The Effects of Multidisciplinary Intensive Rehabilitation on Cognitive and Executive Functions in Parkinson’s Disease: A Clinical Database Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- -
- Mini–Mental State Examination—MMSE [28]: This is a test consisting of 11 questions aiming to check for cognitive impairment. The maximum score is 30 and a score below 24 indicates a possible cognitive impairment.
- -
- Montreal Cognitive Assessment—MoCA [29]: This is a highly sensitive tool for the early detection of mild cognitive impairment (MCI). The maximum score is 30 and a score below 17.54 indicates a possible cognitive impairment.
- -
- Frontal Assessment Battery—FAB [30]: This is a short screening test for evaluating executive cognitive functions. The maximum score is 30 and a score below 13.5 indicates an executive function impairment.
2.3. Clinical Rehabilitation
2.4. Outcome
- -
- The effect of multidisciplinary intensive rehabilitation on cognitive and executive functions through the analysis of the pre- and post-scores obtained in the MMSE, MoCA, and FAB tests.
- -
- The frequency of patients whose performances at cognitive tests at the end of the rehabilitation treatment switch from a critical score to a normal one.
- -
- The potential effects of other variables, such as motor phenotype, disease duration, the presence of dyskinesias, and H&Y score, on cognitive and executive functions.
2.5. Statistical Analysis
3. Results
3.1. Data Collection
3.2. Participants
3.3. Data Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953, Erratum in Lancet Neurol. 2021, 20, e7. [Google Scholar] [CrossRef]
- GBD 2016 Motor Neuron Disease Collaborators. Global, regional, and national burden of motor neuron diseases 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 1083–1097. [Google Scholar] [CrossRef]
- Matthews, K.A.; Xu, W.; Gaglioti, A.H.; Holt, J.B.; Croft, J.B.; Mack, D.; McGuire, L.C. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimer’s Dement. 2019, 15, 17–24. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Ray Dorsey, E.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the U.S. npj Park. Dis. 2020, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The Emerging Evidence of the Parkinson Pandemic. J. Park. Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.W.; Khoo, T.K.; Yarnall, A.J.; O’Brien, J.T.; Coleman, S.Y.; Brooks, D.J.; Barker, R.A.; Burn, D.J. Health-related quality of life in early Parkinson’s disease: The impact of nonmotor symptoms. Mov. Disord. 2014, 29, 195–202. [Google Scholar] [CrossRef]
- Antonini, A.; Barone, P.; Marconi, R.; Morgante, L.; Zappulla, S.; Pontieri, F.E.; Ramat, S.; Ceravolo, M.G.; Meco, G.; Cicarelli, G.; et al. The progression of non-motor symptoms in Parkinson’s disease and their contribution to motor disability and quality of life. J. Neurol. 2012, 259, 2621–2631. [Google Scholar] [CrossRef]
- Jankovic, J.; McDermott, M.; Carter, J.; Gauthier, S.; Goetz, C.; Golbe, L.; Huber, S.; Koller, W.; Olanow, C.; Shoulson, I.; et al. Variable expression of Parkinson’s disease: A base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology 1990, 40, 1529–1534. [Google Scholar] [CrossRef]
- Prime, M.; McKay, J.L.; Bay, A.A.; Hart, A.R.; Kim, C.; Abraham, A.; Hackney, M.E. Differentiating Parkinson Disease Subtypes Using Clinical Balance Measures. J. Neurol. Phys. Ther. 2020, 44, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.; Larsen, J.P.; Emre, M.; Wentzel-Larsen, T.; Aarsland, D. Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov. Disord. 2006, 21, 1123–1130. [Google Scholar] [CrossRef]
- van der Hoek, T.C.; Bus, B.A.; Matui, P.; van der Marck, M.A.; Esselink, R.A.; Tendolkar, I. Prevalence of depression in Parkinson’s disease: Effects of disease stage, motor subtype and gender. J. Neurol. Sci. 2011, 15, 220–224. [Google Scholar] [CrossRef]
