Evaluation of Various Methods of Liver Measurement in Comparison to Volumetric Segmentation Based on Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Liver Volume in Relation to Other Variables
3.2. Differences between the Observers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joshi, R.; Singh, A.; Jajoo, N.; Pai, M.; Kalantri, S.P. Accuracy and reliability of palpation and percussion for detecting hepatomegaly: A rural hospital-based study. Indian J. Gastroenterol. 2004, 23, 171–174. [Google Scholar]
- Seppelt, D.; Kromrey, M.L.; Ittermann, T.; Kolb, C.; Haubold, A.; Kampfrath, N.; Fedders, D.; Heiss, P.; Hoberück, S.; Hoffmann, R.T.; et al. Reliability and accuracy of straightforward measurements for liver volume determination in ultrasound and computed tomography compared to real volumetry. Sci. Rep. 2022, 12, 12465. [Google Scholar] [CrossRef]
- Radtke, A.; Sotiropoulos, G.C.; Nadalin, S.; Molmenti, E.P.; Schroeder, T.; Saner, F.H.; Sgourakis, G.; Cicinnati, V.R.; Valentin-Gamazo, C.; E Broelsch, C.; et al. Preoperative volume prediction in adult live donor liver transplantation: 3-D CT volumetry approach to prevent miscalculations. Eur. J. Med. Res. 2008, 13, 319–326. [Google Scholar]
- Fang, C.; An, J.; Bruno, A.; Cai, X.; Fan, J.; Fujimoto, J.; Golfieri, R.; Hao, X.; Jiang, H.; Jiao, L.R.; et al. Consensus recommendations of three-dimensional visualization for diagnosis and management of liver diseases. Hepatol. Int. 2020, 14, 437–453. [Google Scholar] [CrossRef]
- Wang, K.; Mamidipalli, A.; Retson, T.; Bahrami, N.; Hasenstab, K.; Blansit, K.; Bass, E.; Delgado, T.; Cunha, G.; Middleton, M.S.; et al. Automated CT and MRI liver segmentation and biometry using a generalized convolutional neural network. Radiol. Artif. Intell. 2019, 1, 180022. [Google Scholar] [CrossRef]
- Kavur, A.E.; Gezer, N.S.; Baris, M.; Sahin, Y.; Ozkan, S.; Baydar, B.; Yuksel, U.; Kilikcier, C.; Olut, S.; Akar, G.B.; et al. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors. Diagn. Interv. Radiol. 2020, 26, 11. [Google Scholar] [CrossRef]
- Hermoye, L.; Laamari-Azjal, I.; Cao, Z.; Annet, L.; Lerut, J.; Dawant, B.M.; Van Beers, B.E. Liver segmentation in living liver transplant donors: Comparison of semiautomatic and manual methods. Radiology 2005, 234, 171–178. [Google Scholar] [CrossRef]
- Radtke, A.; Sotiropoulos, G.C.; Nadalin, S.; Molmenti, E.P.; Schroeder, T.; Lang, H.; Saner, F.; Valentin-Gamazo, C.; Frilling, A.; Schenk, A.; et al. Preoperative volume prediction in adult living donor liver transplantation: How much can we rely on it? Essen experience based on virtual three-dimensional computed tomography-volume assessment. Am. J. Transplant. 2007, 7, 672–679. [Google Scholar] [CrossRef]
- Mortelé, K.J.; Cantisani, V.; Troisi, R.; de Hemptinne, B.; Silverman, S.G. Preoperative liver donor evaluation: Imaging and pitfalls. Liver Transplant. 2003, 9, S6–S14. [Google Scholar] [CrossRef]
- Pomposelli, J.J.; Tongyoo, A.; Wald, C.; Pomfret, E.A. Variability of standard liver volume estimation versus software-assisted total liver volume measurement. Liver Transplant. 2012, 18, 1083–1092. [Google Scholar] [CrossRef]
- Muggli, D.; Müller, M.; Karlo, C.; Fornaro, J.; Marincek, B.; Frauenfelder, T.; Davda, S.; Kowa, X.-Y.; Aziz, Z.; Ellis, S.; et al. A simple method to approximate liver size on cross-sectional images using living liver models. Clin. Radiol. 2009, 64, 682–689. [Google Scholar] [CrossRef]
- Chan, S.C.; Liu, C.L.; Lo, C.M.; Lam, B.K.; Lee, E.W.; Wong, Y.; Fan, S.T. Estimating liver weight of adults by body weight and gender. World J. Gastroenterol. 2006, 12, 2217–2222. [Google Scholar] [CrossRef]
- Fu-Gui, L.; Lu-Nan, Y.; Bo, L.; Yong, Z.; Tian-Fu, W.; Ming-Qing, X.; Wen-Tao, W.; Zhe-Yu, C. Estimation of standard liver volume in Chinese adult living donors. Transplant. Proc. 2009, 41, 4052–4056. [Google Scholar] [CrossRef]
