Intraoperative Extracorporeal Support during Lung Transplantation: Not Just for the High-Risk Patient
Abstract
:1. Introduction
2. Methods
3. Cardiopulmonary Bypass as Support
4. Disadvantages of Cardiopulmonary Bypass
5. Cardiopulmonary Bypass versus Off-Pump
6. ECMO versus Cardiopulmonary Bypass
7. Routine Use of ECMO
8. Intraoperative Mechanical Support’s Role in Reperfusion Injury
9. Intraoperative ECMO’s Role in the Modern Era
10. Cannulation Strategies
11. ECMO Complications
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Venuta, F.; Van Raemdonck, D. History of lung transplantation. J. Thorac. Dis. 2017, 9, 5458–5471. [Google Scholar] [CrossRef]
- Burdett, C.; Butt, T.; Lordan, J.; Dark, J.H.; Clark, S.C. Comparison of single lung transplant with and without the use of cardiopulmonary bypass. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Triantafillou, A.N.; Pasque, M.K.; Huddleston, C.B.; Pond, C.G.; Cerza, R.F.; Forstot, R.M.; Cooper, J.D.; Patterson, G.; Lappas, D.G. Predictors, frequency, and indications for cardiopulmonary bypass during lung transplantation in adults. Ann. Thorac. Surg. 1994, 57, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- de Hoyos, A.; Demajo, W.; Snell, G.; Miller, J.; Winton, T.; Maurer, J.R.; Patterson, G.A. Preoperative prediction for the use of cardiopulmonary bypass in lung transplantation. J. Thorac. Cardiovasc. Surg. 1993, 106, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Prabhu, V. Basics of cardiopulmonary bypass. Indian J. Anaesth. 2017, 61, 760–767. [Google Scholar] [CrossRef] [PubMed]
- McRae, K. Con: Lung transplantation should not be routinely performed with cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 2000, 14, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Aljure, O.D.; Fabbro, M. Cardiopulmonary Bypass and Inflammation: The Hidden Enemy. J. Cardiothorac. Vasc. Anesth. 2019, 33, 346–347. [Google Scholar] [CrossRef]
- Bronicki, R.A.; Hall, M. Cardiopulmonary Bypass-Induced Inflammatory Response: Pathophysiology and Treatment. Pediatr. Crit. Care Med. 2016, 17 (Suppl. S1), S272–S278. [Google Scholar] [CrossRef]
- Remadi, J.P.; Rakotoarivelo, Z.; Marticho, P.; Benamar, A. Prospective randomized study comparing coronary artery bypass grafting with the new mini-extracorporeal circulation Jostra System or with a standard cardiopulmonary bypass. Am. Heart J. 2006, 151, 198.e1–198.e7. [Google Scholar] [CrossRef]
- Wippermann, J.; Albes, J.M.; Hartrumpf, M.; Kaluza, M.; Vollandt, R.; Bruhin, R.; Wahlers, T. Comparison of minimally invasive closed circuit extracorporeal circulation with conventional cardiopulmonary bypass and with off-pump technique in CABG patients: Selected parameters of coagulation and inflammatory system. Eur. J. Cardio-Thorac. Surg. 2005, 28, 127–132. [Google Scholar] [CrossRef]
- Yavari, M.; Becker, R.C. Coagulation and fibrinolytic protein kinetics in cardiopulmonary bypass. J. Thromb. Thrombolysis 2008, 27, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Welsh, K.J.; Nedelcu, E.; Bai, Y.; Wahed, A.; Klein, K.; Tint, H.; Gregoric, I.; Patel, M.; Kar, B.; Loyalka, P.; et al. How do we manage cardiopulmonary bypass coagulopathy? Transfusion 2014, 54, 2158–2166. [Google Scholar] [CrossRef] [PubMed]
