Microvascular Density Analysis of Patients with Inactive Systemic Lupus Erythematosus—A Two-Year Follow-Up Optical Coherence Tomography Angiography Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Inclusion Criteria
2.2. Examinations
2.3. Definition of Subgroups According to Duration of HCQ Intake
2.4. Optical Coherence Tomography Angiography
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, W.; Yu, T.; Deng, G.-M. The Role of Organ-Deposited IgG in the Pathogenesis of Multi-Organ and Tissue Damage in Systemic Lupus Erythematosus. Front. Immunol. 2022, 13, 924766. [Google Scholar] [CrossRef] [PubMed]
- Tselios, K.; Gladman, D.D.; Touma, Z.; Su, J.; Anderson, N.; Urowitz, M.B. Disease Course Patterns in Systemic Lupus Erythematosus. Lupus 2019, 28, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Atehortúa, L.; Rojas, M.; Vásquez, G.M.; Castaño, D. Endothelial Alterations in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Potential Effect of Monocyte Interaction. Mediators Inflamm. 2017, 2017, 9680729. [Google Scholar] [CrossRef] [PubMed]
- Silpa-archa, S.; Lee, J.J.; Foster, C.S. Ocular Manifestations in Systemic Lupus Erythematosus. Br. J. Ophthalmol. 2016, 100, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Conigliaro, P.; Cesareo, M.; Chimenti, M.S.; Triggianese, P.; Canofari, C.; Barbato, C.; Giannini, C.; Salandri, A.G.; Nucci, C.; Perricone, R. Take a Look at the Eyes in Systemic Lupus Erythematosus: A Novel Point of View. Autoimmun. Rev. 2019, 18, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Dima, A.; Jurcut, C.; Chasset, F.; Felten, R.; Arnaud, L. Hydroxychloroquine in Systemic Lupus Erythematosus: Overview of Current Knowledge. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X211073001. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, G.S.; McGwin, G.; Bertoli, A.M.; Fessler, B.J.; Calvo-Alén, J.; Bastian, H.M.; Vilá, L.M.; Reveille, J.D. LUMINA Study Group Effect of Hydroxychloroquine on the Survival of Patients with Systemic Lupus Erythematosus: Data from LUMINA, a Multiethnic US Cohort (LUMINA L). Ann. Rheum. Dis. 2007, 66, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Urowitz, M.B.; Gladman, D.D.; Tom, B.D.M.; Ibañez, D.; Farewell, V.T. Changing Patterns in Mortality and Disease Outcomes for Patients with Systemic Lupus Erythematosus. J. Rheumatol. 2008, 35, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, S.K.; Bonfá, E.; Wojdyla, D.; Borba, E.F.; Ramirez, L.A.; Scherbarth, H.R.; Brenol, J.C.T.; Chacón-Diaz, R.; Neira, O.J.; Berbotto, G.A.; et al. Antimalarial Treatment May Have a Time-Dependent Effect on Lupus Survival: Data from a Multinational Latin American Inception Cohort. Arthritis Rheum. 2010, 62, 855–862. [Google Scholar] [CrossRef]
- Sisó, A.; Ramos-Casals, M.; Bové, A.; Brito-Zerón, P.; Soria, N.; Muñoz, S.; Testi, A.; Plaza, J.; Sentís, J.; Coca, A. Previous Antimalarial Therapy in Patients Diagnosed with Lupus Nephritis: Influence on Outcomes and Survival. Lupus 2008, 17, 281–288. [Google Scholar] [CrossRef]
