongi et al. [21] | N.A. | N.A. | csPCa | 0.78 | |
Cysouw et al. [22] | N.A. | N.A. | Metastatic | 0.86 | |
Erle et al. [23] | 77 | SVC | Lesion | 0.95 | |
Moazemi et al. [24] | 5 | SVM | N.A. | 0.80 | |
Papp et al. [25] | N.A. | N.A. | MLH | 0.86 | |
Pirrone et al. [26] | 4 | N.A. | Response | 0.68 | |
Yao et al. [27] | 10 | SVM | GS | 0.80 | |
Chan et al. [11] | N.A. | RF | Location | 0.95 | |
Luining et al. [28] | N.A. | RF | LNI | 0.88 | |
Nai et al. [29] | N.A. | KNN | 0 | 0.93 | |
MRI | Abdollahi et al. [30] | N.A. | ADBO | GS | 0.78 |
Bourbonne et al. [31] | N.A. | N.A. | BCR | 0.84 | |
Chen et al. [32] | 10 | RF | PCa | 1.00 | |
Min et al. [33] | 9 | N.A. | csPCa | 0.87 | |
Parra et al. [34] | N.A. | N.A. | csPCa | 0.78 | |
Toivonen et al. [35] | 54 | LR | GS | 0.88 | |
Varghese et al. [36] | N.A. | QSVM | N.A. | 0.92 | |
Algohary et al. [37] | 10 | QDA | GG | 0.87 | |
Bernatz et al. [38] | 105 | RF | csPCa | 0.76 | |
Bleker et al. [39] | N.A. | XGB | csPCa | 0.89 | |
Bourbonne et al. [40] | 1 | LR | BCR | 0.86 | |
Hou et al. [41] | N.A. | SVM | csPCA | 0.89 | |
Li et al. [42] | N.A. | LR | csPCa | 0.98 | |
Woźnicki et al. [14] | 15 | N.A. | csPCa | 0.89 | |
Bertelli et al. [44] | N.A. | N.A. | GS | 0.80 | |
Bevilacqua et al. [43] | N.A. | SVM | csPCa | 0.84 | |
Castillo T et al. [46] | N.A. | WORC | GS | 0.75 | |
Castillo T et al. [45] | N.A. | WORC | csPCa | 0.91 | |
Cuocolo et al. [47] | N.A. | SVM | EPE | 0.83 | |
Li et al. [48] | N.A. | Statistical | csPCa | 0.91 | |
Peng et al. [49] | 8 | SR | csPCa | 0.86 | |
Rodrigues et al. [13] | N.A. | MRMR | csPCa | 0.88 | |
Zhang et al. [50] | 8 | RF | GS | 0.98 | |
Algohary et al. [51] | N.A. | N.A. | PCa | 0.98 | |
Fan et al. [52] | 20 | RF | ECE | 0.85 |
Imaging | Article | Features | Classifier | Endpoint | AUC |
---|---|---|---|---|---|
MRI | Gaudiano et al. [53] | 4 | N.A. | GG | 0.88 |
Gresser et al. [55] | N.A. | N.A. | N.A. | 0.95 | |
Jing et al. [56] | 10 | LR | csPCa | 0.97 | |
Liu et al. [57] | N.A. | RF | 0 | 0.87 | |
Lu et al. [54] | 6 | N.A. | PCa | 0.87 | |
Ma et al. [58] | N.A. | LR | GG | 0.84 | |
Sushentsev et al. [59] | N.A. | N.A. | N.A. | 0.84 | |
Yang et al. [12] | N.A. | N.A. | hpIDC-P | 0.86 | |
Dominguez et al. [60] | 10 | LR | N.A. | 0.91 | |
Gaudiano et al. [61] | 4 | N.A. | N.A. | 0.81 | |
Isaksson et al. [62] | N.A. | Catboost | Delta T | 0.95 | |
Jamshidi et al. [63] | 10 | DA | N.A. | 0.91 | |
Jin et al. [64] | N.A. | SVM | csPCa | 0.80 | |
Li et al. [65] | N.A. | N.A. | csPCa | 0.96 | |
Li et al. [66] | N.A. | N.A. | csPCa | 0.82 | |
Liu [67] | 6 | N.A. | N.A. | 0.74 | |
Midya et al. [68] | N.A. | N.A. | N.A. | 0.81 | |
Prata et al. [69] | 1 | N.A. | csPCa | 0.80 | |
Qiao et al. [70] | 20 | LR | GS | 0.89 | |
Qiu et al. [71] | 19 | N.A. | RG | 0.86 | |
Rodrigues et al. [72] | N.A. | Hybrid | GS | 0.87 | |
Stoyanova et al. [73] | N.A. | N.A. | GG | 0.96 | |
van den Berg et al. [74] | N.A. | LR | EPE | 0.91 | |
Xue et al. [75] | N.A. | N.A. | N.A. | 0.93 | |
Zhao et al. [76] | N.A. | XGBoost | csPCa | 0.95 | |
Zhong et al. [77] | 5 | RR | N.A. | 0.71 | |
Zhou et al. [78] | 15 | VM | GS | 0.81 | |
CT | Osman et al. [79] | N.A. | N.A. | GS | 0.98 |
Mendes et al. [80] | N.A. | SVM | RG | 0.88 | |
CBCT | Bosetti et al. [82] | 3 | LR | PSA | 0.84 |
Delgadillo et al. [83] | N.A. | N.A. | IPSS | 0.83 | |
Mendes et al. [84] | 43 | SVC | GG | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, B.; Domingues, I.; Santos, J. Radiomic Pipelines for Prostate Cancer in External Beam Radiation Therapy: A Review of Methods and Future Directions. J. Clin. Med. 2024, 13, 3907. https://doi.org/10.3390/jcm13133907
Mendes B, Domingues I, Santos J. Radiomic Pipelines for Prostate Cancer in External Beam Radiation Therapy: A Review of Methods and Future Directions. Journal of Clinical Medicine. 2024; 13(13):3907. https://doi.org/10.3390/jcm13133907
Chicago/Turabian StyleMendes, Bruno, Inês Domingues, and João Santos. 2024. "Radiomic Pipelines for Prostate Cancer in External Beam Radiation Therapy: A Review of Methods and Future Directions" Journal of Clinical Medicine 13, no. 13: 3907. https://doi.org/10.3390/jcm13133907
APA StyleMendes, B., Domingues, I., & Santos, J. (2024). Radiomic Pipelines for Prostate Cancer in External Beam Radiation Therapy: A Review of Methods and Future Directions. Journal of Clinical Medicine, 13(13), 3907. https://doi.org/10.3390/jcm13133907