Clinical and Physiological Variables in Patients with Post-COVID-19 Condition and Persistent Fatigue
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing—5 May 2023. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing---5-may-2023 (accessed on 29 May 2024).
- Saito, S.; Shahbaz, S.; Luo, X.; Osman, M.; Redmond, D.; Cohen Tervaert, J.W.; Li, L.; Elahi, S. Metabolomic and Immune Alterations in Long COVID Patients with Chronic Fatigue Syndrome. Front. Immunol. 2024, 15, 1341843. [Google Scholar] [CrossRef] [PubMed]
- Mehandru, S.; Merad, M. Pathological Sequelae of Long-Haul COVID. Nat. Immunol. 2022, 23, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Gorna, R.; MacDermott, N.; Rayner, C.; O’Hara, M.; Evans, S.; Agyen, L.; Nutland, W.; Rogers, N.; Hastie, C. Long COVID Guidelines Need to Reflect Lived Experience. Lancet 2021, 397, 455–457. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease (COVID-19): Post COVID-19 Condition. 2023. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition#:~:text=The%20most%20common%20symptoms%20associated,as%20work%20or%20household%20chores (accessed on 29 May 2024).
- Tziolos, N.-R.; Ioannou, P.; Baliou, S.; Kofteridis, D.P. Long COVID-19 Pathophysiology: What Do We Know So Far? Microorganisms 2023, 11, 2458. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, Co-Occurrence, and Evolution of Long-COVID Features: A 6-Month Retrospective Cohort Study of 273,618 Survivors of COVID-19. PLoS Med. 2021, 18, e1003773. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-Term Complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022, 322, C1–C11. [Google Scholar] [CrossRef] [PubMed]
- Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 Symptom Burden: What Is Long-COVID and How Should We Manage It? Lung 2021, 199, 113–119. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Al-Aly, Z. Postacute Sequelae of COVID-19 at 2 Years. Nat. Med. 2023, 29, 2347–2357. [Google Scholar] [CrossRef]
- Wylie, G.R.; Pra Sisto, A.J.; Genova, H.M.; DeLuca, J. Fatigue Across the Lifespan in Men and Women: State vs. Trait. Front. Hum. Neurosci. 2022, 16, 790006. [Google Scholar] [CrossRef]
- Phillips, R.O. A Review of Definitions of Fatigue—And a Step towards a Whole Definition. Transp. Res. Part. F Traffic Psychol. Behav. 2015, 29, 48–56. [Google Scholar] [CrossRef]
- Kluger, B.M.; Krupp, L.B.; Enoka, R.M. Fatigue and Fatigability in Neurologic Illnesses: Proposal for a Unified Taxonomy. Neurology 2013, 80, 409–416. [Google Scholar] [CrossRef]
- Margalit, I.; Yelin, D.; Sagi, M.; Rahat, M.M.; Sheena, L.; Mizrahi, N.; Gordin, Y.; Agmon, H.; Epstein, N.K.; Atamna, A.; et al. Risk Factors and Multidimensional Assessment of Long Coronavirus Disease Fatigue: A Nested Case-Control Study. Clin. Infect. Dis. 2022, 75, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
- AlRasheed, M.M.; Al-Aqeel, S.; Aboheimed, G.I.; AlRasheed, N.M.; Abanmy, N.O.; Alhamid, G.A.; Alnemari, H.M.; Alkhowaiter, S.; Alharbi, A.R.; Khurshid, F.; et al. Quality of Life, Fatigue, and Physical Symptoms Post-COVID-19 Condition: A Cross-Sectional Comparative Study. Healthcare 2023, 11, 1660. [Google Scholar] [CrossRef]
