Vaginal Microbiome and Pregnancy Complications: A Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Selection Process of Included Studies
3.1.1. Preterm Birth
3.1.2. Miscarriage
3.1.3. Gestational Diabetes Mellitus (GDM)
3.1.4. Preeclampsia
3.1.5. Chorioamnionitis (CAT)
3.1.6. Ectopic Pregnancy
3.1.7. Preterm Premature Rapture of Membranes (PPROM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Law, A.; McCoy, M.; Lynen, R.; Curkendall, S.M.; Gatwood, J.; Juneau, P.L.; Landsman-Blumberg, P. The prevalence of complications and healthcare costs during pregnancy. J. Med. Econ. 2015, 18, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Hitti, J.; Sienas, L.; Walker, S.; Benedetti, T.J.; Easterling, T. Contribution of hypertension to severe maternal morbidity. Am. J. Obs. Gynecol. 2018, 219, 405.e1–405.e7. Available online: https://pubmed.ncbi.nlm.nih.gov/30012335/ (accessed on 22 May 2024). [CrossRef] [PubMed]
- Dzakpasu, S.; Deb-Rinker, P.; Arbour, L.; Darling, E.K.; Kramer, M.S.; Liu, S.; Luo, W.; Murphy, P.A.; Nelson, C.; Ray, J.G.; et al. Severe maternal morbidity surveillance: Monitoring pregnant women at high risk for prolonged hospitalisation and death. Paediatr. Perinat. Epidemiol. 2020, 34, 427–439. Available online: https://pubmed.ncbi.nlm.nih.gov/31407359/ (accessed on 22 May 2024). [CrossRef] [PubMed]
- Verschueren, K.J.; Kodan, L.R.; Paidin, R.R.; Samijadi, S.M.; Paidin, R.R.; Rijken, M.J.; Browne, J.L.; Bloemenkamp, K.W. Applicability of the WHO maternal near-miss tool: A nationwide surveillance study in Suriname. J. Glob. Health 2020, 10, 1–14. Available online: https://pubmed.ncbi.nlm.nih.gov/33214899/ (accessed on 22 May 2024). [CrossRef] [PubMed]
- Heemelaar, S.; Josef, M.; Diener, Z.; Chipeio, M.; Stekelenburg, J.; van den Akker, T.; Mackenzie, S. Maternal near-miss surveillance, Namibia. Bull. World Health Organ. 2020, 98, 548–557. Available online: https://pubmed.ncbi.nlm.nih.gov/32773900/ (accessed on 22 May 2024). [CrossRef] [PubMed]
- Galvão, L.P.L.; Alvim-Pereira, F.; de Mendonça, C.M.M.; Menezes, F.E.F.; Góis, K.A.D.N.; Ribeiro, R.F.; Gurgel, R.Q. The prevalence of severe maternal morbidity and near miss and associated factors in Sergipe, Northeast Brazil. BMC Pregnancy Childbirth 2014, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Geller, S.E.; Koch, A.R.; Garland, C.E.; MacDonald, E.J.; Storey, F.; Lawton, B. A global view of severe maternal morbidity: Moving beyond maternal mortality. Reprod. Health 2018, 15, 31–43. Available online: https://reproductive-health-journal.biomedcentral.com/articles/10.1186/s12978-018-0527-2 (accessed on 22 May 2024). [CrossRef] [PubMed]
- Lindquist, A.C.; Kurinczuk, J.J.; Wallace, E.M.; Oats, J.; Knight, M. Risk factors for maternal morbidity in Victoria, Australia: A population-based study. BMJ Open 2015, 5, e007903. [Google Scholar] [CrossRef] [PubMed]
- Nik Hazlina, N.H.; Norhayati, M.N.; Shaiful Bahari, I.; Mohamed Kamil, H.R. The Prevalence and Risk Factors for Severe Maternal Morbidities: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 861028. [Google Scholar] [CrossRef]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob. Health 2014, 2, e323–e333. Available online: https://pubmed.ncbi.nlm.nih.gov/25103301/ (accessed on 22 May 2024). [CrossRef]
- Saeedi, M.; Cao, Y.; Fadl, H.; Gustafson, H.; Simmons, D. Increasing prevalence of gestational diabetes mellitus when implementing the IADPSG criteria: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2021, 172, 108642. Available online: https://pubmed.ncbi.nlm.nih.gov/33359574/ (accessed on 22 May 2024). [CrossRef] [PubMed]
- Wang, W.; Xie, X.; Yuan, T.; Wang, Y.; Zhao, F.; Zhou, Z.; Zhang, H. Epidemiological trends of maternal hypertensive disorders of pregnancy at the global, regional, and national levels: A population-based study. BMC Pregnancy Childbirth 2021, 21, 1–10. Available online: https://bmcpregnancychildbirth.biomedcentral.com/articles/10.1186/s12884-021-03809-2 (accessed on 21 May 2024). [CrossRef] [PubMed]
- Otolorin, E.; Gomez, P.; Currie, S.; Thapa, K.; Dao, B. Essential basic and emergency obstetric and newborn care: From education and training to service delivery and quality of care. Int. J. Gynecol. Obstet. 2015, 130, S46–S53. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Nicolaides, K.H. Early prediction of preeclampsia. Obs. Gynecol. Int. 2014, 2014, 297397. Available online: https://pubmed.ncbi.nlm.nih.gov/25136369 (accessed on 21 May 2024). [CrossRef] [PubMed]
- Stupak, A.; Kwaśniewski, W. Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy. Biomolecules 2023, 13, 911. Available online: https://pubmed.ncbi.nlm.nih.gov/37371491 (accessed on 21 May 2024). [CrossRef]