- Ruiz-Irastorza, G.; Egurbide, M.V.; Pijoan, J.I.; Garmendia, M.; Villar, I.; Martinez-Berriotxoa, A.; Erdozain, J.G.; Aguirre, C. Effect of Antimalarials on Thrombosis and Survival in Patients with Systemic Lupus Erythematosus. Lupus 2006, 15, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine Retinopathy. Eye Lond. Engl. 2017, 31, 828–845. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.F.; Kellner, U.; Lai, T.Y.Y.; Melles, R.B.; Mieler, W.F. American Academy of Ophthalmology Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology 2016, 123, 1386–1394. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical Coherence Tomography Angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Lauermann, J.L.; Eter, N.; Alten, F. Optical Coherence Tomography Angiography Offers New Insights into Choriocapillaris Perfusion. Ophthalmol. J. Int. Ophtalmol. 2018, 239, 74–84. [Google Scholar] [CrossRef] [PubMed]
- de Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A Review of Optical Coherence Tomography Angiography (OCTA). Int. J. Retina Vitr. 2015, 1, 5. [Google Scholar] [CrossRef]
- Kashani, A.H.; Chen, C.-L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Prog. Retin. Eye Res. 2017, 60, 66–100. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Bailey, S.T.; Hwang, T.S.; McClintic, S.M.; Gao, S.S.; Pennesi, M.E.; Flaxel, C.J.; Lauer, A.K.; Wilson, D.J.; Hornegger, J.; et al. Quantitative Optical Coherence Tomography Angiography of Vascular Abnormalities in the Living Human Eye. Proc. Natl. Acad. Sci. USA 2015, 112, E2395–E2402. [Google Scholar] [CrossRef] [PubMed]
- Mendis, K.R.; Balaratnasingam, C.; Yu, P.; Barry, C.J.; McAllister, I.L.; Cringle, S.J.; Yu, D.-Y. Correlation of Histologic and Clinical Images to Determine the Diagnostic Value of Fluorescein Angiography for Studying Retinal Capillary Detail. Invest. Ophthalmol. Vis. Sci. 2010, 51, 5864–5869. [Google Scholar] [CrossRef]
- Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef]
- Leclaire, M.D.; Clemens, C.R.; Eter, N.; Mihailovic, N. Choroidal neovascularization due to a punctate inner choroidopathy visualized by optical coherence tomography angiography. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 2021, 118, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, A.; Maruko, I.; Chujo, K.; Hasegawa, T.; Arakawa, H.; Iida, T. Characteristics of Treatment-Naïve Quiescent Choroidal Neovascularization Detected by Optical Coherence Tomography Angiography in Patients with Age-Related Macular Degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2671–2677. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Jung, J.J.; Balaratnasingam, C.; Dansingani, K.K.; Dhrami-Gavazi, E.; Suzuki, M.; de Carlo, T.E.; Shahlaee, A.; Klufas, M.A.; El Maftouhi, A.; et al. A Comparison Between Optical Coherence Tomography Angiography and Fluorescein Angiography for the Imaging of Type 1 Neovascularization. Invest. Ophthalmol. Vis. Sci. 2016, 57, OCT314–OCT323. [Google Scholar] [CrossRef]
