Time to Total Knee Arthroplasty (TKA) Post Intra-Articular Injection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient and Group Selection
2.2. Outcome Variables
2.3. Demographic Variables
2.4. Data Analyses
3. Results
3.1. Total Population
3.2. Subsequent TKA Population (Case Match 4:1 CS vs. HA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hunter, D.J.; March, L.; Chew, M. Osteoarthritis in 2020 and beyond: A Lancet Commission. Lancet 2020, 396, 1711–1712. [Google Scholar] [CrossRef] [PubMed]
- Berkani, S.; Courties, A.; Eymard, F.; Latourte, A.; Richette, P.; Berenbaum, F.; Sellam, J.; Louati, K. Time to Total Knee Arthroplasty after Intra-Articular Hyaluronic Acid or Platelet-Rich Plasma Injections: A Systematic Literature Review and Meta-Analysis. J. Clin. Med. 2022, 11, 3985. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.C.; Przkora, R.; Cruz-Almeida, Y. Knee osteoarthritis: Pathophysiology and current treatment modalities. J. Pain Res. 2018, 11, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Levin, G.; Nikolov, N.P.; Abugov, R.; Rothwell, R. Concept End Points Informing Design Considerations for Confirmatory Clinical Trials in Osteoarthritis. Arthritis Care Res. 2022, 74, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Concoff, A.; Niazi, F.; Farrokhyar, F.; Alyass, A.; Rosen, J.; Nicholls, M. Delay to TKA and Costs Associated with Knee Osteoarthritis Care Using Intra-Articular Hyaluronic Acid: Analysis of an Administrative Database. Clinical Medicine Insights. Arthritis Musculoskelet. Disord. 2021, 14, 1179544121994092. [Google Scholar] [CrossRef] [PubMed]
- Jüni, P.; Hari, R.; Rutjes, A.W.; Fischer, R.; Silletta, M.G.; Reichenbach, S.; da Costa, B.R.; da Costa, B.R. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst. Rev. 2015, 2015, CD005328. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Bhandari, M. Cochrane in CORR®: Intra-articular Corticosteroid For Knee Osteoarthritis. Clin. Orthop. Relat. Res. 2018, 476, 1391–1392. [Google Scholar] [CrossRef] [PubMed]
- McAlindon, T.E.; LaValley, M.P.; Harvey, W.F.; Price, L.L.; Driban, J.B.; Zhang, M.; Ward, R.J. Effect of Intra-articular Triamcinolone vs Saline on Knee Cartilage Volume and Pain in Patients With Knee Osteoarthritis: A Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2017, 317, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Runa, M.; Lau, E.; Altman, R.D. Cost-of-illness of knee osteoarthritis: Potential cost savings by not undergoing arthroplasty within the first 2 years. Clin. Outcomes Res. CEOR 2019, 11, 245–255. [Google Scholar] [CrossRef]
- American Academy of Orthopaedic Surgeons. Management of Osteoarthritis of the Knee (Non-Arthroplasty) Evidence-Based Clinical Practice Guideline. 2021. Available online: https://www.aaos.org/globalassets/quality-and-practice-resources/osteoarthritis-of-the-knee/oak3cpg.pdf (accessed on 8 January 2024).
