Non-Motor Symptoms in Primary Familial Brain Calcification
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolas, G.; Charbonnier, C.; Campion, D.; Veltman, J.A. Estimation of minimal disease prevalence from population genomic data: Application to primary familial brain calcification. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 68–74. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Shi, L.; Ren, J.; Patti, M.; Wang, T.; de Oliveira, J.R.M.; Sobrido, M.-J.; Quintáns, B.; Baquero, M.; et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat. Genet. 2012, 44, 254–256. [Google Scholar] [CrossRef]
- Keller, A.; Westenberger, A.; Sobrido, M.J.; García-Murias, M.; Domingo, A.; Sears, R.L.; Lemos, R.R.; Ordoñez-Ugalde, A.; Nicolas, G.; Cunha, J.E.G.d.; et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat. Genet. 2013, 45, 1077–1082. [Google Scholar] [CrossRef]
- Nicolas, G.; Pottier, C.; Maltête, D.; Coutant, S.; Rovelet-Lecrux, A.; Legallic, S.; Rousseau, S.; Vaschalde, Y.; Guyant-Maréchal, L.; Augustin, J.; et al. Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 2013, 80, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Legati, A.; Giovannini, D.; Nicolas, G.; López-Sánchez, U.; Quintáns, B.; Oliveira, J.R.M.; Sears, R.L.; Ramos, E.M.; Spiteri, E.; Sobrido, M.-J.; et al. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat. Genet. 2015, 47, 579–581. [Google Scholar] [CrossRef]
- Yao, X.-P.; Cheng, X.; Wang, C.; Zhao, M.; Guo, X.-X.; Su, H.-Z.; Lai, L.-L.; Zou, X.-H.; Chen, X.-J.; Zhao, Y.; et al. Biallelic Mutations in MYORG Cause Autosomal Recessive Primary Familial Brain Calcification. Neuron 2018, 98, 1116–1123.e5. [Google Scholar] [CrossRef]
- Cen, Z.; Chen, Y.; Chen, S.; Wang, H.; Yang, D.; Zhang, H.; Wu, H.; Wang, L.; Tang, S.; Ye, J.; et al. Biallelic loss-of-function mutations in JAM2 cause primary familial brain calcification. Brain 2020, 143, 491–502. [Google Scholar] [CrossRef]
- Zhao, M.; Su, H.-Z.; Zeng, Y.-H.; Sun, Y.; Guo, X.-X.; Li, Y.-L.; Wang, C.; Zhao, Z.-Y.; Huang, X.-J.; Lin, K.-J.; et al. Loss of function of CMPK2 causes mitochondria deficiency and brain calcification. Cell Discov. 2022, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Chelban, V.; Aksnes, H.; Maroofian, R.; LaMonica, L.C.; Seabra, L.; Siggervåg, A.; Devic, P.; Shamseldin, H.E.; Vandrovcova, J.; Murphy, D.; et al. Biallelic NAA60 variants with impaired n-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications. Nat. Commun. 2024, 15, 2269. [Google Scholar] [CrossRef] [PubMed]
- Donzuso, G.; Mostile, G.; Nicoletti, A.; Zappia, M. Basal ganglia calcifications (Fahr’s syndrome): Related conditions and clinical features. Neurol Sci 2019, 40, 2251–2263. [Google Scholar] [CrossRef]
- Carecchio, M.; Mainardi, M.; Bonato, G. The clinical and genetic spectrum of primary familial brain calcification. J. Neurol. 2023, 270, 3270–3277. [Google Scholar] [CrossRef]
- Monfrini, E.; Arienti, F.; Rinchetti, P.; Lotti, F.; Riboldi, G.M. Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int. J. Mol. Sci. 2023, 24, 8995. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Ho, C.-J.; Lu, Y.-T.; Lin, C.-H.; Lan, M.-Y.; Tsai, M.-H. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int. J. Mol. Sci. 2023, 24, 10886. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Pottier, C.; Charbonnier, C.; Guyant-Maréchal, L.; Le Ber, I.; Pariente, J.; Labauge, P.; Ayrignac, X.; Defebvre, L.; Maltête, D.; et al. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain 2013, 136 Pt 11, 3395–3407. [Google Scholar] [CrossRef]
