Current Status of Ovarian and Endometrial Biomarkers in Predicting ART Outcomes
Abstract
:1. Introduction
Search Strategy
2. Ovarian Biomarkers
2.1. Conventional Biomarkers of Ovarian Function
2.1.1. Anti-Mullerian Hormone (AMH)
2.1.2. Follicle Stimulating Hormone (FSH)
2.2. Possible Emerging Ovarian Biomarkers for Future Clinical Use
2.2.1. Growth Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15)
2.2.2. Connexin 43
2.2.3. Granulosa Cell (GC) Gene Expression Profiles
2.2.4. Other Potential Ovarian Biomarkers (Caspases, CA-125, BCL-6, PTEN)
2.3. Future Directives
3. Endometrial Biomarkers
3.1. Endometrial Receptivity Array (ERA)
3.2. Other Endometrial Genetic Profiles
3.3. B-Cell Lymphoma 6 (BCL6)
3.4. Immune Markers
3.5. Other Potential Endometrial Biomarkers (P450, Integrins, Prostaglandins, VEG-F, PYB)
3.6. Future Directives
4. Conclusions
Funding
Conflicts of Interest
References
- Seifer, D.B.; MacLaughlin, D.T.; Christian, B.P.; Feng, B.; Shelden, R.M. Early follicular serum müllerian-inhibiting substance levels are associated with ovarian response during assisted reproductive technology cycles. Fertil. Steril. 2002, 77, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Muttukrishna, S.; Suharjono, H.; McGarrigle, H.; Sathanandan, M. Inhibin B and anti-Mullerian hormone: Markers of ovarian response in IVF/ICSI patients? BJOG Int. J. Obstet. Gynaecol. 2004, 111, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Lekamge, D.N.; Barry, M.; Kolo, M.; Lane, M.; Gilchrist, R.B.; Tremellen, K.P. Anti-Müllerian hormone as a predictor of IVF outcome. Reprod. Biomed. Online 2007, 14, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Broer, S.L.; Mol, B.W.; Hendriks, D.; Broekmans, F.J. The role of antimullerian hormone in prediction of outcome after IVF: Comparison with the antral follicle count. Fertil. Steril. 2009, 91, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Majumder, K.; Gelbaya, T.A.; Laing, I.; Nardo, L.G. The use of anti-Müllerian hormone and antral follicle count to predict the potential of oocytes and embryos. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 150, 166–170. [Google Scholar] [CrossRef] [PubMed]
- La Marca, A.; Sighinolfi, G.; Radi, D.; Argento, C.; Baraldi, E.; Artenisio, A.C.; Stabile, G.; Volpe, A. Anti-Müllerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum. Reprod. Update 2010, 16, 113–130. [Google Scholar] [CrossRef]
- Tal, R.; Tal, O.; Seifer, B.J.; Seifer, D.B. Antimüllerian hormone as predictor of implantation and clinical pregnancy after assisted conception: A systematic review and meta-analysis. Fertil. Steril. 2015, 103, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Yates, A.P.; Rustamov, O.; Roberts, S.A.; Lim, H.Y.; Pemberton, P.W.; Smith, A.; Nardo, L.G. Anti-Mullerian hormone-tailored stimulation protocols improve outcomes whilst reducing adverse effects and costs of IVF. Hum. Reprod. 2011, 26, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Vural, B.; Cakiroglu, Y.; Vural, F.; Filiz, S. Hormonal and functional biomarkers in ovarian response. Arch. Gynecol. Obstet. 2014, 289, 1355–1361. [Google Scholar] [CrossRef]
- Seifer, D.B.; Tal, O.; Wantman, E.; Edul, P.; Baker, V.L. Prognostic indicators of assisted reproduction technology outcomes of cycles with ultralow serum antimüllerian hormone: A multivariate analysis of over 5000 autologous cycles from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System database for 2012–2013. Fertil. Steril. 2016, 105, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Goswami, M.; Nikolaou, D. Is AMH level, independent of age, a predictor of live birth in IVF? J. Hum. Reprod. Sci. 2017, 10, 24–30. [Google Scholar] [PubMed]