- Berlinberg, E.J.; Swindell, H.; Patel, H.H.; Zabat, M.; Forlenza, E.M.; Cancienne, J.; Forsythe, B. The Epidemiology of Platelet-Rich Plasma Injections From 2010 to 2020 in a Large US Commercial Insurance Claims Database: A Recent Update. J. Am. Acad. Orthop. Surg. 2023, 31, e135–e147. [Google Scholar] [CrossRef]
- Li, A.K.; Stavrakis, A.I.; Photopoulos, C. Platelet-rich plasma use for hip and knee osteoarthritis in the United States. The Knee 2022, 39, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Magruder, M.L.; Caughey, S.; Gordon, A.M.; Capotosto, B.S.S.; Rodeo, S.A. Trends in utilization, demographics, and costs of platelet-rich plasma injections: A ten-year nationwide investigation. Physician Sports Med. 2023, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Werner, B.C.; Cancienne, J.M.; Browning, R.; Verma, N.N.; Cole, B.J. An Analysis of Current Treatment Trends in Platelet-Rich Plasma Therapy in the Medicare Database. Orthop. J. Sports Med. 2020, 8, 2325967119900811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Fabricant, P.D.; Ishmael, C.R.; Wang, J.C.; Petrigliano, F.A.; Jones, K.J. Utilization of Platelet-Rich Plasma for Musculoskeletal Injuries: An Analysis of Current Treatment Trends in the United States. Orthop. J. Sports Med. 2016, 4, 2325967116676241. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Paterson, K.L.; Metcalf, B.R.; Duong, V.; Eyles, J.; Kasza, J.; Wang, Y.; Cicuttini, F.; Buchbinder, R.; Forbes, A.; et al. Effect of Intra-articular Platelet-Rich Plasma vs Placebo Injection on Pain and Medial Tibial Cartilage Volume in Patients With Knee Osteoarthritis: The RESTORE Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2021, 326, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- Costa LA, V.; Lenza, M.; Irrgang, J.J.; Fu, F.H.; Ferretti, M. How Does Platelet-Rich Plasma Compare Clinically to Other Therapies in the Treatment of Knee Osteoarthritis? A Systematic Review and Meta-analysis. Am. J. Sports Med. 2023, 51, 1074–1086. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, A.; Sari, A.; Durmus, B. Platelet-Rich Plasma vs Prolotherapy in the Management Of Knee Osteoarthritis: Randomized Placebo-Controlled Trial. Spor. Hekimliği. Dergisi. 2016, 51, 34–43. [Google Scholar] [CrossRef]
- Murray, I.R.; Chahla, J.; Frank, R.M.; Piuzzi, N.S.; Mandelbaum, B.R.; Dragoo, J.L.; Members of the Biologics Association. Rogue stem cell clinics. Bone Jt. J. 2020, 102-B, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Piuzzi, N.S.; Emara, A.; Chahla, J.; Mandelbaum, B.R. Ethical and Practical Considerations for Integrating Cellular (“Stem Cell”) Therapy into Clinical Practice. Curr. Rev. Musculoskelet. Med. 2020, 13, 525–529. [Google Scholar] [CrossRef]
- Smith, C.; Crowley, A.; Munsie, M.; DeMartino, E.S.; Staff, N.P.; Shapiro, S.; Master, Z. Academic physician specialists’ views toward the unproven stem cell intervention industry: Areas of common ground and divergence. Cytotherapy 2021, 23, 348–356. [Google Scholar] [CrossRef]
- Vilchez-Cavazos, F.; Blázquez-Saldaña, J.; Gamboa-Alonso, A.A.; Peña-Martínez, V.M.; Acosta-Olivo, C.A.; Sánchez-García, A.; Simental-Mendía, M. The use of platelet-rich plasma in studies with early knee osteoarthritis versus advanced stages of the disease: A systematic review and meta-analysis of 31 randomized clinical trials. Arch. Orthop. Trauma Surg. 2023, 143, 1393–1408. [Google Scholar] [CrossRef] [PubMed]