- Balck, A.; Schaake, S.; Kuhnke, N.S.; Domingo, A.; Madoev, H.; Margolesky, J.; Dobricic, V.; Alvarez-Fischer, D.; Laabs, B.; Kasten, M.; et al. Genotype-Phenotype Relations in Primary Familial Brain Calcification: Systematic MDSGene Review. Mov. Disord. 2021, 36, 2468–2480. [Google Scholar] [CrossRef]
- Grangeon, L.; Wallon, D.; Charbonnier, C.; Quenez, O.; Richard, A.-C.; Rousseau, S.; Budowski, C.; Lebouvier, T.; Corbille, A.-G.; Vidailhet, M.; et al. Biallelic MYORG mutation carriers exhibit primary brain calcification with a distinct phenotype. Brain 2019, 142, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Chelban, V.; Carecchio, M.; Rea, G.; Bowirrat, A.; Kirmani, S.; Magistrelli, L.; Efthymiou, S.; Schottlaender, L.; Vandrovcova, J.; Salpietro, V.; et al. MYORG-related disease is associated with central pontine calcifications and atypical parkinsonism. Neurol. Genet. 2020, 6, e399. [Google Scholar] [CrossRef]
- Tadic, V.; Westenberger, A.; Domingo, A.; Alvarez-Fischer, D.; Klein, C.; Kasten, M. Primary familial brain calcification with known gene mutations: A systematic review and challenges of phenotypic characterization. JAMA Neurol. 2015, 72, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Charbonnier, C.; de Lemos, R.R.; Richard, A.; Guillin, O.; Wallon, D.; Legati, A.; Geschwind, D.; Coppola, G.; Frebourg, T.; et al. Brain calcification process and phenotypes according to age and sex: Lessons from SLC20A2, PDGFB, and PDGFRB mutation carriers. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 586–594. [Google Scholar] [CrossRef]
- Mathijssen, G.; van Valen, E.; de Jong, P.A.; Golüke, N.M.S.; van Maren, E.A.; Snijders, B.M.G.; Brilstra, E.H.; Ruigrok, Y.M.; Bakker, S.; Goto, R.W.; et al. The Association between Intracranial Calcifications and Symptoms in Patients with Primary Familial Brain Calcification. J. Clin. Med. 2024, 13, 828. [Google Scholar] [CrossRef]
- Golüke, N.M.; Meijer, E.; van Maren, E.A.; de Jonghe, A.; Emmelot-Vonk, M.H.; van Valen, E.; de Jong, P.A.; Koek, H.L. Amount and Distribution of Intracranial Calcification in Symptomatic and Asymptomatic Primary Familial Brain Calcification. Neurol. Clin. Pract. 2023, 13, e200163. [Google Scholar] [CrossRef]
- Batla, A.; Tai, X.Y.; Schottlaender, L.; Erro, R.; Balint, B.; Bhatia, K.P. Deconstructing Fahr’s disease/syndrome of brain calcification in the era of new genes. Park. Relat. Disord. 2017, 37, 1–10. [Google Scholar] [CrossRef]
- Kurita, H.; Ozawa, K.; Yamada, M.; Inden, M.; Hirata, K.; Hozumi, I. EEvaluation of headaches in primary brain calcification in Japan. Neurol. Clin. Neurosci. 2021, 9, 459–465. [Google Scholar] [CrossRef]
- Takeuchi, T.; Muraoka, K.; Yamada, M.; Nishio, Y.; Hozumi, I. Living with idiopathic basal ganglia calcification 3: A qualitative study describing the lives and illness of people diagnosed with a rare neurological disease. Springerplus 2016, 5, 1713. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Aoyagi, H.; Kuwako, Y.; Hozumi, I. Living with primary brain calcification with PDGFB variants: A qualitative study. PLoS ONE 2022, 17, e0275227. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martin, P. The importance of non-motor disturbances to quality of life in Parkinson’s disease. J. Neurol. Sci. 2011, 310, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Titova, N.; Qamar, M.A.; Chaudhuri, K.R. The Nonmotor Features of Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 132, 33–54. [Google Scholar] [CrossRef]
- Duncan, G.W.; Khoo, T.K.; Yarnall, A.J.; O’Brien, J.T.; Coleman, S.Y.; Brooks, D.J.; Barker, R.A. Health-related quality of life in early Parkinson’s disease: The impact of nonmotor symptoms. Mov. Disord. 2014, 29, 195–202. [Google Scholar] [CrossRef]