- Taddei, C.R.; Cortez, R.V.; Mattar, R.; Torloni, M.R.; Daher, S. Microbiome in normal and pathological pregnancies: A literature overview. Am. J. Reprod. Immunol. 2018, 80, e12993. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.-J.; Li, S.-H.; Li, S.-C.; Zhong, Z.-C.; Duan, H.-L.; Tian, C.; Li, H.; He, W.; Chen, M.C.; He, T.; et al. Early-Onset Preeclampsia Is Associated With Gut Microbial Alterations in Antepartum and Postpartum Women. Front. Cell Infect. Microbiol. 2019, 9, 224. Available online: https://pubmed.ncbi.nlm.nih.gov/31297341 (accessed on 23 May 2024). [CrossRef] [PubMed]
- Swati, P.; Thomas, B.; Vahab, S.A.; Kapaettu, S.; Kushtagi, P. Simultaneous detection of periodontal pathogens in subgingival plaque and placenta of women with hypertension in pregnancy. Arch. Gynecol. Obs. 2011, 285, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Is there a protective role for vaginal flora? Curr. Infect. Dis. Rep. 1999, 1, 379–383. [Google Scholar] [CrossRef]
- Boskey, E.R.; Cone, R.A.; Whaley, K.J.; Moench, T.R. Origins of vaginal acidity: High d/l lactate ratio is consistent with bacteria being the primary source. Hum. Reprod. 2001, 16, 1809–1813. [Google Scholar] [CrossRef]
- Kaewsrichan, J.; Peeyananjarassri, K.; Kongprasertkit, J. Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol. Med. Microbiol. 2006, 48, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Fortenberry, J.D. The uses of race and ethnicity in human microbiome research. Trends Microbiol. 2013, 21, 165–166. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.; Riehle, K.; Ma, J.; Segata, N.; Mistretta, T.-A.; Coarfa, C.; Raza, S.; Rosenbaum, S.; Van den Veyver, I.; Milosavljevic, A.; et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 2012, 7, e36466. Available online: https://pubmed.ncbi.nlm.nih.gov/22719832 (accessed on 22 May 2024). [CrossRef] [PubMed]
- Serrano, M.G.; Parikh, H.I.; Brooks, J.P.; Edwards, D.J.; Arodz, T.J.; Edupuganti, L.; Huang, B.; Girerd, P.H.; Bokhari, Y.A.; Bradley, S.P.; et al. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat. Med. 2019, 25, 1001–1011. Available online: https://pubmed.ncbi.nlm.nih.gov/31142850 (accessed on 23 May 2024). [CrossRef] [PubMed]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. Available online: https://pubmed.ncbi.nlm.nih.gov/20534435 (accessed on 21 May 2024).
- Abdulla, S.R.; Kareem, S.R.; Hasan, A.H. Vaginal Microbiota Profile in first-trimester miscarriages cases. Cell Mol. Biol. 2023, 69, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. Available online: https://pubmed.ncbi.nlm.nih.gov/27919275 (accessed on 23 May 2024). [CrossRef] [PubMed]
- Al-Memar, M.; Bobdiwala, S.; Fourie, H.; Mannino, R.; Lee, Y.S.; Smith, A.; Marchesi, J.R.; Timmerman, D.; Bourne, T.; Bennett, P.R.; et al. The association between vaginal bacterial composition and miscarriage: A nested case-control study. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 264–274. Available online: https://pubmed.ncbi.nlm.nih.gov/31573753 (accessed on 23 May 2024). [CrossRef] [PubMed]
- Blostein, F.; Gelaye, B.; Sanchez, S.E.; Williams, M.A.; Foxman, B. Vaginal microbiome diversity and preterm birth: Results of a nested case-control study in Peru. Ann. Epidemiol. 2020, 41, 28–34. Available online: https://pubmed.ncbi.nlm.nih.gov/31883841 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Brown, R.G.; Marchesi, J.R.; Lee, Y.S.; Smith, A.; Lehne, B.; Kindinger, L.M.; Terzidou, V.; Holmes, E.; Nicholson, J.K.; Bennett, P.R.; et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 2018, 16, 9. [Google Scholar] [CrossRef]
- Soyer Caliskan, C.; Yurtcu, N.; Celik, S.; Sezer, O.; Kilic, S.S.; Cetin, A. Derangements of vaginal and cervical canal microbiota determined with real-time PCR in women with recurrent miscarriages. J. Obs. Gynaecol. 2022, 42, 2105–2114. [Google Scholar] [CrossRef]
- Callahan, B.J.; DiGiulio, D.B.; Goltsman, D.S.A.; Sun, C.L.; Costello, E.K.; Jeganathan, P.; Biggio, J.R.; Wong, R.J.; Druzin, M.L.; Shaw, G.M.; et al. Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc. Natl. Acad. Sci. USA 2017, 114, 9966–9971. Available online: https://pubmed.ncbi.nlm.nih.gov/28847941 (accessed on 22 May 2024). [CrossRef] [PubMed]
- Chang, D.-H.; Shin, J.; Rhee, M.-S.; Park, K.-R.; Cho, B.-K.; Lee, S.-K.; Kim, B.C. Vaginal Microbiota Profiles of Native Korean Women and Associations with High-Risk Pregnancy. J. Microbiol. Biotechnol. 2020, 30, 248–258. Available online: https://pubmed.ncbi.nlm.nih.gov/31838792 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Cortez, R.V.; Taddei, C.R.; Sparvoli, L.G.; Ângelo, A.G.S.; Padilha, M.; Mattar, R.; Daher, S. Microbiome and its relation to gestational diabetes. Endocrine 2018, 64, 254–264. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, A.S.; Dobbler, P.C.T.; Mai, V.; Procianoy, R.S.; Silveira, R.C.; Corso, A.L.; Roesch, L.F.W. Defining microbial biomarkers for risk of preterm labor. Braz. J. Microbiol. 2020, 51, 151–159. Available online: https://pubmed.ncbi.nlm.nih.gov/31332740 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Dunlop, A.L.; Satten, G.A.; Hu, Y.