- Mihailovic, N.; Eter, N.; Alnawaiseh, M. Foveale avaskuläre Zone und OCT-Angiographie. Eine Übersicht aktueller Erkenntnisse. Ophthalmology 2019, 116, 610–616. [Google Scholar] [CrossRef]
- Mihailovic, N.; Leclaire, M.D.; Eter, N.; Brücher, V.C. Altered Microvascular Density in Patients with Systemic Lupus Erythematosus Treated with Hydroxychloroquine-an Optical Coherence Tomography Angiography Study. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Goker, Y.S.; Ucgul Atılgan, C.; Tekin, K.; Kızıltoprak, H.; Yetkin, E.; Yesil Karahan, N.; Koc, M.; Kosekahya, P. The Validity of Optical Coherence Tomography Angiography as a Screening Test for the Early Detection of Retinal Changes in Patients with Hydroxychloroquine Therapy. Curr. Eye Res. 2019, 44, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Forte, R.; Haulani, H.; Dyrda, A.; Jürgens, I. Swept Source Optical Coherence Tomography Angiography in Patients Treated with Hydroxychloroquine: Correlation with Morphological and Functional Tests. Br. J. Ophthalmol. 2021, 105, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Conigliaro, P.; Cesareo, M.; Chimenti, M.S.; Triggianese, P.; Canofari, C.; Aloe, G.; Nucci, C.; Perricone, R. Evaluation of Retinal Microvascular Density in Patients Affected by Systemic Lupus Erythematosus: An Optical Coherence Tomography Angiography Study. Ann. Rheum. Dis. 2019, 78, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Tan, A.C.S.; Cheung, C.M.G.; Keane, P.A.; Dolz-Marco, R.; Sng, C.C.A.; Schmetterer, L. Optical Coherence Tomography Angiography: A Review of Current and Future Clinical Applications. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 237–245. [Google Scholar] [CrossRef]
- Mukkamala, L.; Nguyen, M.; Chang, M.; Park, S.S. Repeatability of Vascular Density Measurement of the Three Retinal Plexus Layers Using OCT Angiography in Pathologic Eyes (OCTA Vascular Density Repeatability of Three Plexus Layers). Clin. Ophthalmol. Auckl. NZ 2021, 15, 93–103. [Google Scholar] [CrossRef]
- Mihailovic, N.; Brand, C.; Lahme, L.; Schubert, F.; Bormann, E.; Eter, N.; Alnawaiseh, M. Repeatability, Reproducibility and Agreement of Foveal Avascular Zone Measurements Using Three Different Optical Coherence Tomography Angiography Devices. PLoS ONE 2018, 13, e0206045. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Pei, C.; Wen, C.; Abdelfattah, N.S. Repeatability and Reproducibility of Quantification of Superficial Peri-Papillary Capillaries by Four Different Optical Coherence Tomography Angiography Devices. Sci. Rep. 2018, 8, 17866. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Lee, M.-W.; Kim, M.-S.; Ryu, C.K.; Kim, J.-Y. Long-Term Repeatability of Peripapillary Optical Coherence Tomography Angiography Measurements in Healthy Eyes. Sci. Rep. 2021, 11, 23832. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Rivera, A.S.; Chadha, S.A.; Prasada, S.; Pawlowski, A.E.; Thorp, E.; DeBerge, M.; Ramsey-Goldman, R.; Lee, Y.C.; Achenbach, C.J.; et al. Comparative Risk of Incident Coronary Heart Disease Across Chronic Inflammatory Diseases. Front. Cardiovasc. Med. 2021, 8, 757738. [Google Scholar] [CrossRef] [PubMed]