- Russell, A.; Hepgul, N.; Nikkheslat, N.; Borsini, A.; Zajkowska, Z.; Moll, N.; Forton, D.; Agarwal, K.; Chalder, T.; Mondelli, V.; et al. Persistent Fatigue Induced by Interferon-Alpha: A Novel, Inflammation-Based, Proxy Model of Chronic Fatigue Syndrome. Psychoneuroendocrinology 2019, 100, 276–285. [Google Scholar] [CrossRef]
- Hakem Zadeh, F. Long COVID: Complications, Underlying Mechanisms, and Treatment Strategies. Arch. Microbiol. Immunol. 2023, 7, 36–61. [Google Scholar] [CrossRef]
- Schultheiß, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Henkes, S.-S.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; et al. The IL-1β, IL-6, and TNF Cytokine Triad Is Associated with Post-Acute Sequelae of COVID-19. Cell Rep. Med. 2022, 3, 100663. [Google Scholar] [CrossRef]
- Alnefeesi, Y.; Siegel, A.; Lui, L.M.W.; Teopiz, K.M.; Ho, R.C.M.; Lee, Y.; Nasri, F.; Gill, H.; Lin, K.; Cao, B.; et al. Impact of SARS-CoV-2 Infection on Cognitive Function: A Systematic Review. Front. Psychiatry 2021, 11, 621773. [Google Scholar] [CrossRef]
- VanderVeen, B.N.; Fix, D.K.; Montalvo, R.N.; Counts, B.R.; Smuder, A.J.; Murphy, E.A.; Koh, H.J.; Carson, J.A. The Regulation of Skeletal Muscle Fatigability and Mitochondrial Function by Chronically Elevated Interleukin-6. Exp. Physiol. 2019, 104, 385–397. [Google Scholar] [CrossRef]
- Jin, M.; Tong, Q. Rhabdomyolysis as Potential Late Complication Associated with COVID-19. Emerg. Infect. Dis. 2020, 26, 1618–1620. [Google Scholar] [CrossRef]
- Motta-Santos, D.; Dos Santos, R.A.S.; Oliveira, M.; Qadri, F.; Poglitsch, M.; Mosienko, V.; Kappes Becker, L.; Campagnole-Santos, M.J.; Penninger, J.M.; Alenina, N.; et al. Effects of ACE2 Deficiency on Physical Performance and Physiological Adaptations of Cardiac and Skeletal Muscle to Exercise. Hypertens. Res. 2016, 39, 506–512. [Google Scholar] [CrossRef]
- Iwama, A.M.; Andrade, G.N.; Shima, P.; Tanni, S.E.; Godoy, I.; Dourado, V.Z. The Six-Minute Walk Test and Body Weight-Walk Distance Product in Healthy Brazilian Subjects. Braz. J. Med. Biol. Res. 2009, 42, 1080–1085. [Google Scholar] [CrossRef]
- Neder, J.A.; Andreoni, S.; Lerario, M.C.; Nery, L.E. Reference Values for Lung Function Tests. II. Maximal Respiratory Pressures and Voluntary Ventilation. Braz. J. Med. Biol. Res. 1999, 32, 719–727. [Google Scholar] [CrossRef]
- Piper, B.F.; Dibble, S.L.; Dodd, M.J.; Weiss, M.C.; Slaughter, R.E.; Paul, S.M. The Revised Piper Fatigue Scale: Psychometric Evaluation in Women with Breast Cancer. Oncol. Nurs. Forum 1998, 25, 677–684. [Google Scholar]
- Mota, D.D.C.F.; Pimenta, C.A.M.; Piper, B.F. Fatigue in Brazilian Cancer Patients, Caregivers, and Nursing Students: A Psychometric Validation Study of the Piper Fatigue Scale-Revised. Support. Care Cancer 2009, 17, 645–652. [Google Scholar] [CrossRef]
- Kovelis, D.; Segretti, N.O.; Probst, V.S.; Lareau, S.C.; Brunetto, A.F.; Pitta, F. Validation of the Modified Pulmonary Functional Status and Dyspnea Questionnaire and the Medical Research Council Scale for Use in Brazilian Patients with Chronic Obstructive Pulmonary Disease. J. Bras. Pneumol. 2008, 34, 1008–1018. [Google Scholar] [CrossRef]
- Mahler, D.A.; Weinberg, D.H.; Wells, C.K.; Feinstein, A.R. The Measurement of Dyspnea. Contents, Interobserver Agreement, and Physiologic Correlates of Two New Clinical Indexes. Chest 1984, 85, 751–758. [Google Scholar] [CrossRef]