- Tal, R.; Seifer, D.B.; Tal, R.; Granger, E.; Wantman, E.; Tal, O. AMH Highly Correlates with Cumulative Live Birth Rate in Women with Diminished Ovarian Reserve Independent of Age. J. Clin. Endocrinol. Metab. 2021, 106, 2754–2766. [Google Scholar] [CrossRef] [PubMed]
- Seifer, D.B.; Baker, V.L.; Leader, B. Age-specific serum anti-Müllerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil. Steril. 2011, 95, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, F.R.; Mansournia, M.A.; Solaymani-Dodaran, M.; Azizi, F. Age-specific serum anti-Müllerian hormone levels: Estimates from a large population-based sample. Climacteric 2014, 17, 591–597. [Google Scholar] [CrossRef]
- Shebl, O.; Ebner, T.; Sir, A.; Schreier-Lechner, E.; Mayer, R.B.; Tews, G.; Sommergruber, M. Age-related distribution of basal serum AMH level in women of reproductive age and a presumably healthy cohort. Fertil. Steril. 2011, 95, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Wiweko, B.; Prawesti, D.M.; Hestiantoro, A.; Sumapraja, K.; Natadisastra, M.; Baziad, A. Chronological age vs. biological age: An age-related normogram for antral follicle count, FSH and anti-Mullerian hormone. J. Assist. Reprod. Genet. 2013, 30, 1563–1567. [Google Scholar] [PubMed]
- Toner, J.P.; Seifer, D.B. Why we may abandon basal follicle-stimulating hormone testing: A sea change in determining ovarian reserve using antimüllerian hormone. Fertil. Steril. 2013, 99, 1825–1830. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.T.; Toner, J.P.; Muasher, S.J.; Oehninger, S.; Robinson, S.; Rosenwaks, Z. Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil. Steril. 1989, 51, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.S.; Nisker, J.A.; Tummon, I.S.; Daniel, S.A.; Auckland, J.L.; Feyles, V. Future in vitro fertilization pregnancy potential of women with variably elevated day 3 follicle-stimulating hormone levels. Fertil. Steril. 1996, 65, 1238–1240. [Google Scholar] [CrossRef]
- Ashrafi, M.; Madani, T.; Tehranian, A.S.; Malekzadeh, F. Follicle stimulating hormone as a predictor of ovarian response in women undergoing controlled ovarian hyperstimulation for IVF. Int. J. Gynecol. Obstet. 2005, 91, 53–57. [Google Scholar] [CrossRef]
- Jun, J.K.; Yoon, J.S.; Ku, S.Y.; Choi, Y.M.; Hwang, K.R.; Park, S.Y.; Lee, G.H.; Lee, W.D.; Kim, S.H.; Kim, J.G.; et al. Follicle-stimulating hormone receptor gene polymorphism and ovarian responses to controlled ovarian hyperstimulation for IVF-ET. J. Hum. Genet. 2006, 51, 665–670. [Google Scholar] [CrossRef]
- Loutradis, D.; Patsoula, E.; Minas, V.; Koussidis, G.A.; Antsaklis, A.; Michalas, S.; Makrigiannakis, A. FSH receptor gene polymorphisms have a role for different ovarian response to stimulation in patients entering IVF/ICSI-ET programs. J. Assist. Reprod. Genet. 2006, 23, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Baldini, G.M.; Catino, A.; Palini, S.; Sciorio, R.; Ferri, D.; Vinciguerra, M.; Baldini, D. The Polymorphism Asn680Ser on the FSH Receptor and Abnormal Ovarian Response in Patients with Normal Values of AMH and AFC. Int. J. Mol. Sci. 2023, 24, 1080. [Google Scholar] [CrossRef] [PubMed]
- Kushnir, V.A.; Safdie, M.; Darmon, S.K.; Albertini, D.F.; Barad, D.H.; Gleicher, N. Age-specific IVF outcomes in infertile women with baseline FSH levels≥ 20 mIU/mL. Reprod. Sci. 2018, 25, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Bosch, E.; Alviggi, C.; Lispi, M.; Conforti, A.; Hanyaloglu, A.C.; Chuderland, D.; Simoni, M.; Raine-Fenning, N.; Crépieux, P.; Kol, S.; et al. Reduced FSH and LH action: Implications for medically assisted reproduction. Hum. Reprod. 2021, 36, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, R.Q.; Ou, S.B.; Zhang, N.F.; Ren, L.; Wei, L.N.; Zhang, Q.X.; Yang, D.Z. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans. Reprod. Biol. Endocrinol. 2014, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Riepsamen, A.H.; Chan, K.; Lien, S.; Sweeten, P.; Donoghoe, M.W.; Walker, G.; Fraison, E.H.; Stocker, W.A.; Walton, K.L.; Harrison, C.A.; et al. Serum concentrations of oocyte-secreted factors BMP15 and GDF9 during IVF and in women with reproductive pathologies. Endocrinology 2019, 160, 2298–2313. [Google Scholar] [CrossRef] [PubMed]