- Urata, K.; Kawasaki, S.; Matsunami, H.; Hashikura, Y.; Ikegami, T.; Ishizone, S.; Momose, Y.; Komiyama, A.; Makuuchi, M. Calculation of child and adult standard liver volume for liver transplantation. Hepatology 1995, 21, 1317–1321. [Google Scholar] [CrossRef]
- Hashimoto, T.; Sugawara, Y.; Tamura, S.; Hasegawa, K.; Kishi, Y.; Kokudo, N.; Makuuchi, M. Estimation of standard liver volume in Japanese living liver donors. J. Gastroenterol. Hepatol. 2006, 21, 1710–1713. [Google Scholar] [CrossRef]
- Yuan, D.; Lu, T.; Wei, Y.G.; Li, B.; Yan, L.; Zeng, Y.; Wen, T.; Zhao, J. Estimation of standard liver volume for liver transplantation in the Chinese population. Transplant. Proc. 2008, 40, 3536–3540. [Google Scholar] [CrossRef]
- Poovathumkadavil, A.; Leung, K.F.; Al Ghamdi, H.M.; Othman, I.H.; Meshikhes, A.W. Standard formula for liver volume in Middle Eastern Arabic adults. Transplant. Proc. 2010, 42, 3600–3605. [Google Scholar] [CrossRef]
- Vauthey, J.N.; Abdalla, E.K.; Doherty, D.A.; Gertsch, P.; Fenstermacher, M.J.; Loyer, E.M.; Lerut, J.; Materne, R.; Wang, X.; Encarnacion, A.; et al. Body surface area and body weight predict total liver volume in Western adults. Liver Transpl. 2002, 8, 233–240. [Google Scholar] [CrossRef]
- Lin, X.Z.; Sun, Y.N.; Liu, Y.H.; Sheu, B.S.; Cheng, B.N.; Chen, C.Y.; Tsai, H.M.; Shen, C.L. Liver volume in patients with or without chronic liver diseases. Hepatogastroenterol. 1998, 45, 1069–1074. [Google Scholar]
- Yu, H.; You, H.; Lee, H.; Jin, Z.; Moon, J.; Cho, B. Estimation of standard liver volume for liver transplantation in the Korean population. Liver Transplantation 2004, 10, 779–783. [Google Scholar] [CrossRef]
- Heinemann, A.; Wischhusen, F.; Puschel, K.; Rogiers, X. Standard liver volume in the Caucasian population. Liver Transpl. Surg. 1999, 5, 366–368. [Google Scholar] [CrossRef]
- Mosteller, R.D. Simplified calculation of body-surface area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar]
- Lim, S.J.; Jeong, Y.Y.; Ho, Y.S. Automatic liver segmentation for volume measurement in CT Images. J. Vis. Commun. Image Represent. 2006, 17, 860–875. [Google Scholar] [CrossRef]
- Tanpowpong, N.; Yimpraphan, S.; Vajragupta, L.; Sirijindakul, B.; Nunthasoot, B. Accuracy of liver volume measurement using multidetector computed tomography. Asian Biomed. 2007, 1, 415–420. [Google Scholar]
- Masperi, A.; Cubadda, V.; Bombelli, L.; Labruna, R.; Bagnardi, V.; Fodor, C.I.; Pagan, E.; Bonomo, G.; Orsi, F. Intra-inter-observer repeatability in liver computed tomography volumetry in patients undergoing radioembolization simulation. Abdom. Radiol. 2021, 46, 3448–3455. [Google Scholar] [CrossRef]
- Olthof, P.B.; van Dam, R.; Jovine, E.; Campos, R.R.; de Santibañes, E.; Oldhafer, K.; Malago, M.; Abdalla, E.K.; Schadde, E. Accuracy of estimated total liver volume formulas before liver resection. Surgery 2019, 166, 247–253. [Google Scholar] [CrossRef]
- Lim, M.; Tan, C.; Cai, J.; Zheng, J.; Kow, A. CT volumetry of the liver: Where does it stand in clinical practice. Clin. Radiol. 2014, 69, 887–895. [Google Scholar] [CrossRef]
- Hori, M.; Suzuki, K.; Epstein, M.L.; Baron, R.L. Computed tomography liver volumetry using 3-dimensional image data in living donor liver transplantation: Effects of the slice thickness on the volume calculation. Liver Transpl. 2011, 17, 1427–1436. [Google Scholar] [CrossRef]
- Karlo, C.; Reiner, C.S.; Stolzmann, P.; Breitenstein, S.; Marincek, B.; Weishaupt, D.; Frauenfelder, T. CT- and MRI-based volumetry of resected liver specimen: Comparison to intraoperative volume and weight measurements and calculation of conversion factors. Eur. J. Radiol. 2010, 75, e107–e111. [Google Scholar] [CrossRef]
