Respiratory Symptoms and Changes of Oxidative Stress Markers among Motorbike Drivers Chronically Exposed to Fine and Ultrafine Air Particles: A Case Study of Douala and Dschang, Cameroon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Target Population and Sampling
2.2.1. Eligibility Criteria
2.2.2. Blood Collection and Measurement
2.2.3. Assessment of Hematological and Oxidative Stress Biomarkers
- Measurement of hematological markers
- Measurement of MDA
2.3. Measurement of SOD Activity
2.4. Statistical Analyses
3. Results
3.1. Demographic Characteristics of Subjects
3.2. Distribution of Symptoms Related to Air Pollution among Participants
3.3. Biological Assays
3.4. Changes in Hematological Parameters and Oxidative Stress Markers in Motorbike Drivers in Douala
3.5. Exposure Factors and Changes in Oxidative Stress Markers in Motorbike Drivers in Douala
3.6. Respiratory Disorders and Changes in Oxidative Stress Markers among Motorbike Drivers in Douala
3.7. General Discomfort and Changes in Oxidative Stress Markers among Motorbike Drivers in Douala
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araujo, J.A. Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual. Atmos. Health 2010, 4, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Leni, Z.; Cassagnes, L.E.; Daellenbach, K.R.; El Haddad, I.; Vlachou, A.; Uzu, G.; Prévôt, A.S.H.; Jaffrezo, J.-L.; Baumlin, N.; Salathe, M.; et al. Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLoS ONE 2020, 15, e0233425. [Google Scholar] [CrossRef] [PubMed]
- Daiber, A.; Kuntic, M.; Hahad, O.; Delogu, L.G.; Rohrbach, S.; Di Lisa, F.; Schulz, R.; Münzel, T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress-Implications for cardiovascular and neurodegenerative diseases. Arch. Biochem. Biophys. 2020, 696, 108662. [Google Scholar] [CrossRef]
- Ghorani Azam, A.; Riahi Zanjani, B.; Balali Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar]
- Zaira, L.; Lisa, K.; Marianne, G. Air pollution causing oxidative stress. Curr. Opin. Toxicol. 2020, 20–21, 1–8. [Google Scholar] [CrossRef]
- Sierra-Vargas, M.P.; Montero-Vargas, J.M.; Debray-García, Y.; Vizuet-de-Rueda, J.C.; Loaeza-Román, A.; Terán, L.M. Oxidative Stress and Air Pollution: Its Impact on Chronic Respiratory Diseases. Int. J. Mol. Sci. 2023, 24, 853. [Google Scholar] [CrossRef] [PubMed]
- Rajper, S.A.; Ullah, S.; Li, Z. Exposure to air pollution and self-reported effects on Chinese students: A case study of 13 megacities. PLoS ONE 2018, 13, e0194364. [Google Scholar] [CrossRef]
- Rezaei Vandchali, N.; Koolivand, A.; Ranjbar, A.; Zarei, P.; Fathi, M.; Malekafzali, S.; Mollamohammadi, N.; Jalali-Mashayekhi, F. Oxidative toxic stress and p53 level in healthy subjects occupationally exposed to outdoor air Pollution—A cross-sectional study in Iran. Ann. Agric. Environ. Med. 2020, 27, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.; Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Ito, Y.; Suzuki, K.; Sasaki, R.; Otani, M.; Aoki, K. Mortality rates from cancer or all causes and SOD activity level and Zn/Cu ratio in peripheral blood: Population-based follow-up study. J. Epidemiol. 2002, 12, 14–21. [Google Scholar] [CrossRef]