- Riepsamen, A.H.; Donoghoe, M.W.; Baerwald, A.; Pankhurst, M.W.; Lien, S.; Chong, Y.H.; Robertson, D.M.; Ledger, W.L.; Gilchrist, R.B. Exploratory analysis of serum concentrations of oocyte biomarkers growth differentiation factor 9 and bone morphogenetic protein 15 in ovulatory women across the menstrual cycle. Fertil. Steril. 2021, 116, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Riepsamen, A.H.; Donoghoe, M.W.; Indran, I.R.; Hechtman, L.; Robertson, D.M.; Gilchrist, R.B.; Ledger, W.L.; Yong, E.L. Serum GDF9 and BMP15 as potential markers of ovarian function in women with and without polycystic ovary syndrome. Clin. Endocrinol. 2023, 98, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Shamsa, A.; Gilchrist, R.B.; Robertson, D.M.; Rodgers, R.J.; Donoghoe, M.W.; Ledger, W.L.; Abbott, J.A.; Riepsamen, A.H. Oocyte-Secreted Serum Biomarkers GDF9 and BMP15 in Women with Endometriosis. Reprod. Sci. 2023, 30, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.H.; Chen, F.R.; Zhang, Y.N.; Chen, S.Q.; Long, F.Y.; Wei, J.J.; Zhang, K.; Zeng, J.Z.; Zhu, Q.Y.; Li-Ling, J.; et al. Decreased GDF9 and BMP15 in follicle fluid and granulosa cells and outcomes of IVF-ET among young patients with low prognosis. J. Assist. Reprod. Genet. 2023, 40, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.Y.; Lan, K.C.; Huang, K.E.; Huang, F.J.; Kung, F.T.; Chang, S.Y. Significance of mRNA levels of connexin37, connexin43, and connexin45 in luteinized granulosa cells of controlled hyperstimulated follicles. Fertil. Steril. 2003, 80, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, J.; Yanaihara, A.; Iwasaki, S.; Mitsukawa, K.; Negishi, M.; Okai, T. Reduction of connexin 43 in human cumulus cells yields good embryo competence during ICSI. J. Assist. Reprod. Genet. 2007, 24, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Tong, D.; El-Gehani, F.; Tekpetey, F.R.; Kidder, G.M. Connexin expression and gap junctional coupling in human cumulus cells: Contribution to embryo quality. J. Cell. Mol. Med. 2009, 13, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Best, M.W.; Wu, J.; Pauli, S.A.; Kane, M.A.; Pierzchalski, K.; Session, D.R.; Woods, D.C.; Shang, W.; Taylor, R.N.; Sidell, N. A role for retinoids in human oocyte fertilization: Regulation of connexin 43 by retinoic acid in cumulus granulosa cells. MHR Basic Sci. Reprod. Med. 2015, 21, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Sidell, N.; Rajakumar, A. Retinoic Acid Action in Cumulus Cells: Implications for Oocyte Development and In Vitro Fertilization. Int. J. Mol. Sci. 2024, 25, 1709. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, L.J.; Pangas, S.A.; Carson, S.A.; Kovanci, E.; Cisneros, P.; Buster, J.E.; Amato, P.; Matzuk, M.M. Human cumulus granulosa cell gene expression: A predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 2004, 19, 2869–2874. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, K.M.; Feil, D.K.; Dunning, K.R.; Lane, M.; Russell, D.L. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertil. Steril. 2011, 96, 47–52. [Google Scholar] [CrossRef]
- Li, S.H.; Lin, M.H.; Hwu, Y.M.; Lu, C.H.; Yeh, L.Y.; Chen, Y.J.; Lee, R.K. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod. Biol. Endocrinol. 2015, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Papler, T.B.; Bokal, E.V.; Lovrecic, L.; Kopitar, A.N.; Maver, A. No specific gene expression signature in human granulosa and cumulus cells for prediction of oocyte fertilisation and embryo implantation. PLoS ONE 2015, 10, e0115865. [Google Scholar]