- Reijnders, J.S.; Ehrt, U.; Lousberg, R.; Aarsland, D.; Leentjens, A.F. The association between motor subtypes and psychopathology in Parkinson’s disease. Park. Relat. Disord. 2009, 15, 379–382. [Google Scholar] [CrossRef]
- Ren, J.; Hua, P.; Li, Y.; Pan, C.; Yan, L.; Yu, C.; Zhang, L.; Xu, P.; Zhang, M.; Liu, W. Comparison of Three Motor Subtype Classifications in de novo Parkinson’s Disease Patients. Front. Neurol. 2020, 11, 601225. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzoli, D.; Ortelli, P.; Zivi, I.; Cian, V.; Urso, E.; Ghilardi, M.F.; Maestri, R.; Frazzitta, G. Efficacy of intensive multidisciplinary rehabilitation in Parkinson’s disease: A randomised controlled study. J. Neurol. Neurosurg. Psychiatry 2018, 89, 828–835. [Google Scholar] [CrossRef]
- Frazzitta, G.; Bertotti, G.; Riboldazzi, G.; Turla, M.; Uccellini, D.; Boveri, N.; Guaglio, G.; Perini, M.; Comi, C.; Balbi, P.; et al. Effectiveness of intensive inpatient rehabilitation treatment on disease progression in parkinsonian patients: A randomized controlled trial with 1-year follow-up. Neurorehabilit. Neural Repair 2012, 26, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Ortelli, P.; Ferrazzoli, D.; Bera, R.; Caremani, L.; Giladi, N.; Maestri, R.; Frazzitta, G. Effectiveness of a Goal-Based Intensive Rehabilitation in Parkinsonian Patients in Advanced Stages of Disease. J. Park. Dis. 2018, 8, 113–119. [Google Scholar] [CrossRef]
- Meloni, M.; Saibene, F.L.; Di Tella, S.; Di Cesare, M.; Borgnis, F.; Nemni, R.; Baglio, F. Functional and Cognitive Improvement After an Intensive Inpatient Multidisciplinary Rehabilitation Program in Mild to Severe Parkinson’s Disease: A Retrospective and Observational Study. Front. Neurol. 2021, 12, 626041. [Google Scholar] [CrossRef]
- Frazzitta, G.; Maestri, R.; Bertotti, G.; Riboldazzi, G.; Boveri, N.; Perini, M.; Uccellini, D.; Turla, M.; Comi, C.; Pezzoli, G.; et al. Intensive rehabilitation treatment in early Parkinson’s disease: A randomized pilot study with a 2-year follow-up. Neurorehabilit. Neural Repair 2015, 29, 123–131. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.C.; Iop, R.D.R.; de Oliveira, L.C.; Boll, A.M.; de Alvarenga, J.G.S.; Gutierres Filho, P.J.B.; de Melo, L.M.A.B.; Xavier, A.J.; da Silva, R. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS ONE 2018, 13, e0193113. [Google Scholar] [CrossRef] [PubMed]
- Dauwan, M.; Begemann, M.J.H.; Slot, M.I.E.; Lee, E.H.M.; Scheltens, P.; Sommer, I.E.C. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: A transdiagnostic systematic review and meta-analysis of randomized controlled trials. J. Neurol. 2021, 268, 1222–1246. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Lee, T.L.; Lee, H.; Ko, D.K.; Lee, J.H.; Shin, H.; Lim, D.; Jun, J.S.; Byun, K.; Park, K.; et al. Effects of physical exercise interventions on cognitive function in Parkinson’s disease: An updated systematic review and meta-analysis of randomized controlled trials. Park. Relat. Disord. 2023, 117, 105908. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Goldman, J.G.; Tröster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K.; Williams-Gray, C.H.; et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012, 27, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Baiano, C.; Barone, P.; Trojano, L.; Santangelo, G. Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s disease: A meta-analysis. Mov. Disord. 2020, 35, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Saredakis, D.; Collins-Praino, L.E.; Gutteridge, D.S.; Stephan, B.C.M.; Keage, H.A.D. Conversion to MCI and dementia in Parkinson’s disease: A systematic review and meta-analysis. Park. Relat. Disord. 2019, 65, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Measso, G.; Cavarzeran, F.; Zappalà, G.; Lebowitz, B.D.; Crook, T.H.; Pirozzolo, F.J.; Amaducci, L.A.; Massari, D.; Grigoletto, F. The mini-mental state examination: Normative study of an Italian random sample. Dev. Neuropsychol. 1993, 9, 77–85. [Google Scholar] [CrossRef]