- Katerji, M.; Filippova, M.; Duerksen-Hughes, P. Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. Oxidative Med. Cell. Longev. 2019, 2019, 1279250. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, G.; Purvaja, R.; Robin, R.; Ramesh, R. Evaluation of the multiple biomarkers on identification of the vulnerable coastal pollution hotspots. Environ. Sci. Pollut. Res. 2016, 23, 23281–23290. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef] [PubMed]
- Motor, S.; Ozturk, S.; Ozcan, O.; Gurpinar, A.B.; Can, Y.; Yuksel, R.; Yenin, J.Z.; Seraslan, G.; Ozturk, O.H. Evaluation of total antioxidant status, total oxidant status and oxidative stress index in patients with alopecia areata. Int. J. Clin. Exp. Med. 2014, 7, 1089–1093. [Google Scholar] [PubMed]
- Rabha, R.; Ghosh, S.; Padhy, P.K. Indoor air pollution in rural north-east India: Elemental compositions, changes in haematological indices, oxidative stress and health risks. Ecotoxicol. Environ. Saf. 2018, 165, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Katoto, P.D.M.C.; Byamungu, L.; Brand, A.S.; Mokaya, J.; Strijdom, H.; Goswami, N.; De Boever, P.; Nawrot, T.S.; Nemery, B. Ambient air pollution and health in Sub-Saharan Africa: Current evidence, perspectives and a call to action. Environ. Res. 2019, 173, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Arsène Delors, F.G.; Gilbert, B.F. Port and industrial activities in douala–cameroon: Socio-economic mutations and environmental consequences. Rev. Univ. Sociol. 2020, p16. [Google Scholar]
- Tchakonté, S.; Ajeagah, G.; Diomandé, D.; Camara, A.I.; Konan, K.M.; Ngassam, P. Impact of anthropogenic activities on water quality and Freshwater Shrimps diversity and distribution in five rivers in Douala, Cameroon. J. Biodivers. Environ. Sci. (JBES) 2014, 4, 183–194. [Google Scholar]
- Mayi, M.P.A.; Bamou, R.; Djiappi-Tchamen, B.; Fontaine, A.; Jeffries, C.L.; Walker, T.; Antonio-Nkondjio, C.; Cornel, A.J.; Tchuinkam, T. Habitat and Seasonality Affect Mosquito Community Composition in the West Region of Cameroon. Insects 2020, 11, 312. [Google Scholar] [CrossRef]
- Devasagayam, T.P.A.; Boloor, K.K.; Ramasarma, T. Methods for estimating lipid peroxidation: An analysis of merits and demerits. Indian J. Biochem. Biophys. 2003, 40, 300–308. [Google Scholar] [PubMed]
- Misra, H.P.; Fridovich, I. The role of superoxide dismutase anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J. Biochem. 1972, 247, 3170–3175. [Google Scholar]
- Junjie, Q.; Guoyong, J.; Wan, Y.; Jinghan, L.; Fuwei, P. Nanomaterials-modulated Fenton reactions: Strategies, chemodynamic therapy and future trends. Chem. Eng. J. 2023, 466, 142960. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar] [PubMed] [PubMed Central]