- Massoud, G.; Spann, M.; Vaught, K.C.; Das, S.; Dow, M.; Cochran, R.; Baker, V.; Segars, J.; Singh, B. Biomarkers Assessing the Role of Cumulus Cells on IVF Outcomes: A Systematic Review. J. Assist. Reprod. Genet. 2024, 41, 253–275. [Google Scholar] [CrossRef] [PubMed]
- Salehi, E.; Aflatoonian, R.; Moeini, A.; Yamini, N.; Asadi, E.; Khosravizadeh, Z.; Tarzjani, M.D.; Harat, Z.N.; Abolhassani, F. Apoptotic biomarkers in cumulus cells in relation to embryo quality in polycystic ovary syndrome. Arch. Gynecol. Obstet. 2017, 296, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Lobach, V.N.; Casalechi, M.; Dela Cruz, C.; Pereira, M.T.; Del Puerto, H.L.; Reis, F.M. Caspase-3 gene expression in human luteinized granulosa cells is inversely correlated with the number of oocytes retrieved after controlled ovarian stimulation. Hum. Fertil. 2019, 22, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.A.; Deaton, J.L.; Pittaway, D.E. Evaluation of serum CA 125 concentrations as predictors of pregnancy with human in vitro fertilization. Fertil. Steril. 1996, 65, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Baalbergen, A.; Van Der Weiden, R.M.; Janssen, J. CA-125 Levels are Related to the Likelihood of Pregnancy After In Vitro Fertilization and Embryo Transfer. Am. J. Reprod. Immunol. 2000, 43, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Tavmergen, E.; Sendag, F.; Goker, E.N.; Levi, R. Value of serum CA-125 concentrations as predictors of pregnancy in assisted reproduction cycles. Hum. Reprod. 2001, 16, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Brandenberger, A.W.; Bersinger, N.A.; Huber, P.R.; Berger, E.; Glanzmann, P.; Birkhaeuser, M.H. CA-125 concentrations in the serum and pregnancy outcome in IVF cycles. J. Assist. Reprod. Genet. 1998, 15, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Vujisić, S.; Kupešić, S.; Mihaljević, D.; Akšamija, A.; Kurjak, A. Evaluation of serum CA 125 concentration before and during hormonal induced cycles as predictor of IVF/ET outcome. Am. J. Reprod. Immunol. 2002, 48, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Urbancsek, J.; Hauzman, E.E.; Lagarde, A.R.; Osztovits, J.; Papp, Z.; Strowitzki, T. Serum CA-125 levels in the second week after embryo transfer predict clinical pregnancy. Fertil. Steril. 2005, 83, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, M.A.; Kordus, R.J.; Likes, C.; Miller, P.B.; Von Hofe, J.; LaVoie, H.; Green, L.J. Ovarian Inflammation: BCL-6 Expression Within the Endometrium in Comparison with Established Ovarian Inflammation Markers. Fertil. Steril. 2021, 116, e313. [Google Scholar] [CrossRef]
- Yao, J.; Huang, R.; Li, M.; Jiang, Y.; Wu, P.; Li, Y.; Peng, W.; Hua, C.; Huang, Y.; You, H.; et al. PTEN expression in human granulosa cells is associated with ovarian responses clinical outcomes in IVF. Reprod. Sci. 2021, 28, 1910–1921. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Li, M.; Lin, L.; Li, Y.; Zhuang, J.; Huang, Y.; Peng, W.; Lian, J.; Huang, R.; Yang, X. PTEN expression in human cumulus cells is associated with embryo development competence. Zygote 2022, 30, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gimeno, P.; Horcajadas, J.A.; Martínez-Conejero, J.A.; Esteban, F.J.; Alamá, P.; Pellicer, A.; Simón, C. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil. Steril. 2011, 95, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Alonso, M.; Blesa, D.; Díaz-Gimeno, P.; Gómez, E.; Fernández-Sánchez, M.; Carranza, F.; Carrera, J.; Vilella, F.; Pellicer, A.; Simón, C. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil. Steril. 