- Ruacho, G.; Lira-Junior, R.; Gunnarsson, I.; Svenungsson, E.; Boström, E.A. Inflammatory Markers in Saliva and Urine Reflect Disease Activity in Patients with Systemic Lupus Erythematosus. Lupus Sci. Med. 2022, 9, e000607. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Anjos, R.; José-Vieira, R.; Afonso, M.; Abreu, A.C.; Monteiro, S.; Macedo, M.; Andrade, J.P.; Furtado, M.J.; Lume, M. Application of Optical Coherence Tomography Angiography for Microvascular Changes in Patients Treated with Hydroxychloroquine: A Systematic Review and Meta-Analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 2221–2233. [Google Scholar] [CrossRef] [PubMed]
- Esser, E.L.; Zimmermann, J.A.; Storp, J.J.; Eter, N.; Mihailovic, N. Retinal Microvascular Density Analysis in Patients with Rheumatoid Arthritis Treated with Hydroxychloroquine. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Saygin, D.; Highland, K.B.; Tonelli, A.R. Microvascular Involvement in Systemic Sclerosis and Systemic Lupus Erythematosus. Microcirc. N. Y. N 1994 2019, 26, e12440. [Google Scholar] [CrossRef] [PubMed]
- Dammacco, R. Systemic Lupus Erythematosus and Ocular Involvement: An Overview. Clin. Exp. Med. 2018, 18, 135–149. [Google Scholar] [CrossRef]
- Rovin, B.H.; Parikh, S.; Alvarado, A. The Kidney Biopsy in Lupus Nephritis: Is It Still Relevant? Rheum. Dis. Clin. N. Am. 2014, 40, 537–552. [Google Scholar] [CrossRef]
- Yip, G.W.-K.; Shang, Q.; Tam, L.-S.; Zhang, Q.; Li, E.K.-M.; Fung, J.W.-H.; Yu, C.-M. Disease Chronicity and Activity Predict Subclinical Left Ventricular Systolic Dysfunction in Patients with Systemic Lupus Erythematosus. Heart Br. Card. Soc. 2009, 95, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Di Battista, M.; Tani, C.; Elefante, E.; Chimera, D.; Carli, L.; Ferro, F.; Stagnaro, C.; Mosca, M. Framingham, ACC/AHA or QRISK3: Which Is the Best in Systemic Lupus Erythematosus Cardiovascular Risk Estimation? Clin. Exp. Rheumatol. 2020, 38, 602–608. [Google Scholar] [PubMed]
- Drosos, G.C.; Konstantonis, G.; Sfikakis, P.P.; Tektonidou, M.G. Underperformance of Clinical Risk Scores in Identifying Vascular Ultrasound-Based High Cardiovascular Risk in Systemic Lupus Erythematosus. Eur. J. Prev. Cardiol. 2021, 28, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.A.; Barr, E.; Magder, L.S. Development of a Systemic Lupus Erythematosus Cardiovascular Risk Equation. Lupus Sci. Med. 2019, 6, e000346. [Google Scholar] [CrossRef] [PubMed]
- Leone, P.; Prete, M.; Malerba, E.; Bray, A.; Susca, N.; Ingravallo, G.; Racanelli, V. Lupus Vasculitis: An Overview. Biomedicines 2021, 9, 1626. [Google Scholar] [CrossRef] [PubMed]
