Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
6. Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kıvrak, A.; Ulusoy, İ. Effect of Glenohumeral Joint Bone Morphology on Anterior Shoulder Instability: A Case-Control Study. J. Clin. Med. 2023, 12, 4910. [Google Scholar] [CrossRef] [PubMed]
- Hong, I.S.; Sonnenfeld, J.J.; Sicat, C.S.; Hong, R.S.; Trofa, D.P.; Schiffern, S.C.; Hamid, N.; Fleischli, J.E.; Saltzman, B.M. Outcomes After Arthroscopic Revision Bankart Repair: An Updated Systematic Review of Recent Literature. Arthroscopy 2023, 39, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Hurley, E.T.; Matache, B.A.; Wong, I.; Itoi, E.; Strauss, E.J.; Delaney, R.A.; Neyton, L.; Athwal, G.S.; Pauzenberger, L.; Mullett, H.; et al. Anterior Shoulder Instability Part I—Diagnosis, Nonoperative Management, and Bankart Repair—An International Consensus Statement. Arthroscopy 2022, 38, 214–223.e7. [Google Scholar] [CrossRef] [PubMed]
- Fares, M.Y.; Daher, M.; Boufadel, P.; Haikal, E.R.; Koa, J.; Singh, J.; Abboud, J.A. Arthroscopic Remplissage: History, Indications, and Clinical Outcomes. J. Korean Shoulder Elb. Soc. 2023; epub ahead of print. [Google Scholar] [CrossRef]
- Rashid, M.S.; Tsuchiya, S.; More, K.D.; LeBlanc, J.; Bois, A.J.; Kwong, C.A.; Lo, I.K.Y. Validating the Glenoid Track Concept Using Dynamic Arthroscopic Assessment. Orthop. J. Sports Med. 2024, 12, 23259671241226943. [Google Scholar] [CrossRef] [PubMed]
- Lho, T.; Lee, J.; Oh, K.-S.; Chung, S.W. Latarjet Procedure for Failed Bankart Repair Provides Better Stability and Return to Sports, but Worse Postoperative Pain and External Rotation Limitations with More Complications, Compared to Revision Bankart Repair: A Systematic Review and Meta-Analysis. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2023, 31, 3541–3558. [Google Scholar] [CrossRef] [PubMed]
- Baur, A.; Satalich, J.; O’Connell, R.; Vap, A. Surgical Management of Recurrent Instability Following Latarjet Procedure—A Systematic Review of Salvage Procedures. Shoulder Elb. 2024, 16, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Lim, J.-R.; Lee, W.-W.; Kim, S.-J.; Yoon, T.-H.; Chun, Y.-M. Comparison of Arthroscopic Primary and Revision Bankart Repair for Capsulolabral Restoration: A Matched-Pair Analysis. Arch. Orthop. Trauma Surg. 2023, 143, 3183–3190. [Google Scholar] [CrossRef] [PubMed]
- Elamo, S.; Selänne, L.; Lehtimäki, K.; Kukkonen, J.; Hurme, S.; Kauko, T.; Äärimaa, V. Bankart versus Latarjet Operation as a Revision Procedure after a Failed Arthroscopic Bankart Repair. JSES Int. 2020, 4, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Slaven, S.E.; Donohue, M.A.; Tardif, R.A.; Foley, K.A.; LeClere, L.E.; Cameron, K.L.; Giuliani, J.R.; Posner, M.A.; Dickens, J.F. Revision Arthroscopic Bankart Repair Results in High Failure Rates and a Low Return to Duty Rate without Recurrent Instability. Arthroscopy 2023, 39, 913–918. [Google Scholar] [CrossRef]
- Clowez, G.; Gendre, P.; Boileau, P. The Bristow-Latarjet Procedure for Revision of Failed Arthroscopic Bankart: A Retrospective Case Series of 59 Consecutive Patients. J. Shoulder Elbow Surg. 2021, 30, e724–e731. [Google Scholar] [CrossRef]