- Balestrino, R.; Martinez-Martin, P. Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson’s disease. J. Neurol. Sci. 2017, 373, 173–178. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Litvan, I.; Goldman, J.G.; Tröster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K.; Williams-Gray, C.H.; et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012, 27, 349–356. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.L.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.A.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Sletten, D.M.; Suarez, G.A.; Low, P.A.; Mandrekar, J.; Singer, W. COMPASS 31: A refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin. Proc. 2012, 87, 1196–1201. [Google Scholar] [CrossRef]
- Kim, Y.; Seok, J.M.; Park, J.; Kim, K.H.; Min, J.H.; Cho, J.W.; Park, S.; Kim, H.J.; Kim, B.J.; Youn, J. The composite autonomic symptom scale 31 is a useful screening tool for patients with Parkinsonism. PLoS ONE 2017, 12, e0180744. [Google Scholar] [CrossRef]
- Foschi, M.; Giannini, G.; Merli, E.; Mancinelli, L.; Zenesini, C.; Viti, B.; Guaraldi, P.; Cortelli, P.; Lugaresi, A. Frequency and characteristics of dysautonomic symptoms in multiple sclerosis: A cross-sectional double-center study with the validated Italian version of the Composite Autonomic Symptom Score-31. Neurol. Sci. 2021, 42, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Treister, R.; O’Neil, K.; Downs, H.M.; Oaklander, A.L. Validation of the composite autonomic symptom scale 31 (COMPASS-31) in patients with and without small fiber polyneuropathy. Eur. J. Neurol. 2015, 22, 1124–1130. [Google Scholar] [CrossRef]
- Greco, C.; Di Gennaro, F.; D’Amato, C.; Morganti, R.; Corradini, D.; Sun, A.; Longo, S.; Lauro, D.; Pierangeli, G.; Cortelli, P.; et al. Validation of the Composite Autonomic Symptom Score 31 (COMPASS 31) for the assessment of symptoms of autonomic neuropathy in people with diabetes. Diabet. Med. 2017, 34, 834–838. [Google Scholar] [CrossRef]
- Singtokum, N.; Amornvit, J.; Kerr, S.; Chokesuwattanaskul, R. Syncope with autonomic dysfunction assessed with the Thai-COMPASS 31 questionnaire. Heliyon 2023, 9, e17035. [Google Scholar] [CrossRef]
- Andretta, S.; Bonato, G.; Mainardi, M.; Salviati, L.; Antonini, A.; Carecchio, M. Symptomatic brain calcifications in two patients with JAM2 monoallelic variants. Mov. Disord. 2022, 37 (Suppl. S2), S379–S380. Available online: https://www.mdsabstracts.org/abstract/symptomatic-brain-calcifications-in-two-patients-with-jam2-monoallelic-variants/ (accessed on 5 June 2024).
- de Brouwer, E.J.; Golüke, N.M.; Claus, J.J.; Staekenborg, S.S.; Emmelot-Vonk, M.H.; A de Jong, P.; Koek, H.L.; De Jonghe, A. Basal ganglia calcifications: No association with cognitive function. J. Neuroradiol. 2023, 50, 266–270. [Google Scholar] [CrossRef]
- Chen, S.; Cen, Z.; Fu, F.; Chen, Y.; Chen, X.; Yang, D.; Wang, H.; Wu, H.; Zheng, X.; Xie, F.; et al. Underestimated disease prevalence and severe phenotypes in patients with biallelic variants: A cohort study of primary familial brain calcification from China. Park. Relat. Disord. 2019, 64, 211–219. [Google Scholar] [CrossRef]
- Garon, M.; Carecchio, M.; Weis, L.; Pistonesi, F.; Mainardi, M.; Bonato, G.; Salviati, L.; Antonini, A.; Biundo, R. Cognitive profiling in a cohort of Primary Familial Brain Calcification (PFBC) patients. Mov. Disord. 2021, 36 (Suppl. S1), S93. Available online: https://www.mdsabstracts.org/abstract/cognitive-profiling-in-a-cohort-of-primary-familial-brain-calcification-pfbc-patients/ (accessed on 5 June 2024).