- Scrascia, G.; Rotunno, C.; Guida, P.; Conte, M.; Amorese, L.; Margari, V.; Schinosa, L.d.L.T.; Paparella, D. Haemostasis alterations in coronary artery bypass grafting: Comparison between the off-pump technique and a closed coated cardiopulmonary bypass system. Interact. Cardiovasc. Thorac. Surg. 2013, 16, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Dyke, C.M.; Smedira, N.G.; Koster, A.; Aronson, S.; McCarthy, H.L.; Kirshner, R.; Lincoff, A.M.; Spiess, B.D. A comparison of bivalirudin to heparin with protamine reversal in patients undergoing cardiac surgery with cardiopulmonary bypass: The EVOLUTION-ON study. J. Thorac. Cardiovasc. Surg. 2006, 131, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Shore-Lesserson, L.; Baker, R.A.; Ferraris, V.; Greilich, P.E.; Fitzgerald, D.; Roman, P.; Hammon, J. STS/SCA/AmSECT Clinical Practice Guidelines: Anticoagulation during Cardiopulmonary Bypass. J. Extracorpor. Technol. 2018, 50, 5–18. [Google Scholar] [CrossRef]
- Madhavan, S.; Chan, S.-P.; Tan, W.-C.; Eng, J.; Li, B.; Luo, H.-D.; Teoh, L.-K.K. Cardiopulmonary bypass time: Every minute counts. J. Cardiovasc. Surg. 2018, 59, 274–281. [Google Scholar] [CrossRef]
- Fullerton, D.A.; McIntyre, R.C., Jr.; Mitchell, M.B.; Campell, D.N.; Grover, F.L. Lung transplantation with cardiopulmonary bypass exaggerates pulmonary vasomotor dysfunction in the transplanted lung. J. Thorac. Cardiovasc. Surg. 1995, 109, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, M.; Tsuchida, M.; Koike, T.; Satoh, K.; Haga, M.; Aoki, T.; Toyabe, S.-I.; Hayashi, J.-I. Ultrafiltration attenuates cardiopulmonary bypass–induced acute lung injury in a canine model of single-lung transplantation. J. Thorac. Cardiovasc. Surg. 2006, 132, 1447–1454.e2. [Google Scholar] [CrossRef]
- Nagendran, M.; Maruthappu, M.; Sugand, K. Should double lung transplant be performed with or without cardiopulmonary bypass? Interact. Cardiovasc. Thorac. Surg. 2011, 12, 799–804. [Google Scholar] [CrossRef]
- Mohite, P.N.; Sabashnikov, A.; Patil, N.P.; Garcia-Saez, D.; Zych, B.; Zeriouh, M.; Romano, R.; Soresi, S.; Reed, A.; Carby, M.; et al. The role of cardiopulmonary bypass in lung transplantation. Clin. Transplant. 2016, 30, 202–209. [Google Scholar] [CrossRef]
- Balsara, K.R.; Krupnick, A.S.; Bell, J.M.; Khiabani, A.; Scavuzzo, M.; Hachem, R.; Trulock, E.; Witt, C.; Byers, D.E.; Yusen, R.; et al. A single-center experience of 1500 lung transplant patients. J. Thorac. Cardiovasc. Surg. 2018, 156, 894–905.e3. [Google Scholar] [CrossRef] [PubMed]
- Chambers, D.C.; Perch, M.; Zuckermann, A.; Cherikh, W.S.; Harhay, M.O.; HayesJr, D.; Hsich, E.; Khush, K.K.; Potena, L.; Sadavarte, A.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-eighth adult lung transplantation report—2021; Focus on recipient characteristics. J. Heart Lung Transplant. 2021, 40, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, N.; Schraufnagel, D.; Plitt, G.; Zaki, A.; Ayyat, K.S.; Elgharably, H. Comparison of mechanical cardiopulmonary support strategies during lung transplantation. Expert Rev. Med. Devices 2020, 17, 1075–1093. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Hoetzenecker, K.; Klepetko, W. Procedural mechanical support for lung transplantation. Curr. Opin. Organ Transplant. 