Incidence of Thrombosis in COVID-19 Patients Compared to Non-COVID-19 Sepsis Patients in the Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 30 May 2023).
- Li, C.; He, Q.; Qian, H.; Liu, J. Overview of the pathogenesis of COVID-19 (Review). Exp. Ther. Med. 2021, 22, 1011. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020, 9, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Number of COVID-19 Patients in Intensive Care (ICU). Available online: https://ourworldindata.org/grapher/current-covid-patients-icu (accessed on 1 July 2022).
- Navas-Martin, S.R.; Weiss, S. Coronavirus replication and pathogenesis: Implications for the recent outbreak of severe acute respiratory syndrome (SARS), and the challenge for vaccine development. J. Neurovirol. 2004, 10, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef]
- Iwasaki, A.; Pillai, P.S. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 2014, 14, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Streicher, F.; Jouvenet, N. Stimulation of Innate Immunity by Host and Viral RNAs. Trends Immunol. 2019, 40, 1134–1148. [Google Scholar] [CrossRef] [PubMed]
- Eppensteiner, J.; Kwun, J.; Scheuermann, U.; Barbas, A.; Limkakeng, A.T.; Kuchibhatla, M.; Elster, E.A.; Kirk, A.D.; Lee, J. Damage- and pathogen-associated molecular patterns play differential roles in late mortality after critical illness. JCI Insight 2019, 4, e127925. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Al-Ani, F.; Chehade, S.; Lazo-Langner, A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb. Res. 2020, 192, 152–160. [Google Scholar] [CrossRef]
- Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M.; et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect. Dis. 2020, 20, 1135–1140. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.; Poudel, Y.; Adhikari, A.; Aryal, B.B.; Dangol, D.; Bajracharya, T.; Maharjan, A.; Gautam, R. D-dimer as a biomarker for assessment of COVID-19 prognosis: D-dimer levels on admission and its role in predicting disease outcome in hospitalized patients with COVID-19. PLoS ONE 2021, 16, e0256744. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.; Casper, T.C.; Elliott, C.G.; Men, S.; Pendleton, R.C.; Kraiss, L.W.; Weyrich, A.S.; Grissom, C.K.; Zimmerman, G.A.; Rondina, M.T. VTE Incidence and Risk Factors in Patients with Severe Sepsis and Septic Shock. Chest 2015, 148, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Porfidia, A.; Valeriani, E.; Pola, R.; Porreca, E.; Rutjes, A.W.S.; Di Nisio, M. Venous thromboembolism in patients with COVID-19: Systematic review and meta-analysis. Thromb. Res. 2020, 196, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Maneta, E.; Aivalioti, E.; Tual-Chalot, S.; Veseli, B.E.; Gatsiou, A.; Stamatelopoulos, K.; Stellos, K. Endothelial dysfunction and immunothrombosis in sepsis. Front. Immunol. 2023, 14, 1144229. [Google Scholar] [CrossRef] [PubMed]
- Joffre, J.; Hellman, J.; Ince, C.; Ait-Oufella, H. Endothelial responses in sepsis. Am. J. Respir. Crit. Care Med. 2020, 202, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Degen, J.L.; Bugge, T.H.; Goguen, J.D. Fibrin and fibrinolysis in infection and host defense. J. Thromb. Haemost. 2007, 5, 24–31. [Google Scholar] [CrossRef]