- Pyrpasopoulou, A.; Chatzimichailidou, S.; Aslanidis, S. Vascular Disease in Systemic Lupus Erythematosus. Autoimmune Dis. 2012, 2012, 876456. [Google Scholar] [CrossRef]
- Bill, A.; Sperber, G.O. Control of Retinal and Choroidal Blood Flow. Eye Lond. Engl. 1990, 4 Pt. 2, 319–325. [Google Scholar] [CrossRef]
- Reiner, A.; Fitzgerald, M.E.C.; Del Mar, N.; Li, C. Neural Control of Choroidal Blood Flow. Prog. Retin. Eye Res. 2018, 64, 96–130. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.; Sun, Y.; Xie, Y.; Zhang, Z.; Li, S.; Wu, S.; Wang, N. Retinal Vessel Oxygen Saturation and Vessel Diameter in Healthy Individuals during High-Altitude Exposure. Acta Ophthalmol. 2019, 97, 279–286. [Google Scholar] [CrossRef]
- Cutolo, M.; Melsens, K.; Wijnant, S.; Ingegnoli, F.; Thevissen, K.; De Keyser, F.; Decuman, S.; Müller-Ladner, U.; Piette, Y.; Riccieri, V.; et al. Nailfold Capillaroscopy in Systemic Lupus Erythematosus: A Systematic Review and Critical Appraisal. Autoimmun. Rev. 2018, 17, 344–352. [Google Scholar] [CrossRef]
- Svensson, C.; Eriksson, P.; Bjarnegård, N.; Jonasson, H.; Strömberg, T.; Sjöwall, C.; Zachrisson, H. Impaired Microcirculation and Vascular Hemodynamics in Relation to Macrocirculation in Patients With Systemic Lupus Erythematosus. Front. Med. 2021, 8, 722758. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.E.; Ahn, S.J.; Woo, S.J.; Park, K.H.; Lee, B.R.; Lee, Y.-K.; Sung, Y.-K. Use of OCT Retinal Thickness Deviation Map for Hydroxychloroquine Retinopathy Screening. Ophthalmology 2021, 128, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.F.; Durbin, M.; de Sisternes, L.; Pham, B.H. Sequential retinal thickness analysis shows hydroxychloroquine damage before other screening techniques. Retin. Cases Brief Rep. 2021, 15, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Melles, R.B.; Marmor, M.F. Rapid Macular Thinning Is an Early Indicator of Hydroxychloroquine Retinal Toxicity. Ophthalmology 2022, 129, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Manalastas, P.I.C.; Zangwill, L.M.; Saunders, L.J.; Mansouri, K.; Belghith, A.; Suh, M.H.; Yarmohammadi, A.; Penteado, R.C.; Akagi, T.; Shoji, T.; et al. Reproducibility of Optical Coherence Tomography Angiography Macular and Optic Nerve Head Vascular Density in Glaucoma and Healthy Eyes. J. Glaucoma 2017, 26, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Coscas, F.; Sellam, A.; Glacet-Bernard, A.; Jung, C.; Goudot, M.; Miere, A.; Souied, E.H. Normative Data for Vascular Density in Superficial and Deep Capillary Plexuses of Healthy Adults Assessed by Optical Coherence Tomography Angiography. Invest. Ophthalmol. Vis. Sci. 2016, 57, OCT211–OCT223. [Google Scholar] [CrossRef]
- Lavia, C.; Bonnin, S.; Maule, M.; Erginay, A.; Tadayoni, R.; Gaudric, A. Vessel density of superficial, intermediate, and deep capillary plexuses using optical coherence tomography angiography. Retina Phila. Pa 2019, 39, 247–258. [Google Scholar] [CrossRef]