- Santangelo, G.; Siciliano, M.; Pedone, R.; Vitale, C.; Falco, F.; Bisogno, R.; Siano, P.; Barone, P.; Grossi, D.; Santangelo, F.; et al. Normative data for the Montreal Cognitive Assessment in an Italian population sample. Neurol. Sci. 2014, 36, 585–591. [Google Scholar] [CrossRef]
- Appollonio, I.; Leone, M.; Isella, V.; Piamarta, F.; Consoli, T.; Villa, M.L.; Forapani, E.; Russo, A.; Nichelli, P. The Frontal Assessment Battery (FAB): Normative values in an Italian population sample. Neurol. Sci. 2005, 26, 108–116. [Google Scholar] [CrossRef]
- Burn, D.J.; Rowan, E.N.; Allan, L.M.; Molloy, S.; O’Brien, J.T.; McKeith, I.G. Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 2006, 77, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Herman, T.; Weiss, A.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. Gait and balance in Parkinson’s disease subtypes: Objective measures and classification considerations. J. Neurol. 2014, 261, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Roheger, M.; Kalbe, E.; Liepelt-Scarfone, I. Progression of cognitive decline in Parkinson’s disease. J. Park. Dis. 2018, 8, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, N.; Sokołowski, R.; Mazur, E.; Podhorecka, M.; Polak-Szabela, A.; Kędziora-Kornatowska, K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr. Pol. 2016, 50, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Lee, W.Y.; Basri, N.A.; Collinson, S.L.; Merchant, R.A.; Venketasubramanian, N.; Chen, C.L. The Montreal Cognitive Assessment is superior to the Mini-Mental State Examination in detecting patients at higher risk of dementia. Int. Psychogeriatr. 2012, 24, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Larner, A.J. Screening utility of the Montreal Cognitive Assessment (MoCA): In place of–or as well as–the MMSE? Int. Psychogeriatr. 2012, 24, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, G.S.A.; Hagemann, P.M.S.; Coelho, D.S.; Santos, F.H.D.; Bertolucci, P.H.F. Can MoCA and MMSE Be Interchangeable Cognitive Screening Tools? A Systematic Review. Gerontologist 2019, 59, e743–e763. [Google Scholar] [CrossRef] [PubMed]
- Julayanont, P.; Phillips, N.; Chertkow, H.; Nasreddine, Z.S. The Montreal Cognitive Assessment (MoCA): Concept and Clinical Review. In Cognitive Screening Instruments: A Practical Approach; Larner, A.J., Ed.; Springer: Cham, Switzerland, 2012; pp. 111–152. [Google Scholar]
- Biundo, R.; Weis, L.; Pilleri, M.; Facchini, S.; Formento-Dojot, P.; Vallelunga, A.; Antonini, A. Diagnostic and screening power of neuropsychological testing in detecting mild cognitive impairment in Parkinson’s disease. J. Neural Transm. 2013, 120, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.F.; Meireles, L.P.; Fonseca, R.; Castro, S.L.; Garrett, C. The Frontal Assessment Battery (FAB) in Parkinson’s disease and correlations with formal measures of executive functioning. J. Neurol. 2008, 255, 1756–1761. [Google Scholar] [CrossRef]
- Rotondo, R.; Proietti, S.; Perluigi, M.; Padua, E.; Stocchi, F.; Fini, M.; Stocchi, V.; Volpe, D.; De Pandis, M.F. Physical activity and neurotrophic factors as potential drivers of neuroplasticity in Parkinson’s Disease: A systematic review and meta-analysis. Ageing Res. Rev. 2023, 92, 102089. [Google Scholar] [CrossRef]
Gender | n (%) |
Male | 51 (49.0) |
Female | 53 (51.0) |
Total PD patients | 104 (100) |
Age | n (%) |
<60 years | 10 (9.6) |
60–69 years | 25 (24.0) |