- Sinha, S.; Mehta, N.; Goyal, R.; Goyal, A.; Joshi, D.; Arya, R.K. Is Revision Bankart Repair with Remplissage a Viable Option for Failed Bankart Repair in Non-Contact Sports Person Aiming to Return to Sports? Indian J. Orthop. 2021, 55, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Calvo, E.; Luengo, G.; Morcillo, D.; Foruria, A.M.; Valencia, M. Revision Arthroscopic Bankart Repair Versus Arthroscopic Latarjet for Failed Primary Arthroscopic Stabilization With Subcritical Bone Loss. Orthop. J. Sports Med. 2021, 9, 23259671211001809. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Lee, J.-H.; Park, J.-Y.; Shin, S.-J. Failure Rates After Revision Arthroscopic Stabilization for Recurrent Anterior Shoulder Instability Based on Anterior Capsulolabral Complex Conditions. Orthop. J. Sports Med. 2021, 9, 2325967121995891. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, D.C.; Christensen, G.; Kawakami, J.; Burks, R.T.; Greis, P.E.; Tashjian, R.Z.; Chalmers, P.N. Revision Anterior Glenohumeral Instability: Is Arthroscopic Treatment an Option? JSES Int. 2020, 4, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Kowalczuk, M.; Ikpe, S.; Lee, H.; Sabzevari, S.; Lin, A. Risk Factors for Failure of Arthroscopic Revision Anterior Shoulder Stabilization. JBJS 2018, 100, 1319. [Google Scholar] [CrossRef] [PubMed]
- Mahure, S.A.; Mollon, B.; Capogna, B.M.; Zuckerman, J.D.; Kwon, Y.W.; Rokito, A.S. Risk Factors for Recurrent Instability or Revision Surgery Following Arthroscopic Bankart Repair. Bone Jt. J. 2018, 100-B, 324–330. [Google Scholar] [CrossRef]
- Buckup, J.; Welsch, F.; Gramlich, Y.; Hoffmann, R.; Roessler, P.P.; Schüttler, K.F.; Stein, T. Back to Sports After Arthroscopic Revision Bankart Repair. Orthop. J. Sports Med. 2018, 6, 2325967118755452. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.J.; Mascarenhas, R.; Patel, A.V.; Yanke, A.B.; Nicholson, G.P.; Cole, B.J.; Romeo, A.A.; Verma, N.N. Clinical Outcomes Following Revision Anterior Shoulder Arthroscopic Capsulolabral Stabilization. Arch. Orthop. Trauma Surg. 2015, 135, 1553–1559. [Google Scholar] [CrossRef] [PubMed]
- Neviaser, A.S.; Benke, M.T.; Neviaser, R.J. Open Bankart Repair for Revision of Failed Prior Stabilization: Outcome Analysis at a Mean of More than 10 Years. J. Shoulder Elbow Surg. 2015, 24, 897–901. [Google Scholar] [CrossRef]
- Arce, G.; Arcuri, F.; Ferro, D.; Pereira, E. Is Selective Arthroscopic Revision Beneficial for Treating Recurrent Anterior Shoulder Instability? Clin. Orthop. 2012, 470, 965–971. [Google Scholar] [CrossRef]
- Bartl, C.; Schumann, K.; Paul, J.; Vogt, S.; Imhoff, A.B. Arthroscopic Capsulolabral Revision Repair for Recurrent Anterior Shoulder Instability. Am. J. Sports Med. 2011, 39, 511–518. [Google Scholar] [CrossRef]
- Ryu, R.K.N.; Ryu, J.H. Arthroscopic Revision Bankart Repair: A Preliminary Evaluation. Orthopedics 2011, 34, 17. [Google Scholar] [CrossRef] [PubMed]
- Krueger, D.; Kraus, N.; Pauly, S.; Chen, J.; Scheibel, M. Subjective and Objective Outcome After Revision Arthroscopic Stabilization for Recurrent Anterior Instability Versus Initial Shoulder Stabilization. Am. J. Sports Med. 2011, 39, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.S.; Yi, J.W.; Lee, B.G.; Rhee, Y.G. Revision Open Bankart Surgery After Arthroscopic Repair for Traumatic Anterior Shoulder Instability. Am. J. Sports Med. 2009, 37, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Boileau, P.; Richou, J.; Lisai, A.; Chuinard, C.; Bicknell, R.T. The Role of Arthroscopy in Revision of Failed Open Anterior Stabilization of the Shoulder. Arthroscopy 2009, 25, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.J.; Getelman, M.H.; Snyder, S.J. Results of Arthroscopic Revision Anterior Shoulder Reconstruction. Am. J. Sports Med. 2009, 37, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, F.; Longo, U.G.; Ruzzini, L.; Rizzello, G.; Maffulli, N.; Denaro, V. Arthroscopic Salvage of Failed Arthroscopic Bankart Repair: A Prospective Study with a Minimum Follow-up of 4 Years. Am. J. Sports Med. 2008, 36, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Neri, B.R.; Tuckman, D.V.; Bravman, J.T.; Yim, D.; Sahajpal, D.T.; Rokito, A.S. Arthroscopic Revision of Bankart Repair. J. Shoulder Elbow Surg. 2007, 16, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Creighton, R.A.; Romeo, A.A.; Brown, F.M.; Hayden, J.K.; Verma, N.N. Revision Arthroscopic Shoulder Instability Repair. Arthroscopy 2007, 23, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Sisto, D.J. Revision of Failed Arthroscopic Bankart Repairs. Am. J. Sports Med. 2007, 35, 537–541. [Google Scholar] [CrossRef]
- Kim, S.-H.; Ha, K.-I.; Kim, Y.-M. Arthroscopic Revision Bankart Repair: A Prospective Outcome Study. Arthroscopy 2002, 18, 469–482. [Google Scholar] [CrossRef]
- Bradburn, M.J.; Deeks, J.J.; Berlin, J.A.; Russell Localio, A. Much Ado about Nothing: A Comparison of the Performance of Meta-Analytical Methods with Rare Events. Stat. Med. 2007, 26, 53–77. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, S.S.; De Beer, J.F. Traumatic Glenohumeral Bone Defects and Their Relationship to Failure of Arthroscopic Bankart Repairs: Significance of the Inverted-Pear Glenoid and the Humeral Engaging Hill-Sachs Lesion. Arthrosc. J. Arthrosc. Relat. Surg. 2000, 16, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Lippitt, S.B.; Vanderhooft, J.E.; Harris, S.L.; Sidles, J.A.; Harryman, D.T.; Matsen, F.A. Glenohumeral Stability from Concavity-Compression: A Quantitative Analysis. J. Shoulder Elbow Surg. 1993, 2, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Schroder, D.T.; Provencher, M.T.; Mologne, T.S.; Muldoon, M.P.; Cox, J.S. The Modified Bristow Procedure for Anterior Shoulder Instability: 26-Year Outcomes in Naval Academy Midshipmen. Am. J. Sports Med. 2006, 34, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Giacomo, G.D.; Itoi, E.; Burkhart, S.S. Evolving Concept of Bipolar Bone Loss and the Hill-Sachs Lesion: From “Engaging/Non-Engaging” Lesion to “On-Track/Off-Track” Lesion. Arthroscopy 2014, 30, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Itoi, E.; Abe, H.; Minagawa, H.; Seki, N.; Shimada, Y.; Okada, K. Contact between the Glenoid and the Humeral Head in Abduction, External Rotation, and Horizontal Extension: A New Concept of Glenoid Track. J. Shoulder Elbow Surg. 2007, 16, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Balg, F.; Boileau, P. The Instability Severity Index Score: A Simple Pre-Operative Score to Select Patients for Arthroscopic or Open Shoulder Stabilisation. J. Bone Jt. Surg. Br. 2007, 89-B, 1470–1477. [Google Scholar] [CrossRef]
- Longo, U.G.; Papalia, R.; Ciapini, G.; De Salvatore, S.; Casciaro, C.; Ferrari, E.; Cosseddu, F.; Novi, M.; Piergentili, I.; Parchi, P.; et al. Instability Severity Index Score Does Not Predict the Risk of Shoulder Dislocation after a First Episode Treated Conservatively. Int. J. Environ. Res. Public Health 2021, 18, 12026. [Google Scholar] [CrossRef]
- Weber, S.C. The Instability Severity Index Score in Arthroscopic Instability Surgery (ISIS): Failure to Validate Its Predictive Value in the Selection of Arthroscopic Instability Surgery. J. Shoulder Elbow Surg. 2014, 23, e231. [Google Scholar] [CrossRef]