- Perandini, S.; Faccioli, N.; Inama, M.; Mucelli, R.P. Freehand liver volumetry by using an electromagnetic pen tablet: Accuracy, precision, and rapidity. J. Digit. Imaging 2011, 24, 360–365. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Gender [n (%)] | |
Females | 78 (74.29) |
Males | 27 (25.71) |
Age [years] | 57.13 ± 16.44 |
Height [cm] | 164.64 ± 9.38 |
Weight [kg] | 69.15 ± 17.16 |
BMI [kg/m2] | 25.40 ± 5.51 |
BSA [m2] 1 | 1.59 ± 0.46 |
Maximum measurement [mm] | |
AP | 152.34 ± 20.66 |
CC | 142.36 ± 24.48 |
SD | 178.12 ± 31.34 |
Midclavicular measurement [mm] | |
AP | 140.48 ± 23.05 |
CC | 115.57 ± 22.85 |
Liver marked as enlarged 2 | 17.00 ± 9.72 |
Calculated liver volume [mL]: | |
Muggli, David et al. [11] | 1216.96 ± 412.70 |
Chan et al. [12] | 1232.22 ± 188.13 |
Fu-Gui et al. [13] | 1129.86 ± 197.48 |
Urata et al. [14] | 2137.31 ± 582.78 |
Hashimoto et al. [15] | 1126.60 ± 437.89 |
Yuan et al. [16] | 1155.74 ± 437.18 |
Poovathumkadavil [17] | 1403.49 ± 210.39 |
Vaughtney et al. [18]—BSA-based method | 1224.43 ± 577.27 |
Vaughtney et al. [18]—weight-based method | 1471.85 ± 317.64 |
Lin [19] | 1440.13 ± 289.35 |
Yu et al. [20] | 1504.83 ± 282.35 |
Heinemann et al. [21] | 1363.32 ± 488.68 |
Segmented liver volume [mL] | 1345.32 ± 350.57 |
Variable | Correlation Coefficient (r) | Determination Coefficient (r2) |
---|---|---|
Measurement | ||
Maximum AP | 0.680 | 0.462 |
Maximum CC | 0.581 | 0.338 |
Maximum SD | 0.396 | 0.157 |
Midclavicular AP | 0.570 | 0.325 |
Midclavicular CC | 0.477 | 0.227 |
Parameter | ||
Age | −0.229 | 0.052 |
Height | 0.468 | 0.219 |
Weight | 0.664 | 0.441 |
BMI | 0.515 | 0.266 |
BSA | 0.672 | 0.452 |
Measurement | Kruskal–Wallis Test Result (p) |
---|---|
Maximum AP | 0.001 |
Maximum CC | <0.001 |
Maximum SD | <0.001 |
Midclavicular AP | <0.001 |
Midclavicular CC | <0.001 |
Calculated liver volume [mL]: | |
Muggli, David et al. [11] | <0.001 |
Chan et al. [12] | 1.0 |
Fu-Gui et al. [13] | 1.0 |
Urata et al. [14] | 1.0 |
Hashimoto et al. [15] | 1.0 |
Yuan et al. [16] | 1.0 |
Poovathumkadavil [17] | 1.0 |
Vaughtney et al. [18]—BSA-based method | 1.0 |
Vaughtney et al. [18]—weight-based method | 1.0 |
Lin [19] | 1.0 |
Yu et al. [20] | 1.0 |
Heinemann et al. [21] | 1.0 |
Observer | Enlarged Livers | Not Enlarged Livers |
---|---|---|
I | 14 | 91 |
II | 31 | 74 |
III | 7 | 98 |
IV | 10 | 95 |
V | 5 | 100 |
VI | 19 | 86 |
VII | 21 | 84 |
VIII | 29 | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebula, M.; Biernacka, A.; Bożek, O.; Kokoszka, B.; Kazibut, S.; Kujszczyk, A.; Kulig-Kulesza, M.; Modlińska, S.; Kufel, J.; Azierski, M.; et al. Evaluation of Various Methods of Liver Measurement in Comparison to Volumetric Segmentation Based on Computed Tomography. J. Clin. Med. 2024, 13, 3634. https://doi.org/10.3390/jcm13133634
Cebula M, Biernacka A, Bożek O, Kokoszka B, Kazibut S, Kujszczyk A, Kulig-Kulesza M, Modlińska S, Kufel J, Azierski M, et al. Evaluation of Various Methods of Liver Measurement in Comparison to Volumetric Segmentation Based on Computed Tomography. Journal of Clinical Medicine. 2024; 13(13):3634. https://doi.org/10.3390/jcm13133634
Chicago/Turabian StyleCebula, Maciej, Angelika Biernacka, Oskar Bożek, Bartosz Kokoszka, Sylwia Kazibut, Anna Kujszczyk, Monika Kulig-Kulesza, Sandra Modlińska, Jakub Kufel, Michał Azierski, and et al. 2024. "Evaluation of Various Methods of Liver Measurement in Comparison to Volumetric Segmentation Based on Computed Tomography" Journal of Clinical Medicine 13, no. 13: 3634. https://doi.org/10.3390/jcm13133634
APA StyleCebula, M., Biernacka, A., Bożek, O., Kokoszka, B., Kazibut, S., Kujszczyk, A., Kulig-Kulesza, M., Modlińska, S., Kufel, J., Azierski, M., Szydło, F., Winder, M., Pilch-Kowalczyk, J., & Gruszczyńska, K. (2024). Evaluation of Various Methods of Liver Measurement in Comparison to Volumetric Segmentation Based on Computed Tomography. Journal of Clinical Medicine, 13(13), 3634. https://doi.org/10.3390/jcm13133634