-J.; Knight, A.K.; Hill, C.C.; Wright, M.L.; Smith, A.K.; Read, T.D.; Pearce, B.D.; Corwin, E.J. Vaginal Microbiome Composition in Early Pregnancy and Risk of Spontaneous Preterm and Early Term Birth Among African American Women. Front. Cell Infect. Microbiol. 2021, 11, 641005. Available online: https://pubmed.ncbi.nlm.nih.gov/33996627 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Fan, T.; Zhong, X.-M.; Wei, X.-C.; Miao, Z.-L.; Luo, S.-Y.; Cheng, H.; Xiao, Q. The alteration and potential relationship of vaginal microbiota and chemokines for unexplained recurrent spontaneous abortion. Medicine 2020, 99, e23558. Available online: https://pubmed.ncbi.nlm.nih.gov/33371084 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Fettweis, J.M.; Serrano, M.G.; Sheth, N.U.; Mayer, C.M.; Glascock, A.L.; Brooks, J.P.; Jefferson, K.K. Species-level classification of the vaginal microbiome. BMC Genom. 2012, 13, S17. [Google Scholar] [CrossRef]
- Freitas, A.C.; Bocking, A.; Hill, J.E.; Money, D.M.; Group, V.R. Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. Microbiome 2018, 6, 117. Available online: https://pubmed.ncbi.nlm.nih.gov/29954448 (accessed on 24 May 2024). [CrossRef]
- Gryaznova, M.; Kozarenko, O.; Smirnova, Y.; Burakova, I.; Syromyatnikov, M.; Maslov, A.; Lebedeva, O. Cervical and Vaginal Microbiomes in Early Miscarriages and Ongoing Pregnancy with and without Dydrogesterone Usage. Int. J. Mol. Sci. 2023, 24, 13836. Available online: https://pubmed.ncbi.nlm.nih.gov/37762139 (accessed on 24 May 2024). [CrossRef]
- Gulavi, E.; Mwendwa, F.; Atandi, D.O.; Okiro, P.O.; Hall, M.; Beiko, R.G.; Adam, R.D. Vaginal microbiota in women with spontaneous preterm labor versus those with term labor in Kenya: A case control study. BMC Microbiol. 2022, 22, 270. Available online: https://pubmed.ncbi.nlm.nih.gov/36357861 (accessed on 24 May 2024). [CrossRef]
- Guo, X.; Hong, X.; Qian, H.; Qiao, D.; Wang, B.; Yu, H. Relationship between vaginal microbiota and chorioamnionitis: A prospective cohort study. Microb. Pathog. 2024, 186, 106458. [Google Scholar] [CrossRef]
- Hyman, R.W.; Fukushima, M.; Jiang, H.; Fung, E.; Rand, L.; Johnson, B.; Vo, K.C.; Caughey, A.B.; Hilton, J.F.; Davis, R.W.; et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod. Sci. 2014, 21, 32–40. Available online: https://pubmed.ncbi.nlm.nih.gov/23715799 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Jiao, X.; Zhang, L.; Du, D.; Wang, L.; Song, Q.; Liu, S. Alteration of vaginal microbiota in patients with recurrent miscarriage. J. Obs. Gynaecol. 2021, 42, 248–255. [Google Scholar] [CrossRef]
- Kindinger, L.M.; Bennett, P.R.; Lee, Y.S.; Marchesi, J.R.; Smith, A.; Cacciatore, S.; Holmes, E.; Nicholson, J.K.; Teoh, T.G.; MacIntyre, D.A. The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk. Microbiome 2017, 5, 6. Available online: https://pubmed.ncbi.nlm.nih.gov/28103952 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Kumar, M.; Murugesan, S.; Singh, P.; Saadaoui, M.; Elhag, D.A.; Terranegra, A.; Kabeer, B.S.A.; Marr, A.K.; Kino, T.; Brummaier, T.; et al. Vaginal Microbiota and Cytokine Levels Predict Preterm Delivery in Asian Women. Front. Cell. Infect. Microbiol. 2021, 11, 639665. Available online: https://pubmed.ncbi.nlm.nih.gov/33747983 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Liao, J.; Shenhav, L.; Urban, J.A.; Serrano, M.; Zhu, B.; Buck, G.A.; Korem, T. Microdiversity of the vaginal microbiome is associated with preterm birth. Nat. Commun. 2023, 14, 4997. Available online: https://pubmed.ncbi.nlm.nih.gov/37591872 (accessed on 24 May 2024). [CrossRef]
- Lin, C.-Y.; Lin, C.-Y.; Yeh, Y.-M.; Yang, L.-Y.; Lee, Y.-S.; Chao, A.; Chin, C.Y.; Chao, A.S.; Yang, C.Y. Severe preeclampsia is associated with a higher relative abundance of Prevotella bivia in the vaginal microbiota. Sci. Rep. 2020, 10, 18249. Available online: https://pubmed.ncbi.nlm.nih.gov/33106556 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Liu, F.-T.; Yang, S.; Yang, Z.; Zhou, P.; Peng, T.; Yin, J.; Ye, Z.; Shan, H.; Yu, Y.; Li, R. An Altered Microbiota in the Lower and Upper Female Reproductive Tract of Women with Recurrent Spontaneous Abortion. Microbiol. Spectr. 2022, 10, e0046222. Available online: https://pubmed.ncbi.nlm.nih.gov/35604131 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Ng, S.; Chen, M.; Kundu, S.; Wang, X.; Zhou, Z.; Zheng, Z.; Oing, W.; Sheng, H.; Wang, Y.; He, Y.; et al. Large-scale characterisation of the pregnancy vaginal microbiome and sialidase activity in a low-risk Chinese population. NPJ Biofilms Microbiomes 2021, 7, 89. Available online: https://pubmed.ncbi.nlm.nih.gov/34930922 (accessed on 24 May 2024). [CrossRef] [PubMed]
- Odogwu, N.M.; Chen, J.; Onebunne, C.A.; Jeraldo, P.; Yang, L.; Johnson, S.; Ayeni, F.A.; Walther-Antonio, M.R.S.; Olayemi, O.O.; Chia, N.; et al. Predominance of Atopobium vaginae at Midtrimester: A Potential Indicator of Preterm Birth Risk in a Nigerian Cohort. mSphere 2021, 6, e01261-20. Available online: https://pubmed.ncbi.nlm.nih.gov/33504666 (accessed on 26 May 2024). [CrossRef]