- Bishop, J.Y.; Jones, G.L.; Rerko, M.A.; Donaldson, C. 3-D CT Is the Most Reliable Imaging Modality When Quantifying Glenoid Bone Loss. Clin. Orthop. 2013, 471, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.W.; Powell, K.A.; Yum, J.K.; Brems, J.J.; Iannotti, J.P. Use of Three-Dimensional Computed Tomography for the Analysis of the Glenoid Anatomy. J. Shoulder Elbow Surg. 2005, 14, 85–90. [Google Scholar] [CrossRef]
- Miyatake, K.; Takeda, Y.; Fujii, K.; Takasago, T.; Iwame, T. Validity of Arthroscopic Measurement of Glenoid Bone Loss Using the Bare Spot. Open Access J. Sports Med. 2014, 5, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Altan, E.; Ozbaydar, M.U.; Tonbul, M.; Yalcin, L. Comparison of Two Different Measurement Methods to Determine Glenoid Bone Defects: Area or Width? J. Shoulder Elbow Surg. 2014, 23, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Mauro, C.S.; Voos, J.E.; Hammoud, S.; Altchek, D.W. Failed Anterior Shoulder Stabilization. J. Shoulder Elbow Surg. 2011, 20, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Yon, C.-J.; Cho, C.-H.; Kim, D.-H. Revision Arthroscopic Bankart Repair: A Systematic Review of Clinical Outcomes. J. Clin. Med. 2020, 9, 3418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, J.; Jia, Y.; Zhang, G.; Zhou, J.; Wu, D.; Jiang, J.; Yun, X. Risk Factors for Recurrence after Bankart Repair: A Systematic Review and Meta-Analysis. J. Orthop. Surg. 2022, 17, 113. [Google Scholar] [CrossRef]
- Bankart, A.S.B. Recurrent or habitual dislocation of the shoulder-joint. Br. Med. J. 1923, 2, 1132–1133. [Google Scholar] [CrossRef]
- Imhoff, A.B.; Ansah, P.; Tischer, T.; Reiter, C.; Bartl, C.; Hench, M.; Spang, J.T.; Vogt, S. Arthroscopic Repair of Anterior-Inferior Glenohumeral Instability Using a Portal at the 5:30-o’clock Position: Analysis of the Effects of Age, Fixation Method, and Concomitant Shoulder Injury on Surgical Outcomes. Am. J. Sports Med. 2010, 38, 1795–1803. [Google Scholar] [CrossRef]
- Yamamoto, N.; Muraki, T.; Sperling, J.W.; Steinmann, S.P.; Cofield, R.H.; Itoi, E.; An, K.-N. Stabilizing Mechanism in Bone-Grafting of a Large Glenoid Defect. J. Bone Jt. Surg. Am. 2010, 92, 2059–2066. [Google Scholar] [CrossRef]
Author (Year) | Confounding | Selection of Participants | Classification of Interventions | Deviations from Intended Interventions | Missing Data | Measurement of Outcomes | Selection of the Reported Result | Overall Bias | Notes |
---|---|---|---|---|---|---|---|---|---|
Lee (2023) [8] | + | + | + | + | + | + | + | Low-Risk | |
Slaven (2023) [10] | ? | − | + | + | + | + | + | High-risk | Lack of matching; Military sample |
Clowez (2021) [11] | − | + | − | + | + | + | + | High-risk | Variable surgery (Latarjet or Bristow) |
Sinha (2021) [12] | + | + | + | + | + | + | + | Low-Risk | |
Calvo (2021) [13] | ? | + | + | + | + | + | + | Uncertain | Lack of matching |
Park (2021) [14] | + | + | + | + | + | + | + | Low-Risk | |
O’Neill (2020) [15] | + | + | + | + | + | + | + | Low-Risk | |
Elamo (2020) [9] | − | + | + | + | + | + | + | High-risk | GBL cutoff and engaging HSL not reported |
Su (2018) [16] | − | + | + | + | + | + | + | High-risk | Variable index surgery |
Mahure (2018) [17] | − | + | ? | + | + | + | + | High-risk | Variable surgery (ARBR, OCT, capsulorrhaphy) |
Buckup (2018) [18] | + | ? | + | + | + | + | + | Uncertain | Male-only sample |
Shin (2016) [19] | + | + | + | + | + | + | + | Low-Risk | |
Neviaser (2015) [20] | − | ? | + | + | + | + | + | High-risk | Lack of matching; Variable index Surgery |