2021, 26, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Ius, F.; Kuehn, C.; Tudorache, I.; Sommer, W.; Avsar, M.; Boethig, D.; Fuehner, T.; Gottlieb, J.; Hoeper, M.; Haverich, A.; et al. Lung transplantation on cardiopulmonary support: Venoarterial extracorporeal membrane oxygenation outperformed cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2012, 144, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, C.A.; Shiose, A.; Esper, S.A.; Shigemura, N.; D’cunha, J.; Bhama, J.K.; Richards, T.J.; Arlia, P.; Crespo, M.M.; Pilewski, J.M. Outcomes of intraoperative venoarterial extracorporeal membrane oxygenation versus cardiopulmonary bypass during lung transplantation. Ann. Thorac. Surg. 2014, 98, 1936–1943. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.; Yang, J.; Sonett, J.; Bacchetta, M. Comparison of extracorporeal membrane oxygenation versus cardiopulmonary bypass for lung transplantation. J. Thorac. Cardiovasc. Surg. 2014, 148, 2410–2416. [Google Scholar] [CrossRef]
- Machuca, T.N.; Collaud, S.; Mercier, O.; Cheung, M.; Cunningham, V.; Kim, S.J.; Azad, S.; Singer, L.; Yasufuku, K.; de Perrot, M.; et al. Outcomes of intraoperative extracorporeal membrane oxygenation versus cardiopulmonary bypass for lung transplantation. J. Thorac. Cardiovasc. Surg. 2015, 149, 1152–1157. [Google Scholar] [CrossRef]
- Winter, H.; Müller, H.-H.; Meiser, B.; Neurohr, C.; Behr, J.; Guenther, S.; Hagl, C.; Hoechter, D.J.; von Dossow, V.; Schramm, R. The Munich Lung Transplant Group: Intraoperative Extracorporeal Circulation in Lung Transplantation. Thorac. Cardiovasc. Surg. 2015, 63, 706–714. [Google Scholar] [CrossRef]
- Dell’amore, A.; Campisi, A.; Congiu, S.; Mazzarra, S.; Pastore, S.; Dolci, G.; Baiocchi, M.; Frascaroli, G. Extracorporeal life support during and after bilateral sequential lung transplantation in patients with pulmonary artery hypertension. Artif. Organs 2019, 44, 628–637. [Google Scholar] [CrossRef]
- Loor, G.; Huddleston, S.; Hartwig, M.; Bottiger, B.; Daoud, D.; Wei, Q.; Zhang, Q.; Ius, F.; Warnecke, G.; Villavicencio, M.A.; et al. Effect of mode of intraoperative support on primary graft dysfunction after lung transplant. J. Thorac. Cardiovasc. Surg. 2022, 164, 1351–1361.e4. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M.; Lee, J.C.; Kawut, S.M.; Shah, R.J.; Localio, A.R.; Bellamy, S.L.; Lederer, D.J.; Cantu, E.; Kohl, B.A.; Lama, V.N.; et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am. J. Respir. Crit. Care Med. 2013, 187, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Ohsumi, A.; Date, H. Perioperative circulatory support for lung transplantation. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 631–637. [Google Scholar] [CrossRef]
- Ius, F.; Sommer, W.; Tudorache, I.; Avsar, M.; Siemeni, T.; Salman, J.; Molitoris, U.; Gras, C.; Juettner, B.; Puntigam, J.; et al. Five-year experience with intraoperative extracorporeal membrane oxygenation in lung transplantation: Indications and midterm results. J. Heart Lung Transplant. 2015, 35, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.; Chen, Y.; Luh, S.; Lee, Y.; Chu, S. Extracorporeal membrane oxygenation support for single-lung transplantation in patients with primary pulmonary hypertension. Transplant. Proc. 1999, 31, 166–168. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, P.R.; D’cunha, J. Intraoperative support during lung transplantation. J. Thorac. Dis. 2021, 13, 6576–6586. [Google Scholar] [CrossRef] [PubMed]