- Reijnders, J.S.; Ehrt, U.; Weber, W.E.; Aarsland, D.; Leentjens, A.F. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov. Disord. 2008, 23, 183–313. [Google Scholar] [CrossRef] [PubMed]
- De Cock, V.C.; Vidailhet, M.; Arnulf, I. Sleep disturbances in patients with parkinsonism. Nat. Clin. Pract. Neurol. 2008, 4, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Manyam, B.V.; Walters, A.S.; Narla, K.R. Bilateral striopallidodentate calcinosis: Clinical characteristics of patients seen in a registry. Mov. Disord. 2001, 16, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Stocchi, F.; Torti, M. Constipation in Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 134, 811–826. [Google Scholar] [CrossRef] [PubMed]
Total | SLC20A2 | MYORG | PDGFB-PDGFRB | Negative Genetic Test | |
---|---|---|---|---|---|
Number of subjects | 50 | 10 | 8 | 4 | 25 |
Males | 21 (42%) | 3 (30%) | 5 (62.5%) | 1 (25%) | 10 (40%) |
Females | 29 (58%) | 7 (70%) | 3 (37.5%) | 3 (75%) | 15 (60%) |
Age at evaluation (y, mean ± s.d) | 60.9 ± 14.6 | 60.3 ± 14.7 | 59.1 ± 8.8 | 52.2 ± 15.6 | 63.2 ± 15.8 |
Symptomatic (motor) | 34 (68%) | 6 (60%) | 8 (100%) | 1 (25%) | 18 (72%) |
Symptomatic (cognitive) | 28 (56%) | 5 (50%) | 6 (75%) | 1 (25%) | 15 (60%) |
Age at onset (y, mean ± s.d) | 52.9 ± 13.8 | 51.3 ± 17 | 52.8 ± 8.8 | 45.7 ± 10.9 | 54.8 ± 14.5 |
Parkinsonism | 28 (56%) | 4 (40%) | 6 (75%) | 1 (25%) | 15 (60%) |
Ataxia/cerebellar features | 12 (24%) | 2 (20%) | 5 (62.5%) | 1 (25%) | 4 (16%) |
Dysarthria/speech disturbances | 14 (28%) | 2 (20%) | 6 (75%) | 1 (25%) | 6 (24%) |
Falls | 16 (32%) | 2 (20%) | 4 (50%) | 1 (25%) | 9 (36%) |
Cohort (50) | SLC20A2 (10) | MYORG (8) | PDGFB-PDGFRB (4) | Negative Genetic Test (25) | Motor Symptoms (34) | Absence of Motor Symptoms (16) | Cognitive Deficits (28) | No Cognitive Deficits (22) | |
---|---|---|---|---|---|---|---|---|---|
Cognitive deficits: -subjective -MCI -dementia | 28 (56%) 2 (4%) 22 (44%) 4 (8%) | 5 (50%) 0 (0%) 4 (40%) 1 (10%) | 6 (75%) 0 (0%) 5 (62.5%) 1 (12.5%) | 1 (25%) 1 (25%) 0 (0%) 0 (0%) | 15 (60%) 1 (4%) 12 (48%) 2 (8%) | 25(73.5%) 2 (5.8%) 20(58.8%) 4 (11.7%) | 3 (18.7%) 0 (0%) 2 (12.5%) 0 (0%) | 28 (100%) 2 (7%) 22(78.5%) 4 (14.3%) | 0 (0%) 0 (0%) 0 (0%) 0 (0%) |