- Mannes, M.; Pechtl, V.; Hafner, S.; Dopler, A.; Eriksson, O.; Manivel, V.A.; Wohlgemuth, L.; Messerer, D.A.C.; Schrezenmeier, H.; Ekdahl, K.N.; et al. Complement and platelets: Prothrombotic cell activation requires membrane attack complex–induced release of danger signals. Blood Adv. 2023, 7, 6367–6380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Wang, X.; Yang, L.; Li, H.; Wang, Y.; Liu, M.; Zhao, X.; Xie, Y.; Yang, Y.; et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 2020, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Lopez, M.-T.; Garcia-Leon, N.; Gomez-Arevalillo, S.; Martin-Serrano, P.; Matilla-Garcia, A. Coronavirus disease 2019 and coagulopathy: Other prothrombotic coagulation factors. Blood Coagul. Fibrinolysis 2021, 32, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, W.; Jiang, W.; Xiao, M.; Li, Y.; Tang, N.; Liu, Z.; Yan, X.; Zhao, Y.; Li, T.; et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J. Thromb. Thrombolysis 2020, 50, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Tan, J.Y.; Wong, W.H.; Cheong, M.A.; Ng, I.M.; Conceicao, E.P.; Low, J.G.H.; Ng, H.J.; Lee, L.H. Clinical and laboratory features of hypercoagulability in COVID-19 and other respiratory viral infections amongst predominantly younger adults with few comorbidities. Sci. Rep. 2021, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Spiezia, L. Evaluation of Covid-19-Associated Hypercoagulability with Functional Coagulation Assays and Extracellular Vesicles. Med Res. Arch. 2022, 10. [Google Scholar] [CrossRef]
- Geerts, W.H.; Bergqvist, D.; Pineo, G.F.; Heit, J.A.; Samama, C.M.; Lassen, M.R.; Colwell, C.W. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008, 133, 381S–453S. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, L.; Le, K.J.; Pan, M.M.; Kong, L.C.; Gu, Z.C.; Xu, H.; Zhang, Z.; Ge, W.H.; Lin, H.W. Incidence of Venous Thromboembolism in Hospitalized Coronavirus Disease 2019 Patients: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2020, 7, 151. [Google Scholar] [CrossRef]
- Di Minno, A.; Ambrosino, P.; Calcaterra, I.; Di Minno, M.N.D. COVID-19 and Venous Thromboembolism: A Meta-analysis of Literature Studies. Semin. Thromb. Hemost. 2020, 46, 763–771. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Jilma, B.; Pabinger, I.; Ay, C. Risk of venous thromboembolism in patients with COVID-19: A systematic review and meta-analysis. Res. Pract. Thromb. Haemost. 2020, 4, 1178–1191. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 1 July 2022).
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [PubMed]
- Du, R.H.; Liang, L.R.; Yang, C.Q.; Wang, W.; Cao, T.Z.; Li, M.; Guo, G.Y.; Du, J.; Zheng, C.L.; Zhu, Q.; et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur. Respir. J. 2020, 55, 2000524. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Badimon, J.J.; Vilahur, G.; Segales, E.; Llorente, V. Pathogenesis of the acute coronary syndromes and therapeutic implications. Pathophysiol. Haemost. Thromb. 2002, 32, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Rapkiewicz, A.V.; Mai, X.; Carsons, S.E.; Pittaluga, S.; Kleiner, D.E.; Berger, J.S.; Thomas, S.; Adler, N.M.; Charytan, D.M.; Gasmi, B.; et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine 2020, 24, 100434. [Google Scholar] [CrossRef]
Variable | COVID-19 (N = 164) | Sepsis (N = 492) | p-Value |
---|---|---|---|
Age | 61.60 ± 15.49 | 58.25 ± 15.86 | 0.021 |
BMI | 31.81 ± 8.81 | 29.16 ± 8.89 | <0.001 |
LOS (days) | 14.29 ± 15.44 | 23.28 ± 36.72 | <0.001 |
Endotracheal tube | 22 (13.4) | 147 (29.9) | <0.001 |
Central line | 31 (18.9) | 182 (37.0) | <0.001 |
Active cancer | 6 (3.7) | 62 (12.6) | 0.001 |
Steroids administered | 93 (56.7) | 224 (45.5) | 0.013 |