2013, 100, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, N. Endometrial receptivity array: Clinical application. J. Hum. Reprod. Sci. 2015, 8, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Koizumi, M.; Doshida, M.; Toya, M.; Sagara, E.; Oka, N.; Nakajo, Y.; Aono, N.; Igarashi, H.; Kyono, K. Efficacy of the endometrial receptivity array for repeated implantation failure in Japan: A retrospective, two-centers study. Reprod. Med. Biol. 2017, 16, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gimeno, P.; Ruiz-Alonso, M.; Sebastian-Leon, P.; Pellicer, A.; Valbuena, D.; Simón, C. Window of implantation transcriptomic stratification reveals different endometrial subsignatures associated with live birth and biochemical pregnancy. Fertil. Steril. 2017, 108, 703–710.e3. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.R.; Devesa, M.; Martínez, F.; Garcia-Martinez, S.; Rodriguez, I.; Polyzos, N.P.; Coroleu, B. What is the clinical impact of the endometrial receptivity array in PGT-A and oocyte donation cycles? J. Assist. Reprod. Genet. 2019, 36, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.A.; Patel, A.J.; Banker, J.M.; Shah, S.I.; Banker, M.R. Personalized embryo transfer helps in improving in vitro fertilization/ICSI outcomes in patients with recurrent implantation failure. J. Hum. Reprod. Sci. 2019, 12, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.M.; Ye, X.Y.; Colgan, T.J.; Greenblatt, E.M.; Chan, C. Comparing endometrial receptivity array to histologic dating of the endometrium in women with a history of implantation failure. Syst. Biol. Reprod. Med. 2020, 66, 347–354. [Google Scholar] [CrossRef]
- Doyle, N.; Jahandideh, S.; Hill, M.J.; Widra, E.A.; Levy, M.; Devine, K. Effect of timing by endometrial receptivity testing vs. standard timing of frozen embryo transfer on live birth in patients undergoing in vitro fertilization: A randomized clinical trial. JAMA 2022, 328, 2117–2125. [Google Scholar] [CrossRef] [PubMed]
- Takeshige, Y.; Jwa, S.C.; Hirota, Y.; Osuga, Y.; Kuramoto, T.; Mio, Y.; Furui, K.; Kinutani, M.; Shiotani, M.; Asada, Y.; et al. Clinical outcomes of personalized blastocyst embryo transfer after endometrial receptivity analysis: A multicenter, retrospective cohort study. Reprod. Med. Biol. 2023, 22, e12550. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, X.; Wang, M.; Zhao, H.; Bao, H. The clinical efficacy of personalized embryo transfer guided by the endometrial receptivity array/analysis on IVF/ICSI outcomes: A systematic review and meta-analysis. Front. Physiol. 2022, 13, 841437. [Google Scholar] [CrossRef] [PubMed]
- Arian, S.E.; Hessami, K.; Khatibi, A.; To, A.K.; Shamshirsaz, A.A.; Gibbons, W. Endometrial receptivity array before frozen embryo transfer cycles: A systematic review and meta-analysis. Fertil. Steril. 2023, 119, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Zolfaroli, I.; Monzo Miralles, A.; Hidalgo-Mora, J.J.; Marcos Puig, B.; Rubio Rubio, J.M. Impact of Endometrial Receptivity Analysis on Pregnancy Outcomes in Patients Undergoing Embryo Transfer: A Systematic Review and Meta-Analysis. J. Assist. Reprod. Genet. 2023, 40, 985–994. [Google Scholar] [CrossRef] [PubMed]
- ESHRE Working Group on Recurrent Implantation Failure; Cimadomo, D.; de Los Santos, M.J.; Griesinger, G.; Lainas, G.; Le Clef, N.; McLernon, D.J.; Montjean, D.; Toth, B.; Vermeulen, N.; et al. ESHRE good practice recommendations on recurrent implantation failure. Hum. Reprod. Open 2023, 2023, hoad023. [Google Scholar] [CrossRef] [PubMed]
- Kao, L.C.; Tulac, S.; Lobo, S.A.; Imani, B.; Yang, J.P.; Germeyer, A.; Osteen, K.; Taylor, R.N.; Lessey, B.A.; Giudice, L.C. Global gene profiling in human endometrium during the window of implantation. Endocrinology 2002, 143, 2119–2138. [Google Scholar] [CrossRef] [PubMed]