- Payne, M.S.; Newnham, J.P.; Doherty, D.A.; Furfaro, L.L.; Pendal, N.L.; Loh, D.E.; Keelan, J.A. A specific bacterial DNA signature in the vagina of Australian women in midpregnancy predicts high risk of spontaneous preterm birth (the Predict1000 study). Am. J. Obs. Gynecol. 2021, 224, 206.e1–206.e23. [Google Scholar] [CrossRef]
- Petricevic, L.; Domig, K.J.; Nierscher, F.J.; Sandhofer, M.J.; Fidesser, M.; Krondorfer, I.; Husslein, P.; Kneifel, W.; Kiss, H. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci. Rep. 2014, 4, 5136. Available online: https://pubmed.ncbi.nlm.nih.gov/24875844 (accessed on 26 May 2024). [CrossRef]
- Peuranpää, P.; Holster, T.; Saqib, S.; Kalliala, I.; Tiitinen, A.; Salonen, A.; Hautamäki, H. Female reproductive tract microbiota and recurrent pregnancy loss: A nested case-control study. Reprod. Biomed. Online 2022, 45, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.-F.; Zhang, Y.-X.; Chen, S.; Liu, X.-R.; Zhu, F.-F.; Huang, Y.-X.; Liu, X.-J.; Luo, S.-P.; Deng, G.-P.; Gao, J. Non-Lactobacillus-Dominated Vaginal Microbiota Is Associated With a Tubal Pregnancy in Symptomatic Chinese Women in the Early Stage of Pregnancy: A Nested Case-Control Study. Front. Cell. Infect. Microbiol. 2021, 11, 659505. Available online: https://pubmed.ncbi.nlm.nih.gov/34307190 (accessed on 26 May 2024). [CrossRef]
- Shahid, M.; Quinlivan, J.A.; Peek, M.; Castaño-Rodríguez, N.; Mendz, G.L. Is there an association between the vaginal microbiome and first trimester miscarriage? A prospective observational study. J. Obstet. Gynaecol. Res. 2021, 48, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Wu, J.; Nelson, D.; Dominguez-Bello, M. The Gestational Vaginal Microbiome and Spontaneous Preterm Birth among Nulliparous African American Women. Am. J. Perinatol. 2016, 33, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Stout, M.J.; Zhou, Y.; Wylie, K.M.; Tarr, P.I.; Macones, G.A.; Tuuli, M.G. Early pregnancy vaginal microbiome trends and preterm birth. Am. J. Obs. Gynecol. 2017, 217, 356.e1–356.e18. Available online: https://pubmed.ncbi.nlm.nih.gov/28549981 (accessed on 26 May 2024). [CrossRef] [PubMed]
- Sun, D.; Zhao, X.; Pan, Q.; Li, F.; Gao, B.; Zhang, A.; Huang, H.; Xu, D.; Cheng, C. The association between vaginal microbiota disorders and early missed abortion: A prospective study. Acta Obs. Gynecol. Scand. 2022, 101, 960–971. Available online: https://pubmed.ncbi.nlm.nih.gov/35871770 (accessed on 26 May 2024). [CrossRef] [PubMed]
- Tabatabaei, N.; Eren, A.M.; Barreiro, L.B.; Yotova, V.; Dumaine, A.; Allard, C.; Fraser, W.D. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: A case–control study. BJOG Int. J. Obstet. Amp; Gynaecol. 2018, 126, 349–358. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Shi, W.; Du, N.; Xu, X.; Zhang, Y.; Ji, P.; Zhang, F.; Jia, Z.; Wang, Y.; et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 2018, 67, 1614–1625. Available online: https://pubmed.ncbi.nlm.nih.gov/29760169 (accessed on 26 May 2024). [CrossRef]
- Wylie, K.M.; Wylie, T.N.; Cahill, A.G.; Macones, G.A.; Tuuli, M.G.; Stout, M.J. The vaginal eukaryotic DNA virome and preterm birth. Am. J. Obstet. Gynecol. 2018, 219, 189.e1–189.e12. Available online: https://pubmed.ncbi.nlm.nih.gov/29738749 (accessed on 26 May 2024). [CrossRef]
- Ma, Y.; Li, Y.; Liu, Y.; Cao, L.; Han, X.; Gao, S.; Zhang, C. Vaginal Microbiome Dysbiosis is Associated with the Different Cervical Disease Status. J. Microbiol. 2023, 61, 423–432. [Google Scholar] [CrossRef]
- Bretelle, F.; Rozenberg, P.; Pascal, A.; Favre, R.; Bohec, C.; Loundou, A.; Senat, M.V.; Aissi, G.; Lesavre, N.; Brunet, J.; et al. High Atopobium vaginae and Gardnerella vaginalis Vaginal Loads Are Associated With Preterm Birth. Clin. Infect. Dis. 2015, 60, 860–867. [Google Scholar] [CrossRef]
- Elovitz, M.A.; Gajer, P.; Riis, V.; Brown, A.G.; Humphrys, M.S.; Holm, J.B.; Ravel, J. Cervicovaginal microbiota and local immune response modulate the risk of spontaneous preterm delivery. Nat. Commun. 2019, 10, 1305. Available online: https://pubmed.ncbi.nlm.nih.gov/30899005 (accessed on 26 May 2024). [CrossRef]
- Nelson, D.B.; Bellamy, S.; Nachamkin, I.; Ness, R.B.; Macones, G.A.; Allen-Taylor, L. First trimester bacterial vaginosis, individual microorganism levels, and risk of second trimester pregnancy loss among urban women. Fertil. Steril. 2007, 88, 1396–1403. Available online: https://pubmed.ncbi.nlm.nih.gov/17434499 (accessed on 26 May 2024). [CrossRef]
- Kim, C.J.; Romero, R.; Chaemsaithong, P.; Chaiyasit, N.; Yoon, B.H.; Kim, Y.M. Acute chorioamnionitis and funisitis: Definition, pathologic features, and clinical significance. Am. J. Obs. Gynecol. 2015, 213, S29–S52. Available online: https://pubmed.ncbi.nlm.nih.gov/26428501 (accessed on 26 May 2024). [CrossRef]