- Master, Z.; Matthews KR, W.; Abou-El-Enein, M. Unproven stem cell interventions: A global public health problem requiring global deliberation. Stem Cell Rep. 2021, 16, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Jorquera, C.; Sánchez, P.; Beitia, M.; García-Cano, B.; Guadilla, J.; Delgado, D. Platelet-rich plasma injections delay the need for knee arthroplasty: A retrospective study and survival analysis. Int. Orthop. 2021, 45, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Lim, S.; Steen, R.G.; Dasa, V. Hyaluronic acid injections are associated with delay of total knee replacement surgery in patients with knee osteoarthritis: Evidence from a large US health claims database. PLoS ONE 2015, 10, e0145776. [Google Scholar] [CrossRef]
- Ong, K.L.; Anderson, A.F.; Niazi, F.; Fierlinger, A.L.; Kurtz, S.M.; Altman, R.D. Hyaluronic acid injections in medicare knee osteoarthritis patients are associated with longer time to knee arthroplasty. J. Arthroplast. 2016, 31, 1667–1673. [Google Scholar] [CrossRef]
- Bedard, N.A.; Dowdle, S.B.; Anthony, C.A.; DeMik, D.E.; McHugh, M.A.; Bozic, K.J.; Callaghan, J.J. The AAHKS Clinical Research Award: What Are the Costs of Knee Osteoarthritis in the Year Prior to Total Knee Arthroplasty? J. Arthroplast. 2017, 32, S8–S10.e1. [Google Scholar] [CrossRef]
Variable | IA-PRP | IA-CS | IA-HA | p-Value * |
---|---|---|---|---|
Total N | 3240 | 1,382,572 | 164,000 | - |
Subsequent TKA N (%) | 71 (2.2) | 81,271 (5.9) | 13,044 (8.0) | - |
Age Mean ± SD | 63.0 ± 10.0 | 64.8 ± 11.5 | 64.8 ± 11.9 | 0.007932 |
Age Category N (%) | ||||
18 to 19 | 18 (0.6) | 210 (0.02) | 67 (0.04) | <0.0001 |
20 to 24 | 40 (1.2) | 1199 (0.1) | 350 (0.2) | <0.0001 |
25 to 29 | 31 (1.0) | 2950 (0.2) | 611 (0.4) | <0.0001 |
30 to 34 | 54 (1.7) | 7989 (0.6) | 1381 (0.8) | <0.0001 |
35 to 39 | 116 (3.6) | 18,805(1.4) | 2829 (1.7) | <0.0001 |
40 to 44 | 174 (5.4) | 39,006 (2.8) | 4954(3.0) | <0.0001 |
45 to 49 | 275 (8.5) | 71,724 (5.2) | 8603 (5.2) | 1.0 |
50 to 54 | 376 (11.6) | 121,847 (8.8) | 13,595 (8.3) | <0.0001 |
55 to 59 | 505 (15.6) | 172,608 (12.5) | 18,254 (11.1) | <0.0001 |
60 to 64 | 535 (16.5) | 208,619 (15.1) | 21,615 (13.2) | <0.0001 |
65 to 69 | 415 (12.8) | 203,381 (14.7) | 26,138 (15.9) | <0.0001 |
70 to 74 | 344 (10.6) | 188,465 (13.6) | 24,692 (15.1) | <0.0001 |
75 to 79 | 256 (7.9) | 223,009 (16.1) | 28,323 (17.3) | <0.0001 |
80 to 84 | 101 (3.1) | 122,760 (8.9) | 12,588 (7.7) | <0.0001 |
Male Gender N (%) | 1485 (45.8) | 500,034 (36.2) | 62,669 (38.2) | <0.0001 |
Region N (%) | ||||
Midwest | 674 (20.8) | 400,644 (30.0) | 42,907 (26.2) | <0.0001 |
Northeast | 682 (21.0) | 294,311 (21.3) | 40,686 (24.8) | <0.0001 |
South | 1508 (46.5) | 513,096 (37.1) | 57,523 (35.1) | <0.0001 |
West | 363 (11.2) | 166,619 (12.1) | 22,065 (13.5) | <0.0001 |
Unknown | 13 (0.4) | 7902 (0.6) | 819 (0.5) | <0.0001 |
Service Location N (%) | ||||
Clinic | 0 (0) | 12,959 (0.9) | 499 (0.3) | <0.0001 |
Office | 1213 (37.4) | 1,213,283 (87.8) | 145,371 (88.6) | <0.0001 |
Inpatient | 495 (15.3) | 165 (0.01) | 0 (0) | 0.0001 |
Other | 0 (0) | 1281 (0.09) | 45 (0.03) | <0.0001 |
Outpatient | 1519 (46.9) | 148,276 (10.7) | 17,024 (10.4) | <0.0001 |
Comorbidities N (%) | ||||
Alcohol Use? | 195 (6.0) | 85,494 (6.2) | 8202 (5.0) | <0.0001 |
Cancer | 441 (13.6) | 251,909 (18.2) | 31,248 (19.1) | <0.0001 |
Coronary Artery Disease | 725 (22.4) | 414,040 (29.9) | 48,522 (29.6) | 0.002596 |