- Riesewijk, A.; Martín, J.; van Os, R.; Horcajadas, J.A.; Polman, J.; Pellicer, A.; Mosselman, S.; Simón, C. Gene expression profiling of human endometrial receptivity on days LH+ 2 versus LH+ 7 by microarray technology. Mol. Hum. Reprod. 2003, 9, 253–264. [Google Scholar] [CrossRef]
- Horcajadas, J.A.; Riesewijk, A.; Martín, J.; Cervero, A.; Mosselman, S.; Pellicer, A.; Simón, C. Global gene expression profiling of human endometrial receptivity. J. Reprod. Immunol. 2004, 63, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Haouzi, D.; Mahmoud, K.; Fourar, M.; Bendhaou, K.; Dechaud, H.; De Vos, J.; Reme, T.; Dewailly, D.; Hamamah, S. Identification of new biomarkers of human endometrial receptivity in the natural cycle. Hum. Reprod. 2009, 24, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Altmäe, S.; Martinez-Conejero, J.A.; Salumets, A.; Simon, C.; Horcajadas, J.A.; Stavreus-Evers, A. Endometrial gene expression analysis at the time of embryo implantation in women with unexplained infertility. MHR: Basic Sci. Reprod. Med. 2009, 16, 178–187. [Google Scholar] [CrossRef]
- Koler, M.; Achache, H.; Tsafrir, A.; Smith, Y.; Revel, A.; Reich, R. Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum. Reprod. 2009, 24, 2541–2548. [Google Scholar] [CrossRef] [PubMed]
- Lédée, N.; Munaut, C.; Aubert, J.; Sérazin, V.; Rahmati, M.; Chaouat, G.; Sandra, O.; Foidart, J.M. Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J. Pathol. 2011, 225, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Koot, Y.E.; Van Hooff, S.R.; Boomsma, C.M.; Van Leenen, D.; Groot Koerkamp, M.J.; Goddijn, M.; Eijkemans, M.J.; Fauser, B.C.; Holstege, F.C.; Macklon, N.S. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci. Rep. 2016, 6, 19411. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, H.R.; Lim, E.J.; Park, M.; Yoon, J.A.; Kim, Y.S.; Kim, E.K.; Shin, J.E.; Kim, J.H.; Kwon, H.; et al. Integrative analyses of uterine transcriptome and microRNAome reveal compromised LIF-STAT3 signaling and progesterone response in the endometrium of patients with recurrent/repeated implantation failure (RIF). PLoS ONE 2016, 11, e0157696. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Han, H.J.; Fan, L.J.; Guan, J.; Zheng, X.B.; Chen, X.; Liang, R.; Zhang, X.W.; Sun, K.K.; Cui, Q.H.; et al. Diverse endometrial mRNA signatures during the window of implantation in patients with repeated implantation failure. Hum. Fertil. 2018, 21, 183–194. [Google Scholar] [CrossRef] [PubMed]
- McCubbin, N.; Parks, J.; McCallie, B.; Schoolcraft, W.B.; Katz-Jaffe, M. Maternal endometrial secretions at the time of transfer is predictive of IVF outcome. Fertil. Steril. 2018, 110, e202. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, M.; Cao, Y.I.; Zhang, D.A.; Han, M.I.; Gao, X.; Xu, B.; Zhang, A. Genome-wide analysis of long noncoding RNAs, microRNAs, and mRNAs forming a competing endogenous RNA network in repeated implantation failure. Gene 2019, 720, 144056. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Liao, G.D.; Zhou, B.; Kang, L.N.; He, Y.M.; Li, S.W. Genome-wide profiling of long noncoding RNA expression patterns in women with repeated implantation failure by RNA sequencing. Reprod. Sci. 2019, 26, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Evans-Hoeker, E.; Lessey, B.A.; Jeong, J.W.; Savaris, R.F.; Palomino, W.A.; Yuan, L.; Schammel, D.P.; Young, S.L. Endometrial BCL6 overexpression in eutopic endometrium of women with endometriosis. Reprod. Sci. 2016, 23, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.Y.; Kim, T.H.; Fazleabas, A.T.; Palomino, W.A.; Ahn, S.H.; Tayade, C.; Schammel, D.P.; Young, S.L.; Jeong, J.W.; Lessey, B.A. KRAS Activation and over-expression of SIRT1/BCL6 contributes to the pathogenesis of endometriosis and progesterone resistance. Sci. Rep. 2017, 7, 6765. [Google Scholar] [CrossRef] [PubMed]