- Stafford, G.P.; Parker, J.L.; Amabebe, E.; Kistler, J.; Reynolds, S.; Stern, V.; Paley, M.; Anumba, D.O.C. Spontaneous Preterm Birth Is Associated with Differential Expression of Vaginal Metabolites by Lactobacilli-Dominated Microflora. Front. Physiol. 2017, 8, 615. Available online: https://pubmed.ncbi.nlm.nih.gov/28878691 (accessed on 26 May 2024). [CrossRef]
- Zhang, F.; Zhang, T.; Ma, Y.; Huang, Z.; He, Y.; Pan, H.; Fang, M.; Ding, H. Alteration of vaginal microbiota in patients with unexplained recurrent miscarriage. Exp. Ther. Med. 2019, 17, 3307–3316. Available online: https://pubmed.ncbi.nlm.nih.gov/30988706 (accessed on 26 May 2024). [CrossRef]
- Zheng, N.-N.; Guo, X.-C.; Lv, W.; Chen, X.-X.; Feng, G.-F. Characterization of the vaginal fungal flora in pregnant diabetic women by 18S rRNA sequencing. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1031–1040. [Google Scholar] [CrossRef]
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. Available online: https://pubmed.ncbi.nlm.nih.gov/37805217/ (accessed on 26 May 2024). [CrossRef]
- Baldwin, E.A.; Walther-Antonio, M.; MacLean, A.M.; Gohl, D.M.; Beckman, K.B.; Chen, J.; White, B.; Creedon, D.J.; Chia, N. Persistent microbial dysbiosis in preterm premature rupture of membranes from onset until delivery. PeerJ 2015, 3, e1398. Available online: https://pubmed.ncbi.nlm.nih.gov/26644969 (accessed on 26 May 2024). [CrossRef]
- Aldunate, M.; Srbinovski, D.; Hearps, A.C.; Latham, C.F.; Ramsland, P.A.; Gugasyan, R.; Cone, R.A.; Tachedjian, G. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol. 2015, 6, 164. [Google Scholar] [CrossRef]
- Menard, J.; Fenollar, F.; Henry, M.; Bretelle, F.; Raoult, D. Molecular Quantification of Gardnerella vaginalis and Atopobium vaginae Loads to Predict Bacterial Vaginosis. Clin. Infect. Dis. 2008, 47, 33–43. [Google Scholar] [CrossRef]
- Quenby, S.; Gallos, I.D.; Dhillon-Smith, R.K.; Podesek, M.; Stephenson, M.D.; Fisher, J.; Brosens, J.J.; Brewin, J.; Ramhorst, R.; Lucas, E.S.; et al. Miscarriage matters: The epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet 2021, 397, 1658–1667. [Google Scholar] [CrossRef]
- Larsen, E.C.; Christiansen, O.B.; Kolte, A.M.; Macklon, N. New insights into mechanisms behind miscarriage. BMC Med. 2013, 11, 154. Available online: https://pubmed.ncbi.nlm.nih.gov/23803387 (accessed on 26 May 2024). [CrossRef]
- Devall, A.J.; Coomarasamy, A. Sporadic pregnancy loss and recurrent miscarriage. Best. Pract. Res. Clin. Obstet. Gynaecol. 2020, 69, 30–39. [Google Scholar] [CrossRef]
- Nelson, D.B.; Hanlon, A.L.; Wu, G.; Liu, C.; Fredricks, D.N. First Trimester Levels of BV-Associated Bacteria and Risk of Miscarriage Among Women Early in Pregnancy. Matern. Child. Health J. 2015, 19, 2682–2687. [Google Scholar] [CrossRef]
- Ponzo, V.; Fedele, D.; Goitre, I.; Leone, F.; Lezo, A.; Monzeglio, C.; Finocchiaro, C.; Ghigo, E.; Bo, S. Diet-Gut Microbiota Interactions and Gestational Diabetes Mellitus (GDM). Nutrients 2019, 11, 330. Available online: https://pubmed.ncbi.nlm.nih.gov/30717458 (accessed on 26 May 2024). [CrossRef]
- Hasain, Z.; Mokhtar, N.M.; Kamaruddin, N.A.; Mohamed Ismail, N.A.; Razalli, N.H.; Gnanou, J.V.; Raja Ali, R.A. Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential. Front. Cell Infect. Microbiol. 2020, 10, 188. Available online: https://pubmed.ncbi.nlm.nih.gov/32500037 (accessed on 26 May 2024). [CrossRef]
- Kuklina, E.V.; Ayala, C.; Callaghan, W.M. Hypertensive Disorders and Severe Obstetric Morbidity in the United States. Obstet. Gynecol. 2009, 113, 1299–1306. [Google Scholar] [CrossRef]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S. Association between clinical chorioamnionitis and histological funisitis at term. J. Neonatal Perinat. Med. 2019, 12, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Houser, M.; Kandalaft, N.; Khati, N.J. Ectopic pregnancy: A resident’s guide to imaging findings and diagnostic pitfalls. Emerg. Radiol. 2021, 29, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Nunes, V.; Cross, J.; Speich, J.E.; Morgan, D.R.; Strauss 3rd, J.F.; Ramus, R.M. Fetal membrane imaging and the prediction of preterm birth: A systematic review, current issues, and future directions. BMC Pregnancy Childbirth 2016, 16, 387. Available online: https://pubmed.ncbi.nlm.nih.gov/27938341 (accessed on 26 May 2024). [CrossRef] [PubMed]
- Yan, C.; Hong, F.; Xin, G.; Duan, S.; Deng, X.; Xu, Y. Alterations in the vaginal microbiota of patients with preterm premature rupture of membranes. Front. Cell Infect. Microbiol. 2022, 12, 858732. [Google Scholar] [CrossRef] [PubMed]
- Gajer, P.; Brotman, R.M.; Bai, G.; Sakamoto, J.; Schütte, U.M.E.; Zhong, X.; Koenig, S.S.; Fu, L.; Ma, Z.S.; Zhou, X.; et al. Temporal Dynamics of the Human Vaginal Microbiota. Sci. Transl. Med. 2012, 4, 132ra52. [Google Scholar] [CrossRef]