Arce (2012) [21] | ? | + | + | + | + | + | + | Uncertain | Male-only sample |
Bartl (2011) [22] | + | + | + | + | + | + | + | Low-Risk | |
Ryu (2011) [23] | + | + | + | + | + | + | + | Low-Risk | |
Krueger (2011) [24] | − | ? | + | + | + | + | + | High-risk | Lack of matching; Variable index surgery |
Cho (2009) [25] | + | + | + | + | + | + | + | Low-Risk | |
Boileau (2009) [26] | + | + | + | + | + | + | + | Low-Risk | |
Barnes (2009) [27] | + | ? | + | + | + | + | + | Uncertain | Lack of matching |
Franceschi (2008) [28] | + | + | + | + | + | + | + | Low-Risk | |
Neri (2007) [29] | + | + | + | + | + | + | + | Low-Risk | |
Creighton (2007) [30] | − | + | + | + | + | + | + | High-risk | Variable Index Surgery |
Sisto (2007) [31] | + | + | + | + | + | + | + | Low-Risk | |
Kim (2002) [32] | + | + | + | + | + | + | + | Low-Risk |
Author (Year) | N | Minimum Follow-Up (Months) | Experimental Group (N) | Control Group (N) | Recurrent Instability Definition | Experimental Recurrence (%) | Control Recurrence (%) | Critical GBL (%) | Critical GBL Treatment | Off-Track Hill-Sachs Lesion Treatment | Conclusions |
---|---|---|---|---|---|---|---|---|---|---|---|
Lee (2023) [8] | 48 | 6 | ARBR (24) | APBR (24) | A/S/D | 12.5 | 4.2 | 20 | Excluded | Included (remplissage) | ARBR has a nonsignificant (p = 0.06) but increased recurrence and decreased capsulolabral height compared to APBR |
Slaven (2023) [10] | 41 | 24 | ARBR (41) | − | S/D | 44 | − | 20 | Excluded | Included | Recurrence rate is approximately 50% in a young (22.9 ± 4.3 yrs) military population |
Clowez (2021) [11] | 59 | 24 | Arthroscopic OCT (34) | Open coracoid transfer (25) | S/D | 7 | 0 | − | − | Included | Arthroscopic has increased recurrence compared to OCT, and recurrence is related to Calandra grade III HSLs |
Sinha (2021) [12] | 42 | 24 | ARBR with remplissage (42) | − | S/D | 9.5 | − | 25 | Excluded | Included | ARBR with remplissage is associated with recurrence <10% for patients with off-track HSLs |
Calvo (2021) [13] | 45 | 24 | ARBR (17) | Arthroscopic Latarjet (28) | S/D | 11.8 | 17.9 | 15 | Included (Latarjet) | Included | ARBR and arthroscopic Latarjet have similar recurrence rates regardless of GBL; however, this study used a lower threshold than most others (15% versus 25%) |
Park (2021) [14] | 55 | 24 | ARBR for capsular tear (10) | ARBR for labral retear (45) | D | 40 | 10.2 | 25 | Excluded | Included (all in labral retear group) | Capsular tears with healed labra are associated with increased recurrence compared to labral retears |
O’Neill (2020) [15] | 45 | 24 | ARBR with remplissage (21) | Open Latarjet (24) | A/S/D | 38 | 29 | 20 | Included (Latarjet) | Included | ARBR with remplissage for off-track HSLs and open Latarjet for critical GBL have similar recurrence rates. |
Elamo (2020) [9] | 48 | 12 | ARBR (30) | Open Latarjet (18) | S/D | 43.3 | 0 | − | − | − | ARBR has increased recurrence compared to open Latarjet; however, neither the cutoff nor the number of patients for critical GBL were defined. |
Su (2018) [16] | 92 | 24 | ARBR (92) | − | S/D | 42 | − | 20 | Included (ARBR) | Included | Recurrence was associated with off-track lesions and capsulolabral insufficiency, and ARBR recurrence rate is <20% when excluding these factors |
Mahure (2018) [17] | 344 | 36 | ARBR (225) | Revision open stabilization (119) | D | 12.4 | 5.1 | − | − | − | ARBR has increased recurrence compared to open restabilization; however, neither the cutoff nor the number of patients for critical GBL were defined. |