- Almquist, L.D.; Likes, C.E.; Stone, B.; Brown, K.R.; Savaris, R.; Forstein, D.A.; Miller, P.B.; Lessey, B.A. Endometrial BCL6 testing for the prediction of in vitro fertilization outcomes: A cohort study. Fertil. Steril. 2017, 108, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Likes, C.E.; Cooper, L.J.; Efird, J.; Forstein, D.A.; Miller, P.B.; Savaris, R.; Lessey, B.A. Medical or surgical treatment before embryo transfer improves outcomes in women with abnormal endometrial BCL6 expression. J. Assist. Reprod. Genet. 2019, 36, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Dan, A. Outcomes in women with IVF failure who tested positive for BCL6 using ReceptivaDx™ testing: Effect of treatment on subsequent embryo transfer. Fertil. Steril. 2020, 113, e13. [Google Scholar] [CrossRef]
- Nezhat, C.; Rambhatla, A.; Miranda-Silva, C.; Asiaii, A.; Nguyen, K.; Eyvazzadeh, A.; Tazuke, S.; Agarwal, S.; Jun, S.; Nezhat, A.; et al. BCL-6 overexpression as a predictor for endometriosis in patients undergoing in vitro fertilization. JSLS: J. Soc. Laparosc. Robot. Surg. 2020, 24, e2020.00064. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Chan, M.; Solomon, M.; Cedars, M.I.; Giudice, L.C.; Cakmak, H. B-cell lymphoma 6 expression significantly differs by the uterine preparation method used for frozen embryo transfer. Fertil. Steril. 2023, 120, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, A.M.; Herlihy, N.S.; Scott, C.S.; Hanson, B.M.; Kim, J.G.; Titus, S.; Seli, E.; Scott, R.T., Jr. B-cell lymphoma 6 expression is not associated with live birth in a normal responder in vitro fertilization population. Fertil. Steril. 2022, 117, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Boomsma, C.M.; Kavelaars, A.; Eijkemans, M.J.; Amarouchi, K.; Teklenburg, G.; Gutknecht, D.; Fauser, B.J.; Heijnen, C.J.; Macklon, N.S. Cytokine profiling in endometrial secretions: A non-invasive window on endometrial receptivity. Reprod. Biomed. Online 2009, 18, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Mariee, N.; Li, T.; Laird, S. Expression of leukaemia inhibitory factor and interleukin 15 in endometrium of women with recurrent implantation failure after IVF; correlation with the number of endometrial natural killer cell. Hum. Reprod. 2012, 27, 1946–1954. [Google Scholar] [CrossRef]
- Rahiminejad, M.E.; Moaddab, A.; Ebrahimi, M.; Rabiee, S.; Zamani, A.; Ezzati, M.; Abdollah Shamshirsaz, A. The relationship between some endometrial secretion cytokines and in vitro fertilization. Iran. J. Reprod. Med. 2015, 13, 557–562. [Google Scholar] [PubMed] [PubMed Central]
- Kofod, L.; Lindhard, A.; Bzorek, M.; Eriksen, J.O.; Larsen, L.G.; Hviid, T.V. Endometrial immune markers are potential predictors of normal fertility and pregnancy after in vitro fertilization. Am. J. Reprod. Immunol. 2017, 78, e12684. [Google Scholar] [CrossRef] [PubMed]
- Khadem, N.; Mansoori, M.; Attaran, M.; Attaranzadeh, A.; Zohdi, E. Association of IL-1 and TNF-α Levels in Endometrial Secretion and Success of Embryo Transfer in IVF/ICSI Cycles. Int. J. Fertil. Steril. 2019, 13, 236–239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lédée, N.; Petitbarat, M.; Prat-Ellenberg, L.; Dray, G.; Cassuto, G.N.; Chevrier, L.; Kazhalawi, A.; Vezmar, K.; Chaouat, G. Endometrial Immune Profiling: A Method to Design Personalized Care in Assisted Reproductive Medicine. Front. Immunol. 2020, 11, 1032. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Man, G.C.; Wang, J.; Liu, Y.; Kwong, J.; Zhang, T.; Chung, J.P.; Wang, C.C.; Chen, X.; Li, T.C. The identification of endometrial immune cell densities and clustering analysis in the mid-luteal phase as predictor for pregnancy outcomes after IVF-ET treatment. J. Reprod. Immunol. 2021, 148, 103431. [Google Scholar] [CrossRef]