- Sousa, T.C.D.; Jardim, J.R.; Jones, P. Validação Do Questionário Do Hospital Saint George Na Doença Respiratória (SGRQ) Em Pacientes Portadores de Doença Pulmonar Obstrutiva Crônica No Brasil. J. De Pneumol. 2000, 26, 119–128. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- So, W.K.W.; Tai, J.W.M. Fatigue and Fatigue-Relieving Strategies Used by Hong Kong Chinese Patients after Hemopoietic Stem Cell Transplantation. Nurs. Res. 2005, 54, 48–55. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, J.H.; Lee, K. Validation of the Revised Piper Fatigue Scale in Koreans with Chronic Hepatitis B. PLoS ONE 2017, 12, e0177690. [Google Scholar] [CrossRef]
- Berardi, A.; Graziosi, G.; Ferrazzano, G.; Casagrande Conti, L.; Grasso, M.G.; Tramontano, M.; Conte, A.; Galeoto, G. Evaluation of the Psychometric Properties of the Revised Piper Fatigue Scale in Patients with Multiple Sclerosis. Healthcare 2022, 10, 985. [Google Scholar] [CrossRef]
- Valóta, I.A.D.C.; Rodrigo da Silva Pimentel, R.; Neroni Stina Saura, A.P.; Marques da Silva, R.; Siqueira Costa Calache, A.L.; José Dos Santos, M. Fatigue and Resilience in Master’s and PhD Students in the Covid-19 Pandemic in Brazil: A Cross-Sectional Study. PLoS ONE 2023, 18, e0295218. [Google Scholar] [CrossRef] [PubMed]
- Mota, D.D.C.D.F.; Pimenta, C.A.D.M.; Caponero, R. Fatigue in Colorectal Cancer Patients: Prevalence and Associated Factors. Rev. Lat. Am. Enferm. 2012, 20, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Engberg, I.; Segerstedt, J.; Waller, G.; Wennberg, P.; Eliasson, M. Fatigue in the General Population- Associations to Age, Sex, Socioeconomic Status, Physical Activity, Sitting Time and Self-Rated Health: The Northern Sweden MONICA Study 2014. BMC Public Health 2017, 17, 654. [Google Scholar] [CrossRef]
- Butt, Z.; Rao, A.V.; Lai, J.S.; Abernethy, A.P.; Rosenbloom, S.K.; Cella, D. Age-Associated Differences in Fatigue among Patients with Cancer. J. Pain. Symptom Manag. 2010, 40. [Google Scholar] [CrossRef]
- Njøten, K.L.; Espehaug, B.; Magnussen, L.H.; Jürgensen, M.; Kvale, G.; Søfteland, E.; Aarli, B.B.; Frisk, B. Relationship between Exercise Capacity and Fatigue, Dyspnea, and Lung Function in Non-hospitalized Patients with Long COVID. Physiol. Rep. 2023, 11, e15850. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Deng, J.; Liu, Q.; Du, M.; Liu, M.; Liu, J. Long-Term Consequences of COVID-19 at 6 Months and Above: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 6865. [Google Scholar] [CrossRef]
- Alahmari, A.; Krishna, G.; Jose, A.M.; Qoutah, R.; Hejazi, A.; Abumossabeh, H.; Atef, F.; Almutiri, A.; Homoud, M.; Algarni, S.; et al. The Long-Term Effects of COVID-19 on Pulmonary Status and Quality of Life. PeerJ 2023, 11, e16694. [Google Scholar] [CrossRef]
- Sanhueza, S.; Vidal, M.A.; Hernandez, M.A.; Henriquez-Beltran, M.E.; Cabrera, C.; Quiroga, R.; Antilef, B.E.; Aguilar, K.P.; Castillo, D.A.; Llerena, F.J.; et al. Clinical and Pulmonary Function Analysis in Long-COVID Revealed That Long-Term Pulmonary Dysfunction Is Associated with Vascular Inflammation Pathways and Metabolic Syndrome. Front. Med. 2023, 10, 1271863. [Google Scholar] [CrossRef]
