Upper Airway Alarmin Cytokine Expression in Asthma of Different Severities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sample Collection and Processing
2.3. Flow Cytometry
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GINA Report, Global Strategy for Asthma Management and Prevention. 2023. Available online: https://ginasthma.org/2023-gina-main-report/ (accessed on 31 May 2024).
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed]
- Hekking, P.W.; Wener, R.R.; Amelink, M.; Zwinderman, A.H.; Bouvy, M.L.; Bel, E.H. The prevalence of severe refractory asthma. J. Allergy Clin. Immunol. 2015, 135, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Busby, J.; Pfeffer, P.E.; Menzies-Gow, A.; Brown, T.; Gore, R.; Doherty, M.; Mansur, A.H.; Message, S.; Niven, R.; et al. Characterisation of patients with severe asthma in the UK Severe Asthma Registry in the biologic era. Thorax 2021, 76, 220–227. [Google Scholar] [CrossRef]
- Adatia, A.; Vliagoftis, H. Challenges in severe asthma: Do we need new drugs or new biomarkers? Front. Med. 2022, 9, 921967. [Google Scholar] [CrossRef]
- Hong, H.; Liao, S.; Chen, F.; Yang, Q.; Wang, D.Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy 2020, 75, 2794–2804. [Google Scholar] [CrossRef] [PubMed]
- Byers, D.E. Defining the roles of IL-33, thymic stromal lymphopoietin, and IL-25 in human asthma. Am. J. Respir. Crit. Care Med. 2014, 190, 715–716. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Lv, Z.; Chen, Y.; Li, Y.; Huang, K.W.; Corrigan, C.J.; Ying, S. Bronchial Allergen Challenge of Patients with Atopic Asthma Triggers an Alarmin (IL-33, TSLP, and IL-25) Response in the Airways Epithelium and Submucosa. J. Immunol. 2018, 201, 2221–2231. [Google Scholar] [CrossRef]
- Bleck, B.; Tse, D.B.; Curotto de Lafaille, M.A.; Zhang, F.; Reibman, J. Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation and polarization via thymic stromal lymphopoietin. J. Clin. Immunol. 2008, 28, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Miyata, M.; Ohba, T.; Ando, T.; Hatsushika, K.; Suenaga, F.; Shimokawa, N.; Ohnuma, Y.; Katoh, R.; Ogawa, H.; et al. Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to T. 2-type immune responses and airway inflammation. J. Allergy Clin. Immun. 2008, 122, 1208–1214. [Google Scholar] [CrossRef]
- Calven, J.; Yudina, Y.; Hallgren, O.; Westergren-Thorsson, G.; Davies, D.E.; Brandelius, A.; Uller, L. Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: Role of endosomal TLR3 and cytosolic RIG-I-like helicases. J. Innate Immun. 2012, 4, 86–99. [Google Scholar] [CrossRef]
- Reese, A.; Favoreto, S.; Quraishi, J.; Biyasheva, A.; Shen, J.; Greiman, A.; Avila, P. Higher Rhinovirus-Induced Production of TSLP in Nasal Epithelial Cells from Asthmatic than Healthy Subjects. J. Allergy Clin. Immun. 2011, 127, Ab22. [Google Scholar] [CrossRef]
- Soumelis, V.; Reche, P.A.; Kanzler, H.; Yuan, W.; Edward, G.; Homey, B.; Gilliet, M.; Ho, S.; Antonenko, S.; Lauerma, A.; et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 2002, 3, 673–680. [Google Scholar] [CrossRef]
- Kitajima, M.; Lee, H.C.; Nakayama, T.; Ziegler, S.F. TSLP enhances the function of helper type 2 cells. Eur. J. Immunol. 2011, 41, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.F.; Thompson, L.J.; Ziegler, S.F. TSLP drives acute T(H)2-cell differentiation in lungs. J. Allergy Clin. Immunol. 2020, 146, 1406–1418.e7. [Google Scholar] [CrossRef] [PubMed]