Chronic Kidney Disease | 383 (11.8) | 273,475 (19.8) | 29,931 (18.3) | <0.0001 |
COPD | 812 (25.1) | 425,993 (30.8) | 48,574 (29.6) | <0.0001 |
Congestive Heart Failure | 134 (4.1) | 98,897 (7.2) | 11,193 (6.8) | <0.0001 |
Depression | 1220 (37.7) | 570,067 (41.2) | 60,753 (37.0) | <0.0001 |
Diabetes | 1074 (33.1) | 596,587 (43.2) | 70,136 (42.8) | 0.002964 |
Diabetes Complicated | 519 (16.0) | 330,672 (23.9) | 37,989 (23.2) | <0.0001 |
Diabetes Uncomplicated | 880 (27.2) | 486,913 (35.2) | 57,285 (34.9) | 0.02107 |
Hypertension | 2056 (63.5) | 1,097,128 (79.4) | 125,741 (76.7) | <0.0001 |
Hypothyroidism | 898 (27.7) | 418,494 (30.3) | 50,314 (30.7) | 0.0006423 |
Liver Disease | 544 (16.8) | 263,193 (19.0) | 29,546 (18.0) | <0.0001 |
Obesity | 1488 (45.9) | 693,586 (51.2) | 76,982 (46.9) | <0.0001 |
Renal Disease | 395 (12.2) | 280,691 (20.3) | 30,801 (18.8) | <0.0001 |
Renal Failure | 395 (12.2) | 280,409 (20.3) | 30,766 (18.8) | <0.0001 |
Rheumatoid Arthritis | 119 (3.7) | 80,601 (5.8) | 7651 (4.7) | <0.0001 |
Tobacco Use | 1081 (33.4) | 524,869 (38.0) | 55,114 (33.6) | <0.0001 |
Variable | IA-CS (4:1 Case Match) | IA-HA (4:1 Case Match) |
---|---|---|
Total N | 45,124 | 11,492 |
Time to TKA Mean ± SD | 370.0 ± 348.9 | 377.8 ± 349.2 |
Male Gender N (%) | 16,645 (36.9) | 4273 (37.2) |
Age Mean ± SD | 68.0 ± 8.6 | 67.9 ± 8.7 |
Comorbidities | ||
Alcohol Abuse | 954 (2.1) | 312 (2.7) |
Cancer | 8668 (19.2) | 2283 (19.9) |
Coronary Artery Disease | 14,106 (31.3) | 3583 (31.2) |
Chronic Kidney Disease | 8425 (18.7) | 2099 (18.3) |
COPD | 13,246 (29.4) | 3407 (29.6) |
Congestive Heart Failure | 2685 (6.0) | 674 (5.9) |
Depression | 17,663 (39.1) | 4412 (38.4) |
Diabetes | 19,226 (42.6) | 4917 (42.8) |
Diabetes Complicated | 9829 (21.8) | 2506 (21.8) |
Diabetes Uncomplicated | 15,316 (33.9) | 3949 (34.4) |
Hypertension | 37,945 (84.1) | 9527 (82.9) |
Hypothyroidism | 14,172 (31.4) | 3697 (32.2) |
Liver Disease | 7425 (16.5) | 1922 (16.7) |
Obesity | 24,241 (53.7) | 6171 (53.7) |
Renal Disease | 9335 (20.7) | 2157 (18.8) |
Renal Failure | 9337 (20.7) | 2155 (18.8) |
Rheumatoid Arthritis | 2646 (5.9) | 579 (5.0) |
Tobacco Use | 17,027 (37.7) | 4383 (38.1) |
IA-CS (95% CI) N = 45,124 | IA-HA (95% CI) N = 11,492 | |
---|---|---|
6 months | 60.4 (59.9–60.8) | 61.6 (60.7–62.5) |
1 year | 35.7 (35.3–36.2) | 35.1 (34.2–35.9) |
2 year | 14.3 (14.0–14.7) | 14.8 (14.2–15.5) |
3 year | 5.6 (5.4–5.9) | 5.8 (5.4–6.3) |
4 year | 1.7 (1.6–1.8) | 1.9 (1.7–2.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gesheff, M.G.; Scalzitti, D.A.; Bains, S.S.; Dubin, J.; Delanois, R.E. Time to Total Knee Arthroplasty (TKA) Post Intra-Articular Injection. J. Clin. Med. 2024, 13, 3764. https://doi.org/10.3390/jcm13133764
Gesheff MG, Scalzitti DA, Bains SS, Dubin J, Delanois RE. Time to Total Knee Arthroplasty (TKA) Post Intra-Articular Injection. Journal of Clinical Medicine. 2024; 13(13):3764. https://doi.org/10.3390/jcm13133764
Chicago/Turabian StyleGesheff, Martin G., David A. Scalzitti, Sandeep S. Bains, Jeremy Dubin, and Ronald E. Delanois. 2024. "Time to Total Knee Arthroplasty (TKA) Post Intra-Articular Injection" Journal of Clinical Medicine 13, no. 13: 3764. https://doi.org/10.3390/jcm13133764
APA StyleGesheff, M. G., Scalzitti, D. A., Bains, S. S., Dubin, J., & Delanois, R. E. (2024). Time to Total Knee Arthroplasty (TKA) Post Intra-Articular Injection. Journal of Clinical Medicine, 13(13), 3764. https://doi.org/10.3390/jcm13133764