The Impact of Obesity as a Peripheral Disruptor of Brain Inhibitory Mechanisms in Fibromyalgia: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Clinical and Demographic Variables
2.3.1. Demographic Questionnaire
2.3.2. Beck’s Depression Index (BDI)
2.3.3. Patient-Reported Outcomes Measurement Information System (PROMIS)
2.3.4. Brief Pain Inventory (BPI)
2.4. Transcranial Magnetic Stimulation Assessment (TMS)
2.5. Conditioned Pain Modulation (CPM)
2.6. Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Intracortical Inhibition (ICI)
3.2.1. Beck’s Depression Inventory (BDI)
3.2.2. PROMIS Fatigue
3.2.3. CPM
3.3. ICI on the Left Hemisphere
BPI
3.4. Motor Threshold (MT)
CPM
4. Discussion
4.1. Main Findings
4.2. Intracortical Inhibition (ICI)
4.3. Left Hemisphere Intracortical Inhibition (ICI)
4.4. Motor Threshold (MT)
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincent, A.; Lahr, B.D.; Wolfe, F.; Clauw, D.J.; Whipple, M.O.; Oh, T.H.; Barton, D.L.; Sauver, J.S. Prevalence of fibromyalgia: A population-based study in olmsted county, minnesota, utilizing the rochester epidemiology project. Arthritis Care Res. 2013, 65, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Clauw, D.J. Fibromyalgia: A clinical review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, L.P. Worldwide epidemiology of fibromyalgia. Curr. Pain Headache Rep. 2013, 17, 356. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Dukes, E.; Martin, S.; Edelsberg, J.; Oster, G. Characteristics and healthcare costs of patients with fibromyalgia syndrome. Int. J. Clin. Pract. 2007, 61, 1498–1508. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, R.; Di Paola, R.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, mechanisms, diagnosis and treatment options update. Int. J. Mol. Sci. 2021, 22, 3891. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, A.; Cooney, J.; Alvaro, H.; Editors, P.-L. Transcranial Magnetic Stimulation. Available online: http://www.springer.com/series/7657 (accessed on 11 June 2024).
- Lefaucheur, J.P. Transcranial magnetic stimulation. In Handbook of Clinical Neurology; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 160, pp. 559–580. [Google Scholar] [CrossRef]
- Vucic, S.; Chen, K.-H.S.; Kiernan, M.C.; Hallett, M.; Benninger, D.; Di Lazzaro, V.; Rossini, P.M.; Benussi, A.; Berardelli, A.; Currà, A.; et al. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin. Neurophysiol. 2023, 150, 131–175. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Pacheco-Barrios, K.; Lima, D.; Pimenta, D.; Slawka, E.; Navarro-Flores, A.; Parente, J.; Rebello-Sanchez, I.; Cardenas-Rojas, A.; Gonzalez-Mego, P.; et al. Motor cortex inhibition as a fibromyalgia biomarker: A meta-analysis of transcranial magnetic stimulation studies. Brain Netw. Modul. 2022, 1, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Pacheco-Barrios, K.; Pacheco-Barrios, N.; Liang, G.; Fregni, F. Neurocircuitry basis of motor cortex-related analgesia as an emerging approach for chronic pain management. Nat. Ment. Health 2024, 2, 496–513. [Google Scholar] [CrossRef]
- Santos, L.C.; Gushken, F.; Gadotti, G.M.; Dias, B.d.F.; Pedrini, S.M.; Barreto, M.E.S.F.; Zippo, E.; Pinto, C.B.; de Toledo Piza, P.V.; Fregni, F. Intracortical Inhibition in the Affected Hemisphere in Limb Amputation. Front. Neurol. 2020, 11, 720. [Google Scholar] [CrossRef]
- de Oliveira Franco, Á.; Alves, C.F.d.S.; Vicuña, P.; Bandeira, J.; de Aratanha, M.A.; Torres, I.L.S.; Fregni, F.; Caumo, W. Hyper-connectivity between the left motor cortex and prefrontal cortex is associated with the severity of dysfunction of the descending pain modulatory system in fibromyalgia. PLoS ONE 2022, 17, e0247629. [Google Scholar] [CrossRef]
- Crispino, M.; Trinchese, G.; Penna, E.; Cimmino, F.; Catapano, A.; Villano, I.; Perrone-Capano, C.; Mollica, M.P. Interplay between peripheral and central inflammation in obesity-promoted disorders: The impact on synaptic mitochondrial functions. Int. J. Mol. Sci. 2020, 21, 5964. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.; Gianlorenço, A.C.; Daibes, M.; Queiroz, F.; Lacerda, G.; Martinez-Magallanes, D.; Camargo, L.; Alves, L.G.; Andrade, M.F.; Dodurgali, M.R.; et al. Physical Conditioning, Obesity and Fibromyalgia: Causal Relationship or Confounding? Princ. Pract. Clin. Res. J. 2023, 9, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Open Studies (2023) Spaulding Research Institute. Available online: https://spauldingrehab.org/research/programs-labs/neuromodulation/open-studies (accessed on 30 May 2024).