- Amabebe, E.; Anumba, D.O.C. The Vaginal Microenvironment: The Physiologic Role of Lactobacilli. Front. Med. 2018, 5, 181. Available online: https://pubmed.ncbi.nlm.nih.gov/29951482 (accessed on 26 May 2024). [CrossRef] [PubMed]
- Lewis, F.M.T.; Bernstein, K.T.; Aral, S.O. Vaginal Microbiome and Its Relationship to Behavior, Sexual Health, and Sexually Transmitted Diseases. Obstet. Gynecol. 2017, 129, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Ghaddar, N.; El Roz, A.; Ghssein, G.; Ibrahim, J.N. Emergence of Vulvovaginal Candidiasis among Lebanese Pregnant Women: Prevalence, Risk Factors, and Species Distribution. Infect. Dis. Obstet. Gynecol. 2019, 2019, 5016810. [Google Scholar] [CrossRef]
- Babić, M.; Hukić, M. Candida Albicans and non-albicans species as etiological agent of vaginitis in pregnant and nonpregnant women. Bosn. J. Basic. Med. Sci. 2010, 10, 89. [Google Scholar] [CrossRef]
- Alfouzan, W.; Dhar, R.; Ashkanani, H.; Gupta, M.; Rachel, C.; Khan, Z.U. Species spectrum and antifungal susceptibility profile of vaginal isolates of Candida in Kuwait. J. Mycol. Med. 2015, 25, 23–28. Available online: https://pubmed.ncbi.nlm.nih.gov/25534676/ (accessed on 26 May 2024). [CrossRef]
- Aguin, T.J.; Sobel, J.D. Vulvovaginal candidiasis in pregnancy. Curr. Infect. Dis. Rep. 2015, 17, 30. Available online: https://pubmed.ncbi.nlm.nih.gov/25916994/ (accessed on 26 May 2024). [CrossRef]
- Dias, S.; Pheiffer, C.; Adam, S. The Maternal Microbiome and Gestational Diabetes Mellitus: Cause and Effect. Microorganisms 2023, 11, 2217. Available online: https://www.mdpi.com/2076-2607/11/9/2217/htm (accessed on 26 May 2024). [CrossRef]
- Agnoletti, D.; Piani, F.; Cicero, A.F.G.; Borghi, C. The Gut Microbiota and Vascular Aging: A State-of-the-Art and Systematic Review of the Literature. J. Clin. Med. 2022, 11, 3557. Available online: https://www.mdpi.com/2077-0383/11/12/3557/htm (accessed on 26 May 2024). [CrossRef]
- Lau, S.Y.; Guild, S.J.; Barrett, C.J.; Chen, Q.; Mccowan, L.; Jordan, V.; Chamley, L.W. Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in preeclampsia: A systematic review and meta-analysis. Am. J. Reprod. Immunol. 2013, 70, 412–427. Available online: https://pubmed.ncbi.nlm.nih.gov/23790133/ (accessed on 26 May 2024). [CrossRef]
- Al-Badr, A.; Al-Shaikh, G. Recurrent Urinary Tract Infections Management in Women: A review. Sultan Qaboos Univ. Med. J. 2013, 13, 359–367. Available online: https://pubmed.ncbi.nlm.nih.gov/23984019/ (accessed on 26 May 2024). [CrossRef]
- Rana, P.; Kazmi, I.; Singh, R.; Afzal, M.; Al-Abbasi, F.A.; Aseeri, A.; Singh, R.; Khan, R.; Anwar, F. Ectopic pregnancy: A review. Arch. Gynecol. Obstet. 2013, 288, 747–757. [Google Scholar] [CrossRef]
- Moini, A.; Hosseini, R.; Jahangiri, N.; Shiva, M.; Akhoond, M.R. Risk factors for ectopic pregnancy: A case–control study. J. Res. Med. Sci. 2014, 19, 844. [Google Scholar]
- Cauci, S.; Culhane, J.F. High sialidase levels increase preterm birth risk among women who are bacterial vaginosis-positive in early gestation. Am. J. Obs. Gynecol. 2011, 204, 142.e1–142.e9. Available online: https://pubmed.ncbi.nlm.nih.gov/21055720/ (accessed on 26 May 2024). [CrossRef]
- Greenbaum, S.; Greenbaum, G.; Moran-Gilad, J.; Weintruab, A.Y. Ecological dynamics of the vaginal microbiome in relation to health and disease. Am. J. Obs. Gynecol. 2019, 220, 324–335. [Google Scholar] [CrossRef]
- Tsonis, O.; Gkrozou, F.; Harrison, E.; Stefanidis, K.; Vrachnis, N.; Paschopoulos, M. Female genital tract microbiota affecting the risk of preterm birth: What do we know so far? A review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 245, 168–173. [Google Scholar] [CrossRef]
- Vornhagen, J.; Quach, P.; Boldenow, E.; Merillat, S.; Whidbey, C.; Ngo, L.Y.; Adams Waldorf, K.M.; Rajagopal, L. Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth. mBio 2016, 7, e00781-16. Available online: https://pubmed.ncbi.nlm.nih.gov/27353757 (accessed on 29 May 2024). [CrossRef]
- Cauci, S.; Hitti, J.; Noonan, C.; Agnew, K.; Quadrifoglio, F.; Hillier, S.L.; Eschenbach, D.A. Vaginal hydrolytic enzymes, immunoglobulin A against Gardnerella vaginalis toxin, and risk of early preterm birth among women in preterm labor with bacterial vaginosis or intermediate flora. Am. J. Obs. Gynecol. 2002, 187, 877–881. [Google Scholar] [CrossRef]
- Macklaim, J.M.; Clemente, J.C.; Knight, R.; Gloor, G.B.; Reid, G. Changes in vaginal microbiota following antimicrobial and probiotic therapy. Microb. Ecol. Health Dis. 2015, 26, 27799. Available online: https://pubmed.ncbi.nlm.nih.gov/26282697 (accessed on 29 May 2024). [CrossRef]
- Homayouni, A.; Bastani, P.; Ziyadi, S.; Mohammad-Alizadeh-Charandabi, S.; Ghalibaf, M.; Mortazavian, A.M.; Mehrabany, E.V. Effects of Probiotics on the Recurrence of Bacterial Vaginosis. J. Low. Genit. Tract. Dis. 2014, 18, 79–86. [Google Scholar] [CrossRef]