70–79 years | 48 (46.2) |
>80 years | 21 (20.2) |
Mean ± SD | 72.3 ± 8.7 |
Education levels | |
0–3 years | 1 (1) |
4–5 years | 50 (48.1) |
6–8 years | 30 (28.8) |
9–13 years | 20 (19.2) |
>13 years | 3 (2.9) |
Mean ± SD | 7.8 ± 3.5 |
Disease Duration | n (%) |
<6 years | 6 (5.8) |
6–10 years | 33 (31.7) |
11–15 years | 36 (34.6) |
16–20 years | 20 (19.2) |
>20 years | 9 (8.7) |
Mean ± SD | 13.0 ± 5.9 |
H&Y stage (OFF medication) | n (%) |
2 = Bilateral involvement without impairment of balance | 0 (0.0) |
2.5 = Mild bilateral disease with recovery on pull test | 2.5 (0.0) |
3 = Mild to moderate bilateral disease; some postural instability; physically independent | 43 (41.3) |
4 = Severe disability; still able to walk or stand unassisted | 61 (58.7) |
Mean ± SD | 3.6 ± 0.5 |
H&Y stage (ON medication) | n (%) |
2 = Bilateral involvement without impairment of balance | 9 (8.7) |
2.5 = Mild bilateral disease with recovery on pull test | 39 (37.5) |
3 = Mild to moderate bilateral disease; some postural instability; physically independent | 53(51.0) |
4 = Severe disability; still able to walk or stand unassisted | 3 (2.9) |
Mean ± SD | 2.8 ± 0.4 |
LEDD (mg), Mean ± SD | 943.5 ± 360.7 |
MOTOR PHENOTYPE | n (%) |
Tremor-dominant | 40 (38.5) |
Akinetic–rigid subtype | 64 (61.5) |
MOTOR COMPLICATIONS | n (%) |
Motor fluctuations | 104 (100) |
Dyskinesia | 71 (68.3) |
FOG | 21 (20.2) |
Test | Pre-Treatment (T0) (n = 104) | Post-Treatment (T1) (n = 104) | F | p-Value | Partial-η2 |
---|---|---|---|---|---|
MMSE | 25.95 | 26.99 | 67.886 | p < 0.001 | 0.397 |
MoCA | 22.69 | 24.42 | 116.068 | p < 0.001 | 0.530 |
FAB | 15.52 | 16.32 | 77.65 | p < 0.001 | 0.430 |
MoCA × Diskinesias | 22.03 (+) | 24.03 (+) | 6.258 | p < 0.05 | 0.059 |
24.12 (−) | 25.27 (−) |
Subgroup Analysis | Pre-Treatment (T0) | Post-Treatment (T1) | p-Value |
---|---|---|---|
MMSE < 24, n = 18 | 21.1 ± 2.7 | 22.9 ± 3.1 | p < 0.001 |
MMSE ≥ 24, n = 86 | 27.0 ± 1.8 | 27.8 ± 1.5 | p < 0.001 |
MoCA < 17.54, n = 12 | 15.0 ± 1.6 | 18.6 ± 2.0 | p < 0.001 |
MoCA ≥ 17.54. n = 92 | 23.7 ± 2.8 | 25.2 ± 2.3 | p < 0.001 |
FAB < 13.5, n = 18 | 12.1 ± 1.2 | 13.7 ± 1.3 | p < 0.001 |
FAB ≥ 13.5, n = 86 | 16.2 ± 1.4 | 16.9 ± 1.0 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldassarre, I.; Rotondo, R.; Piccardi, L.; Leonardi, L.; Lanni, D.; Gaglione, M.; Stocchi, F.; Fini, M.; Goffredo, M.; Padua, E.; et al. The Effects of Multidisciplinary Intensive Rehabilitation on Cognitive and Executive Functions in Parkinson’s Disease: A Clinical Database Analysis. J. Clin. Med. 2024, 13, 3884. https://doi.org/10.3390/jcm13133884
Baldassarre I, Rotondo R, Piccardi L, Leonardi L, Lanni D, Gaglione M, Stocchi F, Fini M, Goffredo M, Padua E, et al. The Effects of Multidisciplinary Intensive Rehabilitation on Cognitive and Executive Functions in Parkinson’s Disease: A Clinical Database Analysis. Journal of Clinical Medicine. 2024; 13(13):3884. https://doi.org/10.3390/jcm13133884
Chicago/Turabian StyleBaldassarre, Ivana, Rossella Rotondo, Laura Piccardi, Lorenza Leonardi, Danilo Lanni, Maria Gaglione, Fabrizio Stocchi, Massimo Fini, Michela Goffredo, Elvira Padua, and et al. 2024. "The Effects of Multidisciplinary Intensive Rehabilitation on Cognitive and Executive Functions in Parkinson’s Disease: A Clinical Database Analysis" Journal of Clinical Medicine 13, no. 13: 3884. https://doi.org/10.3390/jcm13133884
APA StyleBaldassarre, I., Rotondo, R., Piccardi, L., Leonardi, L., Lanni, D., Gaglione, M., Stocchi, F., Fini, M., Goffredo, M., Padua, E., & De Pandis, M. F. (2024). The Effects of Multidisciplinary Intensive Rehabilitation on Cognitive and Executive Functions in Parkinson’s Disease: A Clinical Database Analysis. Journal of Clinical Medicine, 13(13), 3884. https://doi.org/10.3390/jcm13133884