- Han, N.R.; Oh, H.A.; Nam, S.Y.; Moon, P.D.; Kim, D.W.; Kim, H.M.; Jeong, H.J. TSLP Induces Mast Cell Development and Aggravates Allergic Reactions through the Activation of MDM2 and STAT6. J. Investig. Dermatol. 2014, 134, 2521–2530. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Hu, S.Q.; Cheung, P.F.Y.; Lam, C.W.K. Thymic Stromal Lymphopoietin Induces Chemotactic and Prosurvival Effects in Eosinophils Implications in Allergic Inflammation. Am. J. Respir. Cell Mol. 2010, 43, 305–315. [Google Scholar] [CrossRef]
- Camelo, A.; Rosignoli, G.; Ohne, Y.; Stewart, R.A.; Overed-Sayer, C.; Sleeman, M.A.; May, R.D. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 2017, 1, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Fort, M.M.; Cheung, J.; Yen, D.; Li, J.; Zurawski, S.M.; Lo, S.; Menon, S.; Clifford, T.; Hunte, B.; Lesley, R.; et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001, 15, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.F.; Wong, C.K.; Ip, W.K.; Lam, C.W. IL-25 regulates the expression of adhesion molecules on eosinophils: Mechanism of eosinophilia in allergic inflammation. Allergy 2006, 61, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Kouzaki, H.; Tojima, I.; Kita, H.; Shimizu, T. Transcription of interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2013, 49, 741–750. [Google Scholar] [CrossRef]
- Gregory, L.G.; Jones, C.P.; Walker, S.A.; Sawant, D.; Gowers, K.H.; Campbell, G.A.; McKenzie, A.N.J.; Lloyd, C.M. IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax 2013, 68, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Chen, Q.; Wang, X.; Liu, X.; Zhang, L. IL-25 induces airway remodeling in asthma by orchestrating the phenotypic changes of epithelial cell and fibrocyte. Respir. Res. 2023, 24, 212. [Google Scholar] [CrossRef] [PubMed]
- Kouzaki, H.; Iijima, K.; Kobayashi, T.; O’Grady, S.M.; Kita, H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J. Immunol. 2011, 186, 4375–4387. [Google Scholar] [CrossRef] [PubMed]
- Toki, S.; Goleniewska, K.; Zhang, J.; Zhou, W.; Newcomb, D.C.; Zhou, B.; Kita, H.; Boyd, K.L.; Peebles, R.S., Jr. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 2020, 75, 1606–1617. [Google Scholar] [CrossRef] [PubMed]
- Vyhlidal, C.A.; Riffel, A.K.; Dai, H.; Rosenwasser, L.J.; Jones, B.L. Detecting gene expression in buccal mucosa in subjects with asthma versus subjects without asthma. Pediatr. Allergy Immunol. 2013, 24, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Torrone, D.; Kuriakose, J.; Moors, K.; Jiang, H.; Niedzwiecki, M.; Perera, F.; Miller, R.L. Reproducibility and intraindividual variation over days in buccal cell DNA methylation of two asthma genes, interferon gamma (IFNgamma) and inducible nitric oxide synthase (iNOS). Clin. Epigenet. 2012, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.M.; Wong, C.C.; Arseneault, L.; Burrage, J.; Macdonald, R.; Hannon, E.; Fisher, H.L.; Ambler, A.; Moffitt, T.E.; Caspi, A.; et al. Methylomic markers of persistent childhood asthma: A longitudinal study of asthma-discordant monozygotic twins. Clin. Epigenet. 2015, 7, 130. [Google Scholar] [CrossRef]
- Perez-Garcia, J.; Gonzalez-Carracedo, M.; Espuela-Ortiz, A.; Hernandez-Perez, J.M.; Gonzalez-Perez, R.; Sardon-Prado, O.; Martin-Gonzalez, E.; Mederos-Luis, E.; Poza-Guedes, P.; Corcuera-Elosegui, P.; et al. The upper-airway microbiome as a biomarker of asthma exacerbations despite inhaled corticosteroid treatment. J. Allergy Clin. Immunol. 2023, 151, 706–715. [Google Scholar] [CrossRef]
- Chen, M.; Ge, Y.; Zhang, W.; Wu, P.; Cao, C. Nasal Lavage Fluid Proteomics Reveals Potential Biomarkers of Asthma Associated with Disease Control. J. Asthma Allergy 2024, 17, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Thavagnanam, S.; Parker, J.C.; McBrien, M.E.; Skibinski, G.; Shields, M.D.; Heaney, L.G. Nasal epithelial cells can act as a physiological surrogate for paediatric asthma studies. PLoS ONE 2014, 9, e85802. [Google Scholar] [CrossRef]