- Diao, L.; Cai, S.; Huang, C.; Li, L.; Yu, S.; Wang, L.; Liu, S.; Li, Y.; Zeng, Y. New endometrial immune cell-based score (EI-score) for the prediction of implantation success for patients undergoing IVF/ICSI. Placenta 2020, 99, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Brosens, J.; Verhoeven, H.; Campo, R.; Gianaroli, L.; Gordts, S.; Hazekamp, J.; Hägglund, L.; Mardesic, T.; Varila, E.; Zech, J.; et al. High endometrial aromatase P450 mRNA expression is associated with poor IVF outcome. Hum. Reprod. 2004, 19, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.; Thomson, A.; Wood, S.; Kingsland, C.; Vince, G.; Lewis-Jones, I. Endometrial integrin expression in women undergoing in vitro fertilization and the association with subsequent treatment outcome. Fertil. Steril. 2003, 80, 502–507. [Google Scholar] [CrossRef]
- Vilella, F.; Ramirez, L.; Berlanga, O.; Martinez, S.; Alamá, P.; Meseguer, M.; Pellicer, A.; Simón, C. PGE2 and PGF2α concentrations in human endometrial fluid as biomarkers for embryonic implantation. J. Clin. Endocrinol. Metab. 2013, 98, 4123–4132. [Google Scholar] [CrossRef] [PubMed]
- Rahiminejad, M.E.; Moaddab, A.; Ganji, M.; Eskandari, N.; Yepez, M.; Rabiee, S.; Wise, M.; Ruano, R.; Ranjbar, A. Oxidative stress biomarkers in endometrial secretions: A comparison between successful and unsuccessful in vitro fertilization cycles. J. Reprod. Immunol. 2016, 116, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Seo, W.S.; Jee, B.C.; Moon, S.Y. Expression of endometrial protein markers in infertile women and the association with subsequent in vitro fertilization outcome. Fertil. Steril. 2011, 95, 2707–2710. [Google Scholar] [CrossRef] [PubMed]
- Azkargorta, M.; Escobes, I.; Iloro, I.; Osinalde, N.; Corral, B.; Ibañez-Perez, J.; Exposito, A.; Prieto, B.; Elortza, F.; Matorras, R. Differential proteomic analysis of endometrial fluid suggests increased inflammation and impaired glucose metabolism in non-implantative IVF cycles and pinpoints PYGB as a putative implantation marker. Hum. Reprod. 2018, 33, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yan, G.; Ding, L.; Liu, J.; Yu, X.; Kong, S.; Zhang, M.; Wang, Z.; Liu, Y.; Jiang, Y.; et al. EHD1 impairs decidualization by regulating the Wnt4/β-catenin signaling pathway in recurrent implantation failure. EBioMedicine 2019, 50, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Schweingruber, H.A.; Nielsen, N.R.; Singer, S.R. (Eds.) Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
Biomarker | Strength of Evidence | ||
---|---|---|---|
Limited | Moderate | Strong | |
AMH | X | ||
FSH | X | ||
GDF9/BMP15 | X | ||
Connexin 43 | X | ||
GC gene expression | X | ||
CA125 | X | ||
Caspase | X | ||
BCL6 | X | ||
PTEN | X | ||
ERA | X | ||
Other endometrial gene profiles | X | ||
BCL6 | X | ||
Immune markers | X | ||
P450 | X | ||
Integrins | X | ||
Prostaglandins | X | ||
VEG-F | X | ||
PYB | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volovsky, M.; Seifer, D.B. Current Status of Ovarian and Endometrial Biomarkers in Predicting ART Outcomes. J. Clin. Med. 2024, 13, 3739. https://doi.org/10.3390/jcm13133739
Volovsky M, Seifer DB. Current Status of Ovarian and Endometrial Biomarkers in Predicting ART Outcomes. Journal of Clinical Medicine. 2024; 13(13):3739. https://doi.org/10.3390/jcm13133739
Chicago/Turabian StyleVolovsky, Michelle, and David B. Seifer. 2024. "Current Status of Ovarian and Endometrial Biomarkers in Predicting ART Outcomes" Journal of Clinical Medicine 13, no. 13: 3739. https://doi.org/10.3390/jcm13133739
APA StyleVolovsky, M., & Seifer, D. B. (2024). Current Status of Ovarian and Endometrial Biomarkers in Predicting ART Outcomes. Journal of Clinical Medicine, 13(13), 3739. https://doi.org/10.3390/jcm13133739