Buckup (2018) [18] | 47 | 24 | ARBR (25) | Healthy controls (22) | D | 12 | − | 20 | Excluded | ARBR is associated with chronic atrophy of supraspinatus and infraspinatus. | |
Shin (2016) [19] | 122 | 24 | ARBR (89) | APBR (33) | A/S/D | 18 | 3 | 25 | Excluded | Excluded | ARBR has a significantly higher recurrence rate (p = 0.039) compared to APBR |
Neviaser (2015) [20] | 30 | 120 | ARBR (30) | − | A/S/D | 0 | − | − | − | Included | ARBR has negligible recurrent instability with good-to-excellent PROs in the majority of patients |
Arce (2012) [21] | 16 | 24 | ARBR (16) | − | S/D | 18.8 | − | 25 | Excluded | Excluded | ARBR has <20% recurrence and good-to-excellent PROs in the majority of patients |
Bartl (2011) [22] | 56 | 24 | ARBR (56) | − | S/D | 11 | − | 20 | Excluded | Excluded | ARBR has <15% recurrence and good-to-excellent PROs in the majority of patients |
Ryu (2011) [23] | 15 | 18 | ARBR (15) | − | S/D | 27 | − | 20 | Included (ARBR) | Included | ARBR has <30% recurrent instability, and recurrence is not related to critical GBL |
Krueger (2011) [24] | 40 | 24 | ARBR (20) | APBR (20) | A/S/D | 10 | 0 | 25 | Excluded | ARBR has an increased risk of recurrent instability and poorer patient-reported outcomes compared to APBR | |
Cho (2009) [25] | 26 | 24 | ARBR (26) | − | A/S/D | 11.5 | − | 20 | Included (ARBR) | Included | ARBR has <15% recurrence and fair PROs in the majority of patients |
Boileau (2009) [26] | 22 | 24 | ARBR after open index (22) | − | A/S/D | 13.6 | − | 25 | Excluded | Excluded | ARBR has <15% recurrence and good-to-excellent PROs in the majority of patients |
Barnes (2009) [27] | 18 | 24 | ARBR (18) | − | D | 5.6 | − | − | − | − | ARBR has <10% recurrence and good-to-excellent PROs in the majority of patients |
Franceschi (2008) [28] | 10 | 46 | ARBR (10) | − | D | 10 | − | 30 | Excluded | Excluded | ARBR has 10% recurrent instability and good-to-excellent PROs in the majority of patients |
Neri (2007) [29] | 12 | 24 | ARBR (12) | − | S/D | 25 | − | 30 | Excluded | Excluded | ARBR has 25% recurrent instability and good-to-excellent PROs in the majority of patients |
Creighton (2007) [30] | 18 | 24 | ARBR (18) | − | S/D | 16.7 | − | 25 | Excluded | Excluded | ARBR has <20% recurrent instability and good-to-excellent PROs in the majority of patients |
Sisto (2007) [31] | 30 | 24 | ARBR (30) | − | A/S/D | 0 | − | − | − | Excluded | ARBR has negligible recurrent instability with good-to-excellent PROs in the majority of patients |
Kim (2002) [32] | 23 | 24 | ARBR (23) | − | A/S/D | 21.7 | − | 30 | Excluded | Included | ARBR has <25% recurrent instability and good-to-excellent PROs in the majority of patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baur, A.; Raghuwanshi, J.; Gwathmey, F.W. Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair. J. Clin. Med. 2024, 13, 3067. https://doi.org/10.3390/jcm13113067
Baur A, Raghuwanshi J, Gwathmey FW. Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair. Journal of Clinical Medicine. 2024; 13(11):3067. https://doi.org/10.3390/jcm13113067
Chicago/Turabian StyleBaur, Alexander, Jasraj Raghuwanshi, and F. Winston Gwathmey. 2024. "Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair" Journal of Clinical Medicine 13, no. 11: 3067. https://doi.org/10.3390/jcm13113067
APA StyleBaur, A., Raghuwanshi, J., & Gwathmey, F. W. (2024). Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair. Journal of Clinical Medicine, 13(11), 3067. https://doi.org/10.3390/jcm13113067