Total Study Group | High-Risk Group | Low-Risk Group | |
---|---|---|---|
n | 24 | 12 | 12 |
Sex f/m | 14/10 | 5/7 | 9/3 |
Age (years) at t0 | 47.0 (34.0; 54.8) | 43.0 (32.5; 54.8) | 48.0 (37.5; 54.3) |
Duration HCQ therapy (years) at t0 | 5.1 (2.5; 13.2) | 12.0 (6.1; 15.8) | 2.5 (1.3; 3.8) |
Duration HCQ therapy (years) at t1 | 7.2 (4.4; 15.0) | 13.7 (7.9; 17.3) | 4.4 (3.4; 6,2) |
Cumulative dose HCQ (g) at t0 | 532.8 (317.6; 1313.6) | 1223.9 (466.9; 1640.8) | 322.7 (164.8; 538.2) |
Cumulative dose HCQ (g) at t1 | 856.2 (516.3; 1583.9) | 1518.2 (746.2; 1937.9) | 587.7 (398.2; 858.6) |
Total Study Group | ||||
---|---|---|---|---|
Baseline (t0) (n = 24) | 2 Years (t1) (n = 24) | Δt1 − t0 (n = 24) | p | |
SCP (VD) | ||||
whole en face | 47.0 (45.5; 47.8) | 45.3 (43.4; 46.9) | −1.4 (−3.3; −0.1) | 0.001 |
fovea | 20.3 (15.5; 23.3) | 18.4 (13.6; 23.3) | −0.6 (−2.8; −0.9) | 0.241 |
parafoveal | 50.0 (47.6; 50.5) | 47.9 (45.4; 49.8) | −1.5 (−3.9; −0.2) | <0.001 |
DCP (VD) | ||||
whole en face | 51.1 (48.9; 51.8) | 49.9 (46.6; 51.9) | −1.3 (−3.1; 0.7) | 0.128 |
fovea | 37.2 (29.2; 40.9) * | 35.7 (29.6; 41.6) | 0.1 (−1.0; 1.3) * | 0.671 |
parafoveal | 53.4 (51.2; 54.0) | 52.4 (48.4; 54.1) | −1.4 (−2.8; 0.5) | 0.074 |
CC (VD) | 70.9 (66.3; 73.6) | 69.7 (64.3; 72.6) | −0.9 (−2.6; 0.4) | 0.013 |
CRT (µm) | ||||
fovea | 260.4 (246.4; 271.1) | 261.9 (245.9; 278.2) | 0.6 (−1.4; 2.6) | 0.296 |
parafoveal | 327.1 (315.1; 335.1) | 325.3 (317.7; 334.8) | −0.2 (−1.8; 1.6) | 0.961 |
FAZ (mm2) | 0.26 (0.19; 0.34) | 0.27 (0.23; 0.36) * | 0.01 (−0.01; 0.03) * | 0.332 |
High-Risk Group | ||||
---|---|---|---|---|
Baseline (t0) (n = 12) | 2-Years (t1) (n = 12) | Δt1 − t0 (n = 12) | p | |
SCP (VD) | ||||
whole en face | 46.8 (42.7; 47.5) | 45.4 (43.5; 47.8) | −0.9 (−3.2; −0.1) | 0.052 |
fovea | 19.8 (15.5; 24.2) | 17.9 (16.7; 24.2) | −0.4 (−2.5; 0.6) | 0.424 |
parafoveal | 49.8 (45.2; 50.4) | 47.6 (46.3; 51.2) | −1.3 (−3.7; −0.2) | 0.077 |
DCP (VD) | ||||
whole en face | 50.4 (47.2; 51.4) | 47.4 (45.9; 52.6) | −2.5 (−4.0; 1.2) | 0.470 |
fovea | 37.2 (29.2; 41.9) * | 35.7 (29.7; 39.4) | −0.2 (−2.1; 0.7) * | 0.577 |
parafoveal | 52.6 (50.0; 54.0) | 49.7 (48.1; 54.7) | −1.5 (−4.1; 1.1) | 0.301 |
CC (VD) | 71.5 (68.1; 74.8) | 72.2 (65.5; 73.5) | −0.5 (−2.4; 0.9) | 0.176 |
CRT (µm) | ||||
fovea | 258.2 (249.4; 268.2) | 255.5 (246.5; 279.6) | 0.6 (−3.1; 2.1) | 0.910 |
parafoveal | 334.0 (317.3; 335.8) | 331.1 (316.9; 337.2) | −0.8 (−3.2; 2.0) | 0.349 |
FAZ (mm2) | 0.25 (0.21; 0.34) | 0.25 (0.22; 0.31) | 0.01 (−0.01; 0.04) | 0.758 |
Low-Risk Group | ||||
---|---|---|---|---|
Baseline (t0) (n = 12) | 2-Years (t1) (n = 12) | Δt1 − t0 (n = 12) | p | |
SCP (VD) | ||||
whole en face | 47.0 (45.5; 48.1) | 45.2 (43.0; 46.3) | −1.8 (−3.3; −0.1) | 0.012 |
fovea | 20.5 (15.5; 22.9) | 18.6 (12.7; 23.3) | −1.2 (−3.5; 1.5) | 0.424 |
parafoveal | 50.2 (47.7; 51.1) | 47.9 (44.7; 49.5) | −2.1 (−4.0; −0.4) | 0.009 |