- Van Raamsdonk, J.M.; Hekimi, S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 2009, 5, e1000361. [Google Scholar] [CrossRef]
- Sørensen, M.; Daneshvar, B.; Hansen, M.; Dragsted, L.O.; Hertel, O.; Knudsen, L.; Loft, S. Personal PM2.5 exposure and markers of oxidative stress in blood. Environ. Health Perspect. 2003, 111, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Davel, A.P.; Lemos, M.; Pastro, L.M.; Pedro, S.C.; de André, P.A.; Hebeda, C.; Farsky, S.H.; Saldiva, P.H.; Rossoni, L.V. Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology 2012, 295, 39–46. [Google Scholar] [CrossRef]
- Gangwar, R.S.; Bevan, G.H.; Palanivel, R.; Das, L.; Rajagopalan, S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol. 2020, 34, 101545. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, C.; Xu, Z.; Tzan, K.; Zhong, M.; Wang, A.; Lippmann, M.; Chen, L.C.; Rajagopalan, S.; Sun, Q. Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicol. Sci. 2011, 124, 88–98. [Google Scholar] [CrossRef]
- Delfino, R.J.; Staimer, N.; Vaziri, N.D. Air pollution and circulating biomarkers of oxidative stress. Air Qual. Atmos. Health 2011, 4, 37–52. [Google Scholar] [CrossRef]
- Leikauf, G.D.; Kim, S.H.; Jang, A.S. Mechanisms of ultrafine particle-induced respiratory health effects. Exp. Mol. Med. 2020, 52, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Hogg, J.C.; van Eeden, S. Pulmonary and systemic response to atmospheric pollution. Respirology 2009, 14, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Kampfrath, T.; Maiseyeu, A.; Ying, Z.; Shah, Z.; Deiuliis, J.A.; Xu, X.; Kherada, N.; Brook, R.D.; Reddy, K.M.; Padture, N.P.; et al. Chronic Fine Particulate Matter Exposure Induces Systemic Vascular Dysfunction via NADPH Oxidase and TLR4 Pathways. AHA J. 2011. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 2013, 10, 3886–3907. [Google Scholar] [CrossRef]
- Miyata, R.; van Eeden, S.F. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol. Appl. Pharmacol. 2011, 257, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Xu, W.; Ji, J.; Yang, Y.; Wang, S.-T.; Wang, J.; Chen, X.; Meng, S.; Tian, X.; Xu, K.-F. Lung function and systemic inflammation associated with short-term air pollution exposure in chronic obstructive pulmonary disease patients in Beijing, China. Environ. Health 2020, 19, 12. [Google Scholar] [CrossRef]
- Becker, S.; Mundandhara, S.; Devlin, R.B.; Madden, M. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies. Toxicol. Appl. Pharmacol. 2005, 207, 269–275. [Google Scholar] [CrossRef]
- Gomułka, K.; Liebhart, J.; Lange, A.; Mêdrala, W. Vascular endothelial growth factor-activated basophils in asthmatics. Postep. Dermatol. Alergol. 2020, 37, 584–589. [Google Scholar] [CrossRef]
MDs (n = 126) | Control Group (n = 65) | Total | x2 (p-Value) | |
---|---|---|---|---|