- Kay, J.; Upchurch, K.S. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology 2012, 51, vi5–vi9. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T. BDI-II, Beck Depression Inventory: Manual, 2nd ed.; Psychological Corp.: San Antonio, TX, USA; Harcourt Brace: Boston, MA, USA, 1996. [Google Scholar]
- Richter, P.; Werner, J.; Heerlein, A.; Kraus, A.; Sauer, H. On the Validity of the Beck Depression Inventory. Psychopathology 1998, 31, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Cella, D.; Riley, W.; Stone, A.; Rothrock, N.; Reeve, B.; Yount, S.; Amtmann, D.; Bode, R.; Buysse, D.; Choi, S.; et al. The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J. Clin. Epidemiol. 2010, 63, 1179–1194. [Google Scholar] [CrossRef] [PubMed]
- Poquet, N.; Lin, C. The Brief Pain Inventory (BPI). J. Physiother. 2015, 62, 52. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Barrios, K.; Pinto, C.; Velez, F.S.; Duarte, D.; Gunduz, M.; Simis, M.; Gianlorenco, A.L.; Barouh, J.L.; Crandell, D.; Guidetti, M.; et al. Structural and functional motor cortex asymmetry in unilateral lower limb amputation with phantom limb pain. Clin. Neurophysiol. 2020, 131, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, S.; Wodehouse, T. Conditioned pain modulation—A comprehensive review. Neurophysiol. Clin. 2021, 51, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.G.; Kim, J.H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesthesiol. 2017, 70, 144–156. [Google Scholar] [CrossRef]
- Ross, R.K.; Breskin, A.; Westreich, D. When Is a Complete-Case Approach to Missing Data Valid? The Importance of Effect-Measure Modification. Am. J. Epidemiol. 2020, 189, 1583–1589. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Gómez-Apo, E.; Mondragón-Maya, A.; Ferrari-Díaz, M.; Silva-Pereyra, J. Structural Brain Changes Associated with Overweight and Obesity. J. Obes. 2021, 2021, 6613385. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.A.; Spencer, S.J. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav. Immun. 2014, 42, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Guillemot-Legris, O.; Muccioli, G.G. Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci. 2017, 40, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal Cell Death. Physiol. Rev. 2018, 98, 813–880. [Google Scholar] [CrossRef] [PubMed]
- Parimisetty, A.; Dorsemans, A.-C.; Awada, R.; Ravanan, P.; Diotel, N.; D’hellencourt, C.L. Secret talk between adipose tissue and central nervous system via secreted factors—An emerging frontier in the neurodegenerative research. J. Neuroinflamm. 2016, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Yokum, S.; Ng, J.; Stice, E. Relation of regional gray and white matter volumes to current BMI and future increases in BMI: A prospective MRI study. Int. J. Obes. 2012, 36, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri, B.; Edman, E.; Löf, M.; Lund, E.; Leinhard, O.D.; Lundberg, P.; Forsgren, M.F.; Gerdle, B.; Dong, H.-J. Fibromyalgia in women: Association of inflammatory plasma proteins, muscle blood flow, and metabolism with body mass index and pain characteristics. Pain Rep. 2022, 7, e1042. [Google Scholar] [CrossRef] [PubMed]
- Arranz, L.-I.; Rafecas, M.; Alegre, C. Effects of obesity on function and quality of life in chronic pain conditions. Curr. Rheumatol. Rep. 2013, 16, 390. [Google Scholar] [CrossRef]
- Griffen, T.C.; Maffei, A. GABAergic synapses: Their plasticity and role in sensory cortex. Front. Cell. Neurosci. 2014, 8, 1272–1279. [Google Scholar] [CrossRef]
- Uygur-Kucukseymen, E.; Castelo-Branco, L.; Pacheco-Barrios, K.; Luna-Cuadros, M.A.; Cardenas-Rojas, A.; Giannoni-Luza, S.; Zeng, H.; Gianlorenco, A.C.; Gnoatto-Medeiros, M.; Shaikh, E.S.; et al. Decreased neural inhibitory state in fibromyalgia pain: A cross-sectional study. Neurophysiol. Clin. 2020, 50, 279–288. [Google Scholar] [CrossRef]