- Hansel, T.T.; Tunstall, T.; Trujillo-Torralbo, M.B.; Shamji, B.; Del-Rosario, A.; Dhariwal, J.; Kirk, P.D.W.; Stumpf, M.P.H.; Koopmann, J.; Telcian, A.; et al. A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-gamma and IFN-lambda) and Type 2 Inflammation (IL-5 and IL-13). EBioMedicine 2017, 19, 128–138. [Google Scholar] [CrossRef] [PubMed]
- de Farias, C.F.; Amorim, M.M.; Dracoulakis, M.; Caetano, L.B.; Santoro, I.L.; Fernandes, A.L. Nasal lavage, blood or sputum: Which is best for phenotyping asthma? Respirology 2017, 22, 671–677. [Google Scholar] [CrossRef]
- Akaike, H. New Look at Statistical-Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Polomska, J.; Sikorska-Szaflik, H.; Drabik-Chamerska, A.; Sozanska, B.; Debinska, A. Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children. J. Clin. Med. 2024, 13, 2542. [Google Scholar] [CrossRef]
- Yu, H.W.; Wang, W.W.; Jing, Q.; Pan, Y.L. TSLP Induces Epithelial–Mesenchymal Transition in Nasal Epithelial Cells from Allergic Rhinitis Patients through TGF-β1/Smad2/3 Signaling. Am. J. Rhinol. Allergy 2023, 37, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Pawankar, R.; Mori, S.; Nonaka, M.; Masuno, S.; Yagi, T.; Okubo, K. Increased Expression and Role of Thymic Stromal Lymphopoietin in Nasal Polyposis. Allergy Asthma Immunol. Res. 2011, 3, 186–193. [Google Scholar] [CrossRef]
- Paranjapye, A.; Leir, S.H.; Huang, F.; Kerschner, J.L.; Harris, A. Cell function and identity revealed by comparative scRNA-seq analysis in human nasal, bronchial and epididymis epithelia. Eur. J. Cell Biol. 2022, 101, 151231. [Google Scholar] [CrossRef]
- Deprez, M.; Zaragosi, L.E.; Truchi, M.; Becavin, C.; Ruiz Garcia, S.; Arguel, M.J.; Plaisant, M.; Magnone, V.; Lebrigand, K.; Abelanet, S.; et al. A Single-Cell Atlas of the Human Healthy Airways. Am. J. Respir. Crit. Care Med. 2020, 202, 1636–1645. [Google Scholar] [CrossRef]
- Alves, M.P.; Schogler, A.; Ebener, S.; Vielle, N.J.; Casaulta, C.; Jung, A.; Moeller, A.; Geiser, T.; Regamey, N. Comparison of innate immune responses towards rhinovirus infection of primary nasal and bronchial epithelial cells. Respirology 2016, 21, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Comer, D.M.; Elborn, J.S.; Ennis, M. Comparison of nasal and bronchial epithelial cells obtained from patients with COPD. PLoS ONE 2012, 7, e32924. [Google Scholar] [CrossRef]
- Smith, S.G.; Chen, R.; Kjarsgaard, M.; Huang, C.; Oliveria, J.P.; O’Byrne, P.M.; Gauvreau, G.M.; Boulet, L.-P.; Lemiere, C.; Martin, J.; et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 2016, 137, 75–86.e8. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Verma, M.; Michalec, L.; Liu, W.; Sripada, A.; Rollins, D.; Good, J.; Ito, Y.; Chu, H.; Gorska, M.M.; et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 2018, 141, 257–268.e6. [Google Scholar] [CrossRef] [PubMed]
- Comeau, M.R.; Ziegler, S.F. The influence of TSLP on the allergic response. Mucosal Immunol. 2010, 3, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Petra, A.I.; Taracanova, A.; Panagiotidou, S.; Conti, P. Targeting IL-33 in autoimmunity and inflammation. J. Pharmacol. Exp. Ther. 2015, 354, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Knolle, M.D.; Rana, B.M.; McKenzie, A.N. IL-25 as a potential therapeutic target in allergic asthma. Immunotherapy 2015, 7, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Menzies-Gow, A.; Colice, G.; Griffiths, J.M.; Almqvist, G.; Ponnarambil, S.; Kaur, P.; Ruberto, G.; Bowen, K.; Hellqvist, Å.; Mo, M.; et al. NAVIGATOR: A phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir. Res. 2020, 21, 266. [Google Scholar] [CrossRef]