Age groups (years), n (%) | ||||
[21–27] | 51 (16.66) | 21 (16.66) | 72 (37.69) | 3.272 (p = 0.352) |
[28–33] | 45 (35.71) | 32 (49.23) | 77 (40.31) | |
[34–39] | 23 (18.25) | 9 (13.84) | 32 (16.75) | |
≥40 | 7 (5.55) | 3 (4.61) | 10 (5.23) | |
Mean age (±sd) | 29.87 (±5.47) | 30.00 (±5.166) | 29.93 (±0.82) | 0.165 (p = 0.869) |
BMI | 26.50 (±4.50) | 24.40 (±1.72) | 25.7873 (±3.91) | 3.612 (p < 0.001 **) |
Level of education, n (%) | ||||
None | 4 (3.17) | 2 (3.07) | 6 (3.14) | 0.950 (p = 0.813) |
Primary | 23 (18.25) | 15 (23.07) | 38(19.89) | |
Secondary | 86 (68.25) | 40 (61.53) | 126 (65.96) | |
University | 13 (10.31) | 8 (12.30) | 21 (10.99) | |
Place of residence | ||||
Douala II | 3 (2.38) | 0 (0.00) | 191 (p < 0.001 **) | |
Douala III | 67 (53.17) | 0 (0.00) | ||
Douala IV | 34 (26.98) | 0 (0.00) | ||
Douala V | 22 (17.46) | 0 (0.00) | ||
Others | 0 (0.00) | 65 (100) | ||
Place of work | ||||
Douala I | 4 (3.17) | 0 (0.00) | 2.108 (p = 0.147) | |
In all regions | 122 (96.82) | 65 (100) |
MDs (n = 126) | Control Group (n = 65) | Total | x2 (p-Value) | |
---|---|---|---|---|
Tobacco smoking, n (%) | ||||
Ex-smoker | 1 (0.79 | 3 (4.61) | 4 (2.09) | 0.464 (p = 0.793) |
Never smoked | 125 (99.20) | 62 (95.38) | 187 (97.90) | |
Alcohol consumption, n (%) | 36.173 | |||
Regular use | 126 (100) | 48 (73.86) | 174 (91.09) | (p < 0.001 **) |
Temporary | 0 (0.0) | 4 (6.15) | 4 (2.09) | |
Never | 0 (0.0) | 13 (20.00) | 13 (6.80) | |
Work experience (years), n (%) | ||||
≤6 | 7 (5.55) | 30 (46.15) | 37 (19.37) | 45.658 |
[7–14] | 110 (87.30) | 31 (47.69) | 141 (73.82) | (p < 0.001 **) |
≥14 | 9 (7.14) | 4 (6.15) | 13 (6.80) | |
Average working time (h/day), n (%) | ||||
≤7 | 9 (7.14) | 18 (27.69) | 27 (14.13) | 14.918 |
[8–20] | 117 (92.85) | 47 (72.30) | 164 (85.86) | (p < 0.001 **) |
≥21 | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Different Symptoms Related to Respiratory Disorders | MDs (n = 126) | Control Group (n = 65) | x2 (p-Value) |
---|---|---|---|
Upper airway symptoms, n (%) | |||
Sinusitis | 11 (4.54) | 6 (9.23) | 0.013 (p = 0.908) |
Runny nose | 62 (25.61) | 20 (25.00) | 5.949 (p = 0.015 *) |
Cold | 108 (44.62) | 34 (42.50) | 25.090 (p < 0.001 **) |
Current fever | 30 (12.39) | 16 (20.00) | 0.015 (p = 0.902) |
Sore throat | 31 (12.80) | 4 (5.00) | 9.752 (p = 0.002 *) |
Total | 242 | 80 | |
Lower airway symptoms, n (%) | |||
Dry cough | 101 (39.45) | 30 (36.14) | 23.013 (p < 0.001 **) |
Wheezing | 28 (10.93) | 17 (20.48) | 0.368 (p = 0.544) |
Chest discomfort | 63 (24.60) | 21 (25.30) | 5.448 (p = 0.020 *) |
Breathlessness | 64 (25) | 15 (18.07) | 13.582 (p < 0.001 **) |
Total | 256 | 83 |
Systemic Symptoms | MDs (n = 126) | Control Group (n = 65) | x2 (p-Value) |
---|---|---|---|
Headache | 103(26.68) | 36 (29.03) | 15.040 (p < 0.001 **) |
Dizziness | 6 (1.55) | 7 (5.64) | 2.440 (p = 0.118) |
Eye irritation | 88 (22.79) | 26 (20.96) | 15.869 (p < 0.001 **) |