- Finsterer, J.; Scorza, F.A. SARS-CoV-2 Myopathy. J. Med. Virol. 2021, 93, 1852. [Google Scholar] [CrossRef]
- Montes-Ibarra, M.; Oliveira, C.L.P.; Orsso, C.E.; Landi, F.; Marzetti, E.; Prado, C.M. The Impact of Long COVID-19 on Muscle Health. Clin. Geriatr. Med. 2022, 38, 545–557. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Legarra-Gorgoñon, G.; Oscoz-Ochandorena, S.; García-Alonso, Y.; García-Alonso, N.; Oteiza, J.; Lorea, A.E.; Correa-Rodríguez, M.; Izquierdo, M. Reduced Muscle Strength in Patients with Long-COVID-19 Syndrome Is Mediated by Limb Muscle Mass. J. Appl. Physiol. 2023, 134, 50–58. [Google Scholar] [CrossRef]
- Mittal, J.; Ghosh, A.; Bhatt, S.P.; Anoop, S.; Ansari, I.A.; Misra, A. High Prevalence of Post COVID-19 Fatigue in Patients with Type 2 Diabetes: A Case-Control Study. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102302. [Google Scholar] [CrossRef]
- Hennigs, J.K.; Huwe, M.; Hennigs, A.; Oqueka, T.; Simon, M.; Harbaum, L.; Körbelin, J.; Schmiedel, S.; Schulze zur Wiesch, J.; Addo, M.M.; et al. Respiratory Muscle Dysfunction in Long-COVID Patients. Infection 2022, 50, 1391–1397. [Google Scholar] [CrossRef]
- Farr, E.; Wolfe, A.R.; Deshmukh, S.; Rydberg, L.; Soriano, R.; Walter, J.M.; Boon, A.J.; Wolfe, L.F.; Franz, C.K. Diaphragm Dysfunction in Severe COVID-19 as Determined by Neuromuscular Ultrasound. Ann. Clin. Transl. Neurol. 2021, 8, 1745–1749. [Google Scholar] [CrossRef]
- Omar, A.; Ferreira, A.D.S.; Hegazy, F.A.; Alaparthi, G.K. Cardiorespiratory Response to Six-Minute Step Test in Post COVID-19 Patients—A Cross Sectional Study. Healthcare 2023, 11, 1386. [Google Scholar] [CrossRef]
- Wong, A.W.; López-Romero, S.; Figueroa-Hurtado, E.; Vazquez-Lopez, S.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A.; Cortés-Telles, A. Predictors of Reduced 6-Minute Walk Distance after COVID-19: A Cohort Study in Mexico. Pulmonology 2021, 27, 563–565. [Google Scholar] [CrossRef]
- Puhan, M.A.; Mador, M.J.; Held, U.; Goldstein, R.; Guyatt, G.H.; Schünemann, H.J. Interpretation of Treatment Changes in 6-Minute Walk Distance in Patients with COPD. Eur. Respir. J. 2008, 32, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Polkey, M.I.; Spruit, M.A.; Edwards, L.D.; Watkins, M.L.; Pinto-Plata, V.; Vestbo, J.; Calverley, P.M.A.; Tal-Singer, R.; Agustí, A.; Bakke, P.S.; et al. Six-Minute-Walk Test in Chronic Obstructive Pulmonary Disease: Minimal Clinically Important Difference for Death or Hospitalization. Am. J. Respir. Crit. Care Med. 2013, 187, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.E.; Hill, C.J.; Rasekaba, T.; Lee, A.; Naughton, M.T.; McDonald, C.F. Updating the Minimal Important Difference for Six-Minute Walk Distance in Patients With Chronic Obstructive Pulmonary Disease. Arch. Phys. Med. Rehabil. 2010, 91, 221–225. [Google Scholar] [CrossRef]
- Sauer, M.C.; Barlow, P.B.; Comellas, A.P.; Garg, A. Anxiety and Depression Symptoms among Patients with Long COVID: A Retrospective Cohort Study. Eur. Arch. Psychiatry Clin. Neurosci. 2024. [Google Scholar] [CrossRef]