Domain -Memory -Executive -Visuospatial -Language -Attention | 13 (26%) 17 (34%) 21 (42%) 19 (38%) 18 (36%) | 4 (40%) 2 (20%) 6 (60%) 2 (20%) 2 (20%) | 3 (37.5%) 6 (75%) 5 (62.5%) 5 (62.5%) 4 (50%) | 0 (0%) 0 (0%) 0 (0%) 1 (25%) 1 (25%) | 6 (24%) 8 (32%) 9 (36%) 10 (40%) 8 (32%) | 12(35.3%) 17 (50%) 18 (53%) 17 (50%) 16 (47%) | 2 (12.5%) 0 (0%) 3 (18.7%) 2 (12.5%) 0 (0%) | 12(42.8%) 15(53.5%) 19(67.8%) 15(53.5%) 15(53.5%) | 2 (9%) 2 (9%) 2 (9%) 4 (18%) 1 (4.5%) |
MMSE (mean ± s.d.) | 25.6 ± 5 | 25.6 ± 5 | 24.3 ± 4.9 | 27.3 ± 3.1 | 25.3 ± 5.8 | 24 ± 5.9 | 27.9 ± 2 | 23.5 ± 5.7 | 28.5 ± 3 |
MoCA (mean ± s.d.) | 21.5 ± 5.5 | 22.1 ± 5.7 | 20.3 ± 5.2 | 22.8 ± 2.3 | 21.4 ± 6.4 | 19.1 ± 5.5 | 25.1 ± 2.9 | 18.8 ± 5.6 | 25.1 ± 2.7 |
Neuropsychiatric: Anxiety/depression Psychosis/OCD Hallucinations | 31 (62%) 5 (10%) 6 (12%) | 7 (70%) 0 (0%) 1 (10%) | 7 (87.5%) 1 (12.5%) 1 (12.5%) | 3 (75%) 0 (0%) 0 (0%) | 11 (44%) 4 (16%) 4 (16%) | 22(64.7%) 5 (14.7%) 6 (17.6%) | 9 (56.2%) 0 (0%) 0 (0%) | 18(64.3%) 5 (17.8%) 6 (21.4%) | 13 (59%) 0 (0%) 0 (0%) |
Headache | 13 (26%) | 4 (40%) | 0 (0%) | 2 (50%) | 6 (24%) | 7 (20.5%) | 6 (37.5%) | 5 (17.8%) | 8 (36.3%) |
Sleep Disturbances—RBD | 17 (34%) 5 (10%) | 4 (40%) 2 (20%) | 3 (37.5%) 1 (12.5%) | 1 (25%) 0 (0%) | 7 (28%) 2 (8%) | 13(38.2%) 4 (11.7%) | 4 (25%) 1 (6.25%) | 12(42.8%) 4 (14.3%) | 5 (22.7%) 1 (4.5%) |
Constipation | 16 (32%) | 4 (40%) | 4 (50%) | 1 (25%) | 6 (24%) | 15 (44%) | 1 (6.25%) | 13(46.4%) | 3 (13.6%) |
Genitourinary disturbances | 17(34%) | 4 (40%) | 5 (62.5%) | 1 (25%) | 6 (24%) | 16 (47%) | 1 (6.25%) | 17(60.7%) | 0 (0%) |
Hyposmia | 7 (14%) | 2 (20%) | 0 (0%) | 0 (0%) | 4 (16%) | 6 (17.6%) | 1 (6.25%) | 5 (17.8%) | 2 (9%) |
Orthostatic intolerance | 3 (6%) | 1 (10%) | 0 (0%) | 0 (0%) | 1 (4%) | 3 (8.8%) | 0 (0%) | 2 (7%) | 0 (0%) |
ADL (mean ± s.d.) | 5.2 ± 1.5 | 5.2 ± 1.6 | 5.2 ± 1.1 | 5.5 ± 1 | 5 ±1.8 | 4.7 ± 1.7 | 5.9 ± 0.25 | 4.6 ± 1.7 | 6 ± 0 |
IADL (mean ± s.d.) | 6 ± 2.1 | 7.2 ± 2.2 | 6 ± 1.1 | 6.2 ± 2 | 5.7 ± 2.5 | 5.1 ± 2.1 | 7.6 ± 1 | 5.2 ± 2 | 7.2 ± 1 |
Domain (Maximal Possible Score) | Orthostatic Intolerance (Max 40) | Vasomotor (Max 5) | Secretomotor (Max 15) | Gastrointestinal (Max 25) | Bladder (Max 10) | Pupillomotor (Max 5) | Total (Max 100) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group (n. of Patients) | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | % s. > 13.5 |
Cohort (50) | 8 ± 7.8 | 44% | 0.5 ± 1.2 | 16% | 3.3 ± 2.9 | 56% | 5.7 ± 4.5 | 80% | 2 ± 1.8 | 64% | 1.2 ± 1.3 | 54% | 20.6 ± 15 | 90% | 64% |