Conjunctivitis | 48 (12.43) | 14 (11.29) | 5.362 (p = 0.021 *) |
Sweating | 60 (15.54) | 10 (8.06) | 19.190 (p < 0.001 **) |
General tiredness | 74 (19.17) | 22 (17.74) | 10.621 (p< 0.001 **) |
Nausea | 7 (1.81) | 9 (7.25) | 3.840 (p = 0.051) |
Total | 386 | 124 |
Biological Markers | MDs (Mean ± SD) | Group Control (Mean ± SD) | Student’s t-Test p-Value |
---|---|---|---|
Hematological parameters | Reference | ||
Red blood cell count (×1012/L) | 4.9794 ± 0.53334 | 5.0932 ± 0.53334 (4.5–5.9) | 0.330 |
Hemoglobin (g/dL) | 14.6990 ± 1.55235 | 14.4015 ± 1.55235 (13.0–17.0) | 0.196 |
Hematocrit (%) | 43.9982 ± 4.75811 | 41.3615 ± 4.75811 (39–54) | <0.0001 ** |
Neutrophils (%) | 34.5017 ± 11.55805 | 47.3740 ± 11.55805 (42.0–85.0) | <0.0001 ** |
Monocytes (%) | 15.5553 ± 6.24152 | 4.9931 ± 6.24152 (0.0–10) | <0.0001 ** |
Lymphocytes (%) | 50.0995 ± 10.21567 | 47.8129 ± 10.21567 (20–40) | 0.183 |
Platelets (×109 Cell/L) | 234.8175 ± 39.54833 | 250.5846 ± 39.54833 (150–500) | 0.130 |
Oxidative stress biomarkers | |||
Malondialdehyde (µmol/L × 10−6) | 1.366 ± 0.11753 | 0.77 ± 0.08554 (0.36–1.24) | <0.0001 ** |
Superoxide dismutase [U/uL] | 48.33 ± 1.0416 | 34.08 ± 1.0003 (13–23.7) | <0.0001 ** |
Oxidative Stress Markers | Red Blood Cell | Hemoglobin | Hematocrit | Neutrophils | Monocytes | Lymphocytes | Platelets | Number of Subjects | |
---|---|---|---|---|---|---|---|---|---|
SOD [U/uL]. | R Pearson | −0.086 | −0.031 | 0.059 | −0.298 ** | 0.378 ** | 0.101 | −0.021 | 191 |
p value | 0.236 | 0.666 | 0.420 | <0.0001 | <0.0001 | 0.165 | 0.776 | 191 | |
MDA (µmol/L × 10−6) | R Pearson | −0.061 | 0.019 | −0.016 | −0.161 * | 0.161 * | 0.098 | −0.007 | 191 |
p value | 0.402 | 0.793 | 0.822 | 0.026 | 0.026 | 0.176 | 0.925 | 191 |
Oxidative Stress Markers | Place of Residence | Place of Work | Work Experience (Years) | Average Working Time (h/day) | Number of Subjects | |
---|---|---|---|---|---|---|
SOD [U/uL]. | t | −5.577 ** | −0.812 | 1.596 | −0.428 | 191 |
p value | 0.0001 | 0.418 | 0.112 | 0.669 | 191 | |
MDA (µmol/L × 10−6) | t | −2135 * | −1077 | 0.687 | 0.931 | 191 |
p value | 0.034 | 0.283 | 0.493 | 0.353 | 191 |
Exposure Factors | MDA t (p-Value) | SOD t (p-Value) | Number of Subjects |
---|---|---|---|
Mean age | 0.506 (0.613) | 0.062 (0.951) | 191 |
BMI | 0.964 (0.336) | 1.509 (0.133) | 191 |
Categorized age | 1.288 (0.199) | 0.956 (0.340) | 191 |
Level of education, n (%) | −0.606 (0.545) | −0.451 (0.653) | 191 |
Place of residence | −2.195 (0.029) | −4.901 (<0.0001) | 191 |
Place of work | −0.678 (0.499) | −0.633 (0.528) | 191 |
Duration of work (per year) | −0.038 (0.970) | 1.091 (0.277) | 191 |
Daily duration of exposure (per hour) | 1.057 (0.292) | 0.158 (0.875) | 191 |
Consumption of alcohol | 1.183 (0.238) | −1.124 (0.263) | 191 |
Domestic gas | 0.029 (0.977) | −1.497 (0.136) | 191 |
Firewood | −0.466 (0.641) | −0.384 (0.702) | 191 |
Coal | −0.790 (0.431) | −0.746 (0.457) | 191 |