- Taquet, M.; Luciano, S.; Geddes, J.R.; Harrison, P.J. Bidirectional Associations between COVID-19 and Psychiatric Disorder: Retrospective Cohort Studies of 62 354 COVID-19 Cases in the USA. Lancet Psychiatry 2021, 8, 130–140. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, F.; Hou, W.; Silver, Z.; Wong, C.Y.; Chang, O.; Huang, E.; Zuo, Q.K. The Prevalence of Depression, Anxiety, and Sleep Disturbances in COVID-19 Patients: A Meta-analysis. Ann. N. Y. Acad. Sci. 2021, 1486, 90–111. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, X.; Gu, X.; Zhang, H.; Ren, L.L.; Guo, L.; Liu, M.; Wang, Y.; Cui, D.; Wang, Y.; et al. Health Outcomes in People 2 Years after Surviving Hospitalisation with COVID-19: A Longitudinal Cohort Study. Lancet Respir. Med. 2022, 10, 863–876. [Google Scholar] [CrossRef]
- Lucijanic, M.; Krecak, I.; Soric, E.; Sedinic, M.; Sabljic, A.; Derek, L.; Jaksic, O.; Kusec, R. Thrombocytosis in COVID-19 Patients without Myeloproliferative Neoplasms Is Associated with Better Prognosis but Higher Rate of Venous Thromboembolism. Blood Cancer J. 2021, 11, 189. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, S.; Chang, H.H.; Kim, S.W. Long COVID Prevalence and Impact on Quality of Life 2 Years after Acute COVID-19. Sci. Rep. 2023, 13, 11207. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.E.; Kim, T.; Yun, K.W.; Lee, S.H.; Lee, E.; Seo, J.W.; Jung, Y.H.; Chong, Y.P. Preliminary Guidelines for the Clinical Evaluation and Management of Long COVID. Infect. Chemother. 2022, 54, 566–597. [Google Scholar] [CrossRef]
Variable | Fatigue (n = 37) | Non-Fatigue (n = 40) | p-Value |
---|---|---|---|
Sex, f/m | 25/12 | 16/24 | 0.015 a |
Age, years | 53.7 ± 11.7 | 56.2 ± 11.8 | 0.351 b |
BMI, kg/m2 | 30.5 (27.3–34.9) | 32.2 (28.9–35.4) | 0.429 c |
Time of symptoms, days 1 | 621 ± 289 | 406 ± 99.4 | <0.00 b |
Hospitalization, y/n | 17/20 | 40/0 | <0.00 a |
IMV, y/n | 4/33 | 12/28 | 0.03 a |
Smoking history, y/n | 14/23 | 18/22 | 0.524 c |
Variable | Fatigue (n = 37) | Non-Fatigue (n = 40) | p-Value |
---|---|---|---|
mMRC, score | 1 (1–2) | 0 (0–1) | 0.002 a |
BDI, score | 7.5 (6–9) | 12 (9–12) | <0.001 a |
SGRQ symptom, % | 213 (110–316) | 173 (42–244) | 0.119 a |
SGRQ activity, % | 720 ± 281 | 337 ± 318 | <0.001 b |
SGRQ impact, % | 555 (320–788) | 65 (0–226) | <0.001 a |
SGRQ total, score | 1404 (1007–1897) | 497 (274–985) | <0.001 a |
HADS-A, score | 8 (5–9) | 3 (0.5–4) | <0.001 a |
HADS-D, score | 5 (2–10) | 3 (0–4) | 0.054 a |
6MWT, m | 440 ± 91 | 477 ± 87 | 0.075 b |
6MWT, % of predicted | 84 (70.5–93) | 82 (74–95) | 0.567 a |
Handgrip strength, kgf | 34 (28–40) | 40 (30–46.5) | 0.044 a |
MIP, mmHg | −81 ± 31 | −111 ± 33 | <0.001 b |
MIP, % of predicted | 87 ± 32 | 112 ± 27 | <0.001 b |
MEP, mmHg | 95 (70–118) | 110 (87.5–143) | 0.074 a |
MEP, % of predicted | 103 ± 30 | 110 ± 25 | 0.249 b |
Weight, kg | 79.6 (68.7–95.3) | 85.9 (75.3–99.1) | 0.169 a |
Height, m | 1.62 ± 0.08 | 1.65 ± 0.09 | 0.289 b |
LBM, kg | 26.8 ± 6.4 | 29.4 ± 6.2 | 0.076 b |
BFM, kg | 36.0 ± 15.6 | 35.7 ± 11.6 | 0.925 b |
Variable | Estimate | SE | Z | p | Odds | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Intercept | −7.41837 | 2.6439 | −2.806 | 0.005 | 6.00 × 10−4 | 3.37 × 10−6 | 0.107 |
SGRQ total, score | 0.00270 | 9.52 × 10−4 | 2.840 | 0.005 | 1.003 | 1.0008 | 1.005 |