Anticoagulation administered | 122 (74.4) | 261 (53.0) | <0.001 |
Antihistamine agent administered | 43 (26.2) | 235 (47.8) | <0.001 |
Diabetes diagnosis | 85 (51.8) | 162 (32.9) | <0.001 |
Organ failure diagnosis | 117 (71.3) | 405 (82.3) | 0.003 |
Mortality | 27 (22.1) | 151 (36.8) | 0.003 |
Ongoing hormonal tx | 1 (0.6) | 1 (0.2) | 0.438 |
Antiplatelet agents administered | 68 (41.5) | 176 (35.8) | 0.192 |
Thrombophilia present | 7 (4.3) | 18 (3.7) | 0.724 |
Bleeding events | 12 (7.3) | 62 (12.6) | 0.064 |
Arterial and thrombotic events | 72 (43.9) | 242 (49.2) | 0.241 |
Heart failure diagnosis | 50 (30.5) | 166 (33.7) | 0.443 |
AMI/stroke diagnosis | 25 (15.2) | 108 (22.0) | 0.064 |
Previous VTE | 11 (6.7) | 51 (10.4) | 0.165 |
HIV diagnosis | 3 (1.8) | 11 (2.2) | 1.000 |
Respiratory failure diagnosis | 83 (50.6) | 269 (54.7) | 0.366 |
Outcome: Thrombosis | Outcome: Mortality | |||||
---|---|---|---|---|---|---|
Univariate | Multivariate | Multivariate | ||||
Covariate | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p |
COVID-19 (ref: sepsis) | 1.06 (0.66–1.70) | 0.808 | 0.85 (0.42–1.71) | 0.640 | 0.33 (0.16–0.66) | 0.002 |
Sex (ref: female) | 0.54 (0.35–0.84) | 0.006 | 1.80 (1.03–3.12) | 0.038 | 0.88 (0.55–1.39) | 0.571 |
Age | 1.03 (1.02–1.05) | <0.001 | 1.04 (1.02–1.06) | <0.001 | 1.04 (1.02–1.06 | <0.001 |
Steroids administered | 0.55 (0.36–0.84) | 0.006 | 0.42 (0.24–0.71) | 0.001 | 2.35 (1.47–3.76) | <0.001 |
Antiplatelet agents | 4.37 (2.82–6.78) | <0.001 | 3.41 (2.01–5.81) | <0.001 | 1.10 (0.68–1.78) | 0.691 |
Diabetes | 1.54 (1.01–2.33) | 0.043 | 0.92 (0.53–1.58) | <0.001 | 0.76 (0.47–1.25) | 0.282 |
Platelet count (first) | 0.998 (.997–1.00) | 0.033 | 0.998 (0.996–1.001) | 0.213 | 0.998 (0.996–1.000) | 0.029 |
PT (highest) | 1.02 (1.01–1.03) | 0.004 | 1.02 (1.01–1.04) | 0.002 | 1.02 (1.001–1.031) | 0.031 |
ALT (first) | 1.001 (1.000–1.002) | 0.036 | 1.001 (1.000–1.002) | 0.041 | 1.002 (1.000–1.004) | 0.038 |
Thrombosis | N/A | N/A | N/A | N/A | 1.48 (0.82–2.66) | 0.192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Perry, A.; Sanchez Parra, C.; Gonzalez Torriente, A.; Ghumman, H.; Charkowick, S.; Colon, J.; Heide, M.; Jaglal, M.; Mhaskar, R.; et al. Incidence of Thrombosis in COVID-19 Patients Compared to Non-COVID-19 Sepsis Patients in the Intensive Care Unit. J. Clin. Med. 2024, 13, 2974. https://doi.org/10.3390/jcm13102974
Huang S, Perry A, Sanchez Parra C, Gonzalez Torriente A, Ghumman H, Charkowick S, Colon J, Heide M, Jaglal M, Mhaskar R, et al. Incidence of Thrombosis in COVID-19 Patients Compared to Non-COVID-19 Sepsis Patients in the Intensive Care Unit. Journal of Clinical Medicine. 2024; 13(10):2974. https://doi.org/10.3390/jcm13102974
Chicago/Turabian StyleHuang, Sherri, Ashley Perry, Carlos Sanchez Parra, Adriana Gonzalez Torriente, Haider Ghumman, Shaun Charkowick, Joshua Colon, McKenzi Heide, Michael Jaglal, Rahul Mhaskar, and et al. 2024. "Incidence of Thrombosis in COVID-19 Patients Compared to Non-COVID-19 Sepsis Patients in the Intensive Care Unit" Journal of Clinical Medicine 13, no. 10: 2974. https://doi.org/10.3390/jcm13102974
APA StyleHuang, S., Perry, A., Sanchez Parra, C., Gonzalez Torriente, A., Ghumman, H., Charkowick, S., Colon, J., Heide, M., Jaglal, M., Mhaskar, R., & Rico, J. F. (2024). Incidence of Thrombosis in COVID-19 Patients Compared to Non-COVID-19 Sepsis Patients in the Intensive Care Unit. Journal of Clinical Medicine, 13(10), 2974. https://doi.org/10.3390/jcm13102974