Oxidative Stress Markers | Sinusitis | Runny Nose | Cold | Current Fever | Sore Throat | Number of Subjects | |
---|---|---|---|---|---|---|---|
SOD [U/uL]. | t | −0.527 | 0.937 | 2.200 * | 0.164 | 0.734 | 191 |
p value | 0.599 | 0.350 | 0.029 | 0.870 | 0.464 | 191 | |
MDA (µmol/L × 10−6) | t | 0.789 | −0.596 | 2.588 * | 1.341 | 1.651 | 191 |
p value | 0.431 | 0.552 | 0.010 | 0.181 | 0.100 | 191 | |
Oxidative stress markers | Dry cough | Wheezing | Chest discomfort | Breathlessness | Number of Subjects | ||
SOD [U/uL]. | t | 1.818 | 0.486 | 0.572 | 1.942 | 191 | |
p value | 0.071 | 0.628 | 0.568 | 0.054 | 191 | ||
MDA (µmol/L × 10−6) | t | 2.174 * | 0.750 | −1.198 | −0.420 | 191 | |
p value | 0.031 | 0.454 | 0.233 | 0.675 | 191 |
Oxidative Stress Markers | Headache | Dizziness | Eye Irritation | Conjunctivitis | Sweating | General Tiredness | Nausea | Number of Subjects | |
---|---|---|---|---|---|---|---|---|---|
SOD [U/uL]. | t | 1.561 | −0.722 | 1.248 | 0.579 | 1.040 | 1.658 | −1.261 | 191 |
p value | 0.120 | 0.471 | 0.214 | 0.563 | 0.300 | 0.099 | 0.209 | 191 | |
MDA (µmol/L × 10−6) | t | 0.630 | 0.597 | 0.208 | −0.089 | 0.997 | 1.185 | −0.284 | 191 |
p value | 0.530 | 0.551 | 0.835 | 0.929 | 0.320 | 0.238 | 0.777 | 191 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiekwe, J.E.; Ongbayokolak, N.; Dabou, S.; Natheu, C.K.; Goka, M.S.; Nya Biapa, P.C.; Annesi-Maesano, I.; Telefo, P.B. Respiratory Symptoms and Changes of Oxidative Stress Markers among Motorbike Drivers Chronically Exposed to Fine and Ultrafine Air Particles: A Case Study of Douala and Dschang, Cameroon. J. Clin. Med. 2024, 13, 3816. https://doi.org/10.3390/jcm13133816
Tiekwe JE, Ongbayokolak N, Dabou S, Natheu CK, Goka MS, Nya Biapa PC, Annesi-Maesano I, Telefo PB. Respiratory Symptoms and Changes of Oxidative Stress Markers among Motorbike Drivers Chronically Exposed to Fine and Ultrafine Air Particles: A Case Study of Douala and Dschang, Cameroon. Journal of Clinical Medicine. 2024; 13(13):3816. https://doi.org/10.3390/jcm13133816
Chicago/Turabian StyleTiekwe, Joseph Eloge, Nadine Ongbayokolak, Solange Dabou, Cerge Kamhoua Natheu, Marie Stéphanie Goka, Prosper Cabral Nya Biapa, Isabella Annesi-Maesano, and Phélix Bruno Telefo. 2024. "Respiratory Symptoms and Changes of Oxidative Stress Markers among Motorbike Drivers Chronically Exposed to Fine and Ultrafine Air Particles: A Case Study of Douala and Dschang, Cameroon" Journal of Clinical Medicine 13, no. 13: 3816. https://doi.org/10.3390/jcm13133816
APA StyleTiekwe, J. E., Ongbayokolak, N., Dabou, S., Natheu, C. K., Goka, M. S., Nya Biapa, P. C., Annesi-Maesano, I., & Telefo, P. B. (2024). Respiratory Symptoms and Changes of Oxidative Stress Markers among Motorbike Drivers Chronically Exposed to Fine and Ultrafine Air Particles: A Case Study of Douala and Dschang, Cameroon. Journal of Clinical Medicine, 13(13), 3816. https://doi.org/10.3390/jcm13133816