DCP (VD) | ||||
whole en face | 51.4 (49.3; 52.5) | 51.1 (49.0; 51.8) | −1.0 (−2.3; 0.2) | 0.176 |
fovea | 35.3 (28.9; 40.6) | 35.6 (28.2; 42.2) | 0.7 (−0.7; 1.6) | 0.151 |
parafoveal | 53.6 (52.2; 54.4) | 52.9 (51.9; 54.1) | −0.8 (−2.6; 0.3) | 0.204 |
CC (VD) | 69.2 (62.9; 72.0) | 68.6 (63.0; 70.4) | −1.4 (−2.6; 0.4) | 0.027 |
CRT (µm) | ||||
fovea | 262.3 (240.8; 278.6) | 267.8 (242.3; 278.2) | 1.5 (0.2; 3.2) | 0.230 |
parafoveal | 321.5 (313.7; 327.9) | 321.9 (318.2; 328.2) | 0.9 (−1.0; 1.6) | 0.370 |
FAZ (mm2) | 0.28 (0.14; 0.34) | 0.30 (0.27; 0.39) * | 0.01 (−0.01; 0.02) * | 0.363 |
Δt1 − t0 High-Risk Group (n = 12) | Δt1 − t0 Low-Risk Group (n = 12) | p | |
---|---|---|---|
SCP (VD) | |||
whole en face | −0.9 (−3.2; −0.1) | −1.8 (−3.3; −0.1) | 0.640 |
fovea | −0.4 (−2.5; 0.6) | −1.2 (−3.5; 1.5) | 0.932 |
parafoveal | −1.3 (−3.7; −0.2) | −2.1 (−4.0; −0.4) | 0.443 |
DCP (VD) | |||
whole en face | −2.5 (−4.0; 1.2) | −1.0 (−2.3; 0.2) | 0.410 |
fovea | −0.2 (−2.1; 0.7) | 0.7 (−0.7; 1.6) | 0.211 |
parafoveal | −1.5 (−4.1; 1.1) | −0.8 (−2.6; 0.3) | 0.713 |
CC (VD) | −0.5 (−2.4; 0.9) | −1.4 (−2.6; 0.4) | 0.640 |
CRT (µm) | |||
fovea | 0.6 (−3.1; 2.1) | 1.5 (0.2; 3.2) | 0.325 |
parafoveal | −0.8 (−3.2; 2.0) | 0.9 (−1.0; 1.6) | 0.272 |
FAZ (mm2) | 0.01 (−0.01; 0.04) | 0.01 (−0.01; 0.02) * | 0.727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leclaire, M.D.; Esser, E.L.; Dierse, S.; Koch, R.; Zimmermann, J.A.; Storp, J.J.; Gunnemann, M.-L.; Lahme, L.; Eter, N.; Mihailovic, N. Microvascular Density Analysis of Patients with Inactive Systemic Lupus Erythematosus—A Two-Year Follow-Up Optical Coherence Tomography Angiography Study. J. Clin. Med. 2024, 13, 2979. https://doi.org/10.3390/jcm13102979
Leclaire MD, Esser EL, Dierse S, Koch R, Zimmermann JA, Storp JJ, Gunnemann M-L, Lahme L, Eter N, Mihailovic N. Microvascular Density Analysis of Patients with Inactive Systemic Lupus Erythematosus—A Two-Year Follow-Up Optical Coherence Tomography Angiography Study. Journal of Clinical Medicine. 2024; 13(10):2979. https://doi.org/10.3390/jcm13102979
Chicago/Turabian StyleLeclaire, Martin Dominik, Eliane Luisa Esser, Sebastian Dierse, Raphael Koch, Julian Alexander Zimmermann, Jens Julian Storp, Marie-Louise Gunnemann, Larissa Lahme, Nicole Eter, and Nataša Mihailovic. 2024. "Microvascular Density Analysis of Patients with Inactive Systemic Lupus Erythematosus—A Two-Year Follow-Up Optical Coherence Tomography Angiography Study" Journal of Clinical Medicine 13, no. 10: 2979. https://doi.org/10.3390/jcm13102979
APA StyleLeclaire, M. D., Esser, E. L., Dierse, S., Koch, R., Zimmermann, J. A., Storp, J. J., Gunnemann, M.-L., Lahme, L., Eter, N., & Mihailovic, N. (2024). Microvascular Density Analysis of Patients with Inactive Systemic Lupus Erythematosus—A Two-Year Follow-Up Optical Coherence Tomography Angiography Study. Journal of Clinical Medicine, 13(10), 2979. https://doi.org/10.3390/jcm13102979