- Thibaut, A.; Zeng, D.; Caumo, W.; Liu, J.; Fregni, F. Corticospinal excitability as a biomarker of myofascial pain syndrome. Pain Rep. 2017, 2, e594. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.-S.; Li, C.-T.; Lin, H.-C.; Tsai, S.-J.; Bai, Y.-M.; Su, T.-P.; Chang, Y.-W.; Cheng, C.-M. Antidepressant-resistant depression is characterized by reduced short- and long-interval cortical inhibition. Psychol. Med. 2020, 50, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Mhalla, A.; de Andrade, D.C.; Baudic, S.; Perrot, S.; Bouhassira, D. Alteration of cortical excitability in patients with fibromyalgia. Pain 2010, 149, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Taki, Y.; Kinomura, S.; Sato, K.; Inoue, K.; Goto, R.; Okada, K.; Uchida, S.; Kawashima, R.; Fukuda, H. Relationship between body mass index and gray matter volume in 1428 healthy individuals. Obesity 2008, 16, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Auvinet, B.; Bileckot, R.; Alix, A.-S.; Chaleil, D.; Barrey, E. Gait disorders in patients with fibromyalgia. Jt. Bone Spine 2006, 73, 543–546. [Google Scholar] [CrossRef]
- Granovsky, Y.; Sprecher, E.; Sinai, A. Motor corticospinal excitability: A novel facet of pain modulation? Pain Rep. 2019, 4, e725. [Google Scholar] [CrossRef]
Variable Type | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Dependent Variables: | BDI | BPI | CPM | PROMIS fatigue | PROMIS pain | PROMIS anxiety |
Independent Variables: | MT | ICI | ICF |
Characteristic | Values | |||||
---|---|---|---|---|---|---|
Age (mean ± sd) | 47.48 ± 12.09 | |||||
BMI (mean ± sd) | 28.27 ± 6.3 | |||||
Duration of disease (mean ± sd) | 11.47 ± 8.55 | |||||
Sex (%) | 87.85% female (n = 94) | 12.14% male (n = 12) | ||||
Race (%) | 74.07% white (n = 80) | 7.40% black (n = 8) | 3.70% Asian (n = 4) | 9.25% multiracial (n = 10) | 4.62% not reported (n = 5) | 0.92% Pacific Islander (n = 1) |
Ethnicity (%) | 77.77% non-Hispanic (n = 84) | 16.67% Hispanic (n = 18) | 0.05% not reported (n = 6) | |||
Pain side (%) | 50.9% both (n = 55) | 24.07% left (n = 26) | 25% right (n = 27) | |||
Education level (%) | 1.85% middle school (n = 2) | 12.96% high school (n = 14) | 79.62% college (n = 86) | 5.55% PhD (n = 6) | ||
Smoking status (%) | 29.62% smokers (n = 32) | 70.37% non-smokers (n = 76) | ||||
Alcohol status (%) | 38.88% drink (n = 42) | 61.11% no (n = 66) |
Model | Group | Beta-Coefficient | 95% CI | R-Squared | p-Value | |
---|---|---|---|---|---|---|
ICI | ||||||
BDI | BMI < 30 | 6.81 | 0.38 | 13.25 | 0.07 | 0.04 |
BMI > 30 | 0.10 | −6.66 | 6.87 | 0.08 | 0.98 | |
PROMIS Fatigue | BMI < 30 | 0.85 | 0.32 | 1.38 | 0.19 | 0.003 |
BMI > 30 | −0.17 | −0.69 | 0.35 | 0.01 | 0.52 | |
CPM | BMI < 30 | −1.23 | −2.28 | −0.18 | 0.07 | 0.03 |
BMI > 30 | −0.32 | −2.00 | 1.36 | 0.06 | 0.71 | |
MT | ||||||
CPM | BMI < 30 | −0.02 | −0.05 | 0.01 | 0.07 | 0.13 |
BMI > 30 | −0.09 | −0.16 | −0.03 | 0.19 | 0.01 | |
ICI Left | ||||||
BPI Pain | BMI < 30 | 0.53 | −0.19 | 1.25 | 0.04 | 0.15 |
BMI > 30 | −1.36 | −2.57 | −0.15 | 0.17 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabris-Moraes, W.; Lacerda, G.J.M.; Pacheco-Barrios, K.; Fregni, F. The Impact of Obesity as a Peripheral Disruptor of Brain Inhibitory Mechanisms in Fibromyalgia: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 3878. https://doi.org/10.3390/jcm13133878
Fabris-Moraes W, Lacerda GJM, Pacheco-Barrios K, Fregni F. The Impact of Obesity as a Peripheral Disruptor of Brain Inhibitory Mechanisms in Fibromyalgia: A Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(13):3878. https://doi.org/10.3390/jcm13133878
Chicago/Turabian StyleFabris-Moraes, Walter, Guilherme J. M. Lacerda, Kevin Pacheco-Barrios, and Felipe Fregni. 2024. "The Impact of Obesity as a Peripheral Disruptor of Brain Inhibitory Mechanisms in Fibromyalgia: A Cross-Sectional Study" Journal of Clinical Medicine 13, no. 13: 3878. https://doi.org/10.3390/jcm13133878
APA StyleFabris-Moraes, W., Lacerda, G. J. M., Pacheco-Barrios, K., & Fregni, F. (2024). The Impact of Obesity as a Peripheral Disruptor of Brain Inhibitory Mechanisms in Fibromyalgia: A Cross-Sectional Study. Journal of Clinical Medicine, 13(13), 3878. https://doi.org/10.3390/jcm13133878