- Dugoua, J.-J.; Machado, M.; Zhu, X.; Chen, X.; Koren, G.; Einarson, T.R. Probiotic Safety in Pregnancy: A Systematic Review and Meta-analysis of Randomized Controlled Trials of Lactobacillus, Bifidobacterium, and Saccharomyces spp. J. Obstet. Gynaecol. Can. 2009, 31, 542–552. [Google Scholar] [CrossRef]
- Zhu, B.; Tao, Z.; Edupuganti, L.; Serrano, M.G.; Buck, G.A. Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. Microbiol. Mol. Biol. Rev. 2022, 86, e0018121. Available online: https://pubmed.ncbi.nlm.nih.gov/36222685 (accessed on 29 May 2024). [CrossRef]
- Frei, A.; Verderosa, A.D.; Elliott, A.G.; Zuegg, J.; Blaskovich, M.A.T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 2023, 7, 202–224. Available online: https://pubmed.ncbi.nlm.nih.gov/37117903/ (accessed on 29 May 2024). [CrossRef]
- Mitchell, J.; Cooke, P.; Ahorlu, C.; Arjyal, A.; Baral, S.; Carter, L.; Dasgupta, R.; Fieroze, F.; Fonseca-Braga, M.; Huque, R.; et al. Community engagement: The key to tackling Antimicrobial Resistance (AMR) across a One Health context? Glob. Public Health 2022, 17, 2647–2664. Available online: https://pubmed.ncbi.nlm.nih.gov/34882505/ (accessed on 29 May 2024). [CrossRef]
- DIckey, S.W.; Cheung, G.Y.C.; Otto, M. Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov. 2017, 16, 457–471. Available online: https://pubmed.ncbi.nlm.nih.gov/28337021/ (accessed on 30 May 2024). [CrossRef]
- Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020, 6, 1–11. Available online: https://www.nature.com/articles/s41599-020-0478-4 (accessed on 29 May 2024). [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Country | Time Period | Complication | Summary of Results |
---|---|---|---|---|---|
[28] | Prospective observational | UK | Mar 2014– Mar 2016 | MC | Miscarriage is associated with Lactobacillus spp. depletion. |
[29] | Retrospective observational | Peru | Oct 2013– May 2014 | PTB | No association between CSTs and PTB. |
[30] | Prospective observational | UK | Oct 2013– Jun 2015 | PTB | Lactobacillus depletion and high diversity more commonly found in PTB arm. |
[31] | Case–control study | Turkey | Jul 2019– Dec 2019 | RMC | Low Lactobacillus and high Gardnerella and Prevotella prevalence in RMC patients. |
[32] | Retrospective observational | US | - | PTB | Low Lactobacillus and high Gardnerella prevalence associated with PTB. |
[33] | Prospective observational | Korea | Sept 2014– Aug 2018 | PTB MC | PTB patients more commonly assigned to CST IV. Almost all MC patients were assigned to L. iners-dominated CST. |
[34] | Cross-sectional | Brazil | Jan 2014– Jan 2016 | GDM | GDM presented a significantly higher abundance of the genera Bacteroides, Veillonella, Klebsiella, Escherichia-Shigella, Enterococcus, and Enterobacter. |
[35] | Retrospective observational | Brazil | May 2014– Mar 2016 | PTB | Elevated number of L. iners and L. jensenii OTUs in PTB. |
[36] | Cross-sectional | US | - | PTB | CST III and CST IV were associated with PTB. |
[37] | Cross-sectional | China | Jan 2010– Dec 2016 | RMC | High alpha diversity and elevated abundance of specific genera, such as Pseudomonas, in women experiencing RMC. |
[38] | Cross-sectional | US | - | PTB | High levels of S. amnii, Prevotella, TMP-H1, and BVAB1 can predict PTB. |
[39] | Retrospective observational | Canada | - | PTB | Women delivering at term were less likely to be positive for Mycoplasma and Ureaplasma. |
[40] | Cross-sectional | Russia | - | MC | The abundance of B. plebeius, B. breve, G. vaginalis, and M. girerdii was significantly higher in the miscarriage group. |
[41] | Case–control study | Kenya | Mar 2018– Mar 2019 | PTB | There were no statistically significant differences in either the taxa or the CST assignment. |
[42] | Prospective observational | China | - | CAT | The clinical CAT group was characterized by a richer and more diverse vaginal microbiome compared to the healthy control group. |
[43] | Prospective observational | US | - | PTB | There were no statistically significant differences in either the taxa or the CST assignment. |
[44] | Case–control study | China | - | RMC | L. iners was significantly decreased while Ruminococcaceae and Anaerococcus were significantly more abundant in RMC cases. |
[45] | Cross-sectional | UK | Jan 2013– Aug 2014 | PTB | L. iners was significantly higher in early PTB cases compared to term pregnancies. |
[46] | Prospective observational | Qatar Thailand | - | PTB | PTB was significantly associated with CST-IVB presenting even from the first trimester of the pregnancy. Women in the PTB group experienced an increase in P. buccalis. |
[47] | Retrospective observational | US | - | PTB | Megasphaera, Gardnerella spp., and Atopobium vaginae are associated with PTB. |
[48] | Case–control study | Taiwan | - | PE | Prevotella genus and more specifically P. bivia were significantly associated with severe PE. |
[49] | Case–control study | China | - | MC | Increased diversity and CST IV were associated with miscarriage. |