- Corren, J.; Garcia Gil, E.; Griffiths, J.M.; Parnes, J.R.; van der Merwe, R.; Sałapa, K.; O’Quinn, S. Tezepelumab improves patient-reported outcomes in patients with severe, uncontrolled asthma in PATHWAY. Ann. Allergy Asthma Immunol. 2021, 126, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, T.E. Measurements of deposited aerosol dose in infants and small children. Ann. Transl. Med. 2021, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.P.; Chan, H.K. In vitro-in vivo correlations (IVIVCs) of deposition for drugs given by oral inhalation. Adv. Drug Deliv. Rev. 2020, 167, 135–147. [Google Scholar] [CrossRef]
- Clark, A.R.; Newman, S.P.; Dasovich, N. Mouth and oropharyngeal deposition of pharmaceutical aerosols. J. Aerosol Med. 1998, 11 (Suppl. S1), S116–S121. [Google Scholar] [CrossRef]
- Svartengren, K.; Lindestad, P.A.; Svartengren, M.; Bylin, G.; Philipson, K.; Camner, P. Deposition of inhaled particles in the mouth and throat of asthmatic subjects. Eur. Respir. J. 1994, 7, 1467–1473. [Google Scholar] [CrossRef]
All Patients (N = 40) | |
---|---|
Demographics | |
Age, yr, mean (SD) | 40.9 (15.8) |
Female, n (%) | 24 (60.0) |
Smoking history, n (%) | |
Never smoker | 35 (87.5) |
Clinical Characteristics | |
GINA step, n (%) | |
GINA 1/2 | 10 (25.0) |
GINA 3 | 10 (25.0) |
GINA 4 | 10 (25.0) |
GINA 5 | 10 (25.0) |
Nasal comorbidities, n (%) | 13 (33.0) |
Nasal polyps, n (%) | 4 (10.0) |
Medications used, n (%) | |
ICS/LABA maintenance | 31 (77.5) |
SABA reliever | 17 (42.5) |
Nasal steroid spray | 12 (30.0) |
Anti-allergic oral drugs * | 11 (27.5) |
Oral corticosteroid maintenance | 1 (2.5) |
At least one exacerbation, past 12 months, n (%) | 4 (10.0) |
Laboratory Investigations | |
Nasal samples | |
TSLP (MFI), median (IQR) | 6590 (3829–19,032) |
IL-25 (MFI), median (IQR) | 3936 (3104–8061) |
IL-33 (MFI), median (IQR) | 923 (548–2010) |
Buccal samples | |
TSLP (MFI), median (IQR) | 7766 (3578–15,120) |
IL-25 (MFI), median (IQR) | 14,635 (3702–23,095) |
IL-33 (MFI), median (IQR) | 1065 (438–3566) |
Throat samples | |
TSLP (MFI), median (IQR) | 6615 (3281–13,712) |
IL-25 (MFI), median (IQR) | 8109 (4251–13,795) |
IL-33 (MFI), median (IQR) | 1115 (649–3113) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marriott, H.; Duchesne, M.; Moitra, S.; Okoye, I.; Gerla, L.; Mayers, I.; Moolji, J.; Adatia, A.; Lacy, P. Upper Airway Alarmin Cytokine Expression in Asthma of Different Severities. J. Clin. Med. 2024, 13, 3721. https://doi.org/10.3390/jcm13133721
Marriott H, Duchesne M, Moitra S, Okoye I, Gerla L, Mayers I, Moolji J, Adatia A, Lacy P. Upper Airway Alarmin Cytokine Expression in Asthma of Different Severities. Journal of Clinical Medicine. 2024; 13(13):3721. https://doi.org/10.3390/jcm13133721
Chicago/Turabian StyleMarriott, Hazel, Marc Duchesne, Subhabrata Moitra, Isobel Okoye, Luke Gerla, Irvin Mayers, Jalal Moolji, Adil Adatia, and Paige Lacy. 2024. "Upper Airway Alarmin Cytokine Expression in Asthma of Different Severities" Journal of Clinical Medicine 13, no. 13: 3721. https://doi.org/10.3390/jcm13133721
APA StyleMarriott, H., Duchesne, M., Moitra, S., Okoye, I., Gerla, L., Mayers, I., Moolji, J., Adatia, A., & Lacy, P. (2024). Upper Airway Alarmin Cytokine Expression in Asthma of Different Severities. Journal of Clinical Medicine, 13(13), 3721. https://doi.org/10.3390/jcm13133721