Negative (25) | 8.2 ± 10.1 | 44% | 0.7 ± 1.2 | 20% | 3.5 ± 3 | 60% | 6.1 ± 4.5 | 84% | 1.5 ± 2 | 52% | 1 ± 1.2 | 48% | 20.9 ± 15 | 88% | 64% |
SLC20A2 (10) | 6.4 ± 6 | 40% | 0.2 ± 0.9 | 10% | 3.2 ± 3 | 50% | 6.2 ± 5 | 90% | 1.4 ± 1.4 | 60% | 0.9 ± 1.2 | 40% | 18.4 ± 13 | 90% | 60% |
MYORG (8) | 8 ± 12 | 37.5% | 0.4 ± 1.1 | 12.5% | 2.9 ± 3 | 50% | 5.1 ± 5 | 62.5% | 3.9 ± 2.3 | 100% | 1.8 ± 1.4 | 87.5% | 22.2 ± 18 | 100% | 62.5% |
PDGFB-PDGFRB (4) | 12 ± 10 | 75% | 0 ± 0 | 0% | 3.2 ± 2.7 | 75% | 4.7 ± 4 | 75% | 2.8 ± 1.9 | 75% | 1.9 ± 1.7 | 75% | 24.6 ± 15 | 100% | 100% |
Parkinsonism (28) | 6.4 ± 10 | 32.1% | 0.7 ± 1 | 21.4% | 3.1 ± 3 | 53.6% | 5.6 ± 4.5 | 78.6% | 2.5 ± 2.4 | 75% | 1.1 ± 1.4 | 46.4% | 19.5 ± 16 | 89.3% | 57.2% |
No parkinso-nism (22) | 10 ± 9 | 59.1% | 0.3 ± 0.8 | 9.1% | 3.5 ± 3.2 | 59.1% | 5.7 ± 4.8 | 81.8% | 1.2 ± 1.5 | 50% | 1.3 ± 1.2 | 63.6% | 20 ± 14 | 81.8% | 63.6% |
Cognitive deficits (28) | 7.9 ± 10.5 | 39.3% | 0.8 ± 1.4 | 25% | 3.5 ± 3.2 | 60.7% | 6.5 ± 4.4 | 85.7% | 2.5 ± 2.3 | 78.6% | 1.2 ± 1.4 | 53.6% | 22.4 ± 15 | 92.9% | 64.2% |
Normal cognitive tests (22) | 8.2 ± 8 | 50% | 0.2 ± 0.7 | 4.5% | 3 ± 3.3 | 50% | 4.6 ± 4.7 | 72.7% | 1.2 ± 1.5 | 45.5% | 1.1 ± 1.2 | 54.5% | 17.1 ± 14 | 81.8% | 59% |
PD controls (18) | 8.4 ± 10 | 42.9% | 0.3 ± 0.9 | 14.3% | 4.7 ± 4.1 | 76.2% | 4.8 ± 3.5 | 85.7% | 2.2 ± 1.9 | 76.2% | 1.4 ± 1.2 | 71.4% | 20.2 ± 18 | 100% | 42% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonato, G.; Cimino, P.; Pistonesi, F.; Salviati, L.; Bertolin, C.; Carecchio, M. Non-Motor Symptoms in Primary Familial Brain Calcification. J. Clin. Med. 2024, 13, 3873. https://doi.org/10.3390/jcm13133873
Bonato G, Cimino P, Pistonesi F, Salviati L, Bertolin C, Carecchio M. Non-Motor Symptoms in Primary Familial Brain Calcification. Journal of Clinical Medicine. 2024; 13(13):3873. https://doi.org/10.3390/jcm13133873
Chicago/Turabian StyleBonato, Giulia, Paola Cimino, Francesca Pistonesi, Leonardo Salviati, Cinzia Bertolin, and Miryam Carecchio. 2024. "Non-Motor Symptoms in Primary Familial Brain Calcification" Journal of Clinical Medicine 13, no. 13: 3873. https://doi.org/10.3390/jcm13133873
APA StyleBonato, G., Cimino, P., Pistonesi, F., Salviati, L., Bertolin, C., & Carecchio, M. (2024). Non-Motor Symptoms in Primary Familial Brain Calcification. Journal of Clinical Medicine, 13(13), 3873. https://doi.org/10.3390/jcm13133873