HADS-A, score | 0.26889 | 0.0996 | 2.699 | 0.007 | 1.309 | 1.0764 | 1.591 |
Handgrip strength, kgf | 0.133894 | 0.0667 | 2.033 | 0.042 | 1.145 | 1.0049 | 1.305 |
mMRC, score | −0.33894 | 0.5794 | −0.585 | 0.559 | 0.713 | 0.2289 | 2.218 |
Sex Male–female (reference) | −1.71506 | 1.2099 | −1.417 | 0.156 | 0.156 | 0.0168 | 1.928 |
Smoking history Yes–no (reference) | −0.63112 | 0.8772 | −0.719 | 0.472 | 0.472 | 0.0953 | 2.969 |
Variable | Fatigue (n = 37) | Non-Fatigue (n = 40) | p-Value |
---|---|---|---|
Asthma, y/n | 3/34 | 3/37 | 1.000 |
COPD, y/n | 2/35 | 2/38 | 1.000 |
Hypertension, y/n | 14/23 | 26/14 | 0.017 |
Other heart diseases, y/n | 4/33 | 3/37 | 0.705 |
Diabetes mellitus, y/n | 5/32 | 15/25 | 0.016 |
Dyslipidemia, y/n | 3/34 | 2/38 | 0.580 |
Obesity, y/n | 20/17 | 26/14 | 0.328 |
Osteoporosis, y/n | 1/36 | 0/40 | 0.481 |
Autoimmune disease, y/n | 6/31 | 0/40 | 0.010 |
Chronic renal disease, y/n | 2/35 | 1/39 | 0.605 |
Chronic liver disease, y/n | 3/34 | 0/40 | 0.106 |
Neoplasm, y/n | 1/36 | 1/39 | 1.000 |
Stroke, y/n | 0/37 | 3/37 | 0.241 |
Variable | Fatigue (n = 37) | Non-Fatigue (n = 40) | p-Value |
---|---|---|---|
FVC, L | 3.0 ± 0.7 | 3.3 ± 0.7 | 0.057 a |
FVC, % | 85.6 ± 14.9 | 88.0 ± 13.4 | 0.459 a |
FEV1, L | 2.45 ± 0.59 | 2.79 ± 0.69 | 0.022 a |
FEV1, % | 85.6 ± 16.9 | 90.7 ± 14.2 | 0.160 a |
FEV1/FVC, L | 0.83 (0.80–0.85) | 0.84 (0.79–0.85) | 0.281 b |
TLC, L | 4.38 ± 1.06 | 4.70 ± 1.07 | 0.234 a |
TLC, % | 85.0 (73–92.5) | 85.0 (74–95.5) | 0.600 b |
RV, L | 1.10 (0.92–1.52) | 1.32 (1.11–1.69) | 0.113 b |
RV, % | 65.0 (52.5–81.5) | 70.5 (56.5–87.3) | 0.569 b |
DLCO, mL/mmHg/min | 21.8 ± 4.88 | 23.4 ± 6.78 | 0.277 a |
DLCO, % | 82.3 ± 11.7 | 82.6 ± 16.5 | 0.927 a |
DLCO/VA, mL/mmHg/min/L | 5.41 (4.45–5.64) | 5.14 (4.65–5.64) | 0.775 b |
DLCO/VA, % | 99.3 ± 15.7 | 97.1 ± 14.7 | 0.570 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.; Dorna, M.; Franco, E.; Geronutti, J.; Brizola, L.; Ishimoto, L.; Barros, Y.; Costa, A.; Breda, C.; Marin, C.; et al. Clinical and Physiological Variables in Patients with Post-COVID-19 Condition and Persistent Fatigue. J. Clin. Med. 2024, 13, 3876. https://doi.org/10.3390/jcm13133876
Santos M, Dorna M, Franco E, Geronutti J, Brizola L, Ishimoto L, Barros Y, Costa A, Breda C, Marin C, et al. Clinical and Physiological Variables in Patients with Post-COVID-19 Condition and Persistent Fatigue. Journal of Clinical Medicine. 2024; 13(13):3876. https://doi.org/10.3390/jcm13133876
Chicago/Turabian StyleSantos, Maércio, Mariana Dorna, Estefânia Franco, Jéssica Geronutti, Luís Brizola, Letícia Ishimoto, Yasmin Barros, Adriele Costa, Carolina Breda, Caroline Marin, and et al. 2024. "Clinical and Physiological Variables in Patients with Post-COVID-19 Condition and Persistent Fatigue" Journal of Clinical Medicine 13, no. 13: 3876. https://doi.org/10.3390/jcm13133876
APA StyleSantos, M., Dorna, M., Franco, E., Geronutti, J., Brizola, L., Ishimoto, L., Barros, Y., Costa, A., Breda, C., Marin, C., Suetake, F., Azevedo, P., Paiva, S. d., Tanni, S., & Prudente, R. (2024). Clinical and Physiological Variables in Patients with Post-COVID-19 Condition and Persistent Fatigue. Journal of Clinical Medicine, 13(13), 3876. https://doi.org/10.3390/jcm13133876