[49] | Case–control study | China | - | RMC | There were no statistically significant differences in either the taxa or the CST assignment. |
[50] | Retrospective observational | China | - | PTB | There were no statistically significant differences in either the taxa or the CST assignment. |
[51] | Prospective observational | Nigeria | Dec 2018– Sep 2019 | PTB | Increased abundance of Atopobium, Gardnerella, and Prevotella and CST IV assignments were observed in PTB group. |
[52] | Prospective observational | Australia | Jul 2015– Dec 2017 | PTB | High numbers of L. crispatus, L gasseri, or L jensenii were negatively associated with sPTB. |
[53] | Prospective observational | Austria | - | PTB | The dominance of L. iners was significantly different in women delivering preterm. |
[54] | Case–control study | Finland | Mar 2018– Jun 2020 | RMC | The relative abundance of G. vaginalis was significantly higher in the RMC group. |
[55] | Case–control study | China | May 2018– Dec 2018 | EP | There is a positive association between NLDM and ectopic pregnancy (p = 0.02). |
[56] | Prospective observational | Australia | Oct 2018– Apr 2019 | MC | Vaginal microbiome deriving from patients with miscarriage was elevated. |
[57] | Prospective observational | US | Jul 2008– Sep 2011 | PTB | Women delivering at term were mostly assigned to CST IV, while women from the PTB arm were mostly assigned to CST III. |
[58] | Case–control study | US | 2012–2015 | PTB | There were no statistically significant differences in either the taxa or the CST assignment. |
[59] | Prospective observational | China | Nov 2018– Nov 2019 | MC | Decreased L. jensenii and L. gasseri and increased M. genitalium and Ureaplasma rates were observed in the MC group. |
[60] | Case–control study | Canada | - | PTB | Lactobacillus species dominance might be associated with low risk of early but not late PTB. |
[61] | Case–control study | China | - | GDM | No variations of the vaginal microbiome were observed between the two groups. |
[62] | Case–control study | US | 2012–2015 | PTB | Having both bacterial and viral diversity during the first trimester was a significant predictor of PTB. |
[63] | Cross-sectional | China | Jan 2019– Apr 2020 | PPROM | L. iners, G. vaginalis, P. bivia, P. timonensis, U. parvum, and Ochrobactrum spp. were associated with PPROM. |
[64] | Prospective observational | France | Jul 2007– Apr 2012 | PTB | A. vaginae levels of equal or more than 10⁸/mL were correlated with PTB before 22 weeks of gestation. |
[65] | Case–control study | US | - | PTB | In the first trimester, increased rates of M. curtsii/mulieris increased the risk of PTB. |
[66] | Prospective observational | US | Sep 2001– Jun 2004 | MC | Second-trimester pregnancy loss was significantly associated with diminished loads of Lactobacilli early in pregnancy. |
[57] | Prospective observational | US | Jul 2008– Sep 2011 | MC | Elevated BVAB3 log concentration in women experiencing miscarriage was the only significant dissimilarity between the two groups. |
[67] | Case–control study | US | - | PTB | There were no statistically significant differences in either the taxa or the CST assignment. |
[68] | Prospective observational | UK | - | PTB | Term and pre-term groups were assigned more frequently to CST I and CST V, respectively. |
[69] | Case–control study | China | Sep 2016– Mar 2017 | RMC | Atopobium, Prevotella, and Streptococcus taxa were significantly more abundant in the miscarriage group. |
[70] | Prospective observational | China | Feb 2012– Jun 2012 | GDM | Women with GDM have a more diverse fungal flora than healthy controls. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerede, A.; Nikolettos, K.; Vavoulidis, E.; Margioula-Siarkou, C.; Petousis, S.; Giourga, M.; Fotinopoulos, P.; Salagianni, M.; Stavros, S.; Dinas, K.; et al. Vaginal Microbiome and Pregnancy Complications: A Review. J. Clin. Med. 2024, 13, 3875. https://doi.org/10.3390/jcm13133875
Gerede A, Nikolettos K, Vavoulidis E, Margioula-Siarkou C, Petousis S, Giourga M, Fotinopoulos P, Salagianni M, Stavros S, Dinas K, et al. Vaginal Microbiome and Pregnancy Complications: A Review. Journal of Clinical Medicine. 2024; 13(13):3875. https://doi.org/10.3390/jcm13133875
Chicago/Turabian StyleGerede, Angeliki, Konstantinos Nikolettos, Eleftherios Vavoulidis, Chrysoula Margioula-Siarkou, Stamatios Petousis, Maria Giourga, Panagiotis Fotinopoulos, Maria Salagianni, Sofoklis Stavros, Konstantinos Dinas, and et al. 2024. "Vaginal Microbiome and Pregnancy Complications: A Review" Journal of Clinical Medicine 13, no. 13: 3875. https://doi.org/10.3390/jcm13133875
APA StyleGerede, A., Nikolettos, K., Vavoulidis, E., Margioula-Siarkou, C., Petousis, S., Giourga, M., Fotinopoulos, P., Salagianni, M., Stavros, S., Dinas, K., Nikolettos, N., & Domali, E. (2024). Vaginal Microbiome and Pregnancy Complications: A Review. Journal of Clinical Medicine, 13(13), 3875. https://doi.org/10.3390/jcm13133875