- Chen-Yoshikawa, T.F. Ischemia–Reperfusion Injury in Lung Transplantation. Cells 2021, 10, 1333. [Google Scholar] [CrossRef]
- Laubach, V.E.; Sharma, A.K. Mechanisms of lung ischemia-reperfusion injury. Curr. Opin. Organ Transplant. 2016, 21, 246–252. [Google Scholar] [CrossRef]
- Bhabra, M.S.; Hopkinson, D.N.; Shaw, T.E.; Hooper, T.L. Critical importance of the first 10 minutes of lung graft reperfusion after hypothermic storage. Ann. Thorac. Surg. 1996, 61, 1631–1635. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yamashita, C.; Okada, M. Efficacy of initial controlled perfusion pressure for ischemia-reperfusion injury in a 24-hour preserved lung. Ann. Thorac. Cardiovasc. Surg. 1999, 5, 21–26. [Google Scholar]
- Guth, S.; Prüfer, D.; Kramm, T.; Mayer, E. Length of pressure-controlled reperfusion is critical for reducing ischaemia-reperfusion injury in an isolated rabbit lung model. J. Cardiothorac. Surg. 2007, 2, 54. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, D.N.; Bhabra, M.S.; Odom, N.J.; Bridgewater, B.J.; A Van Doorn, C.; Hooper, T.L. Controlled pressure reperfusion of rat pulmonary grafts yields improved function after twenty-four-hours’ cold storage in University of Wisconsin solution. J. Heart Lung Transplant. 1996, 15, 283–290. [Google Scholar] [PubMed]
- Fessler, J.; Sage, E.; Roux, A.; Feliot, E.; Gayat, E.; Pirracchio, R.; Parquin, F.; Cerf, C.; Fischler, M.; Le Guen, M. Is Extracorporeal Membrane Oxygenation Withdrawal a Safe Option After Double-Lung Transplantation? Ann. Thorac. Surg. 2020, 110, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Hoetzenecker, K.; Schwarz, S.; Muckenhuber, M.; Benazzo, A.; Frommlet, F.; Schweiger, T.; Bata, O.; Jaksch, P.; Ahmadi, N.; Muraközy, G.; et al. Intraoperative extracorporeal membrane oxygenation and the possibility of postoperative prolongation improve survival in bilateral lung transplantation. J. Thorac. Cardiovasc. Surg. 2018, 155, 2193–2206.e3. [Google Scholar] [CrossRef] [PubMed]
- Hoetzenecker, K.; Benazzo, A.; Stork, T.; Sinn, K.; Schwarz, S.; Schweiger, T.; Klepetko, W.; Kifjak, D.; Baron, D.; Hager, H.; et al. Bilateral lung transplantation on intraoperative extracorporeal membrane oxygenator: An observational study. J. Thorac. Cardiovasc. Surg. 2019, 160, 320–327.e1. [Google Scholar] [CrossRef] [PubMed]
- Halpern, S.E.; Wright, M.C.; Madsen, G.; Chow, B.; Harris, C.S.; Haney, J.C.; Klapper, J.A.; Bottiger, B.A.; Hartwig, M.G. Textbook outcome in lung transplantation: Planned venoarterial extracorporeal membrane oxygenation versus off-pump support for patients without pulmonary hypertension. J. Heart Lung Transplant. 2022, 41, 1628–1637. [Google Scholar] [CrossRef]
- Ruszel, N.; Kiełbowski, K.; Piotrowska, M.; Kubisa, M.; Grodzki, T.; Wójcik, J.; Kubisa, B. Central, peripheral ECMO or CPB? Comparsion between circulatory support methods used during lung transplantation. J. Cardiothorac. Surg. 2021, 16, 1–9. [Google Scholar] [CrossRef]
- Glorion, M.; Mercier, O.; Mitilian, D.; De Lemos, A.; Lamrani, L.; Feuillet, S.; Pradere, P.; Le Pavec, J.; Lehouerou, D.; Stephan, F.; et al. Central versus peripheral cannulation of extracorporeal membrane oxygenation support during double lung transplant for pulmonary hypertension. Eur. J. Cardio-Thorac. Surg. 2018, 54, 341–347. [Google Scholar] [CrossRef]
- Reeb, J.; Olland, A.; Renaud, S.; Lejay, A.; Santelmo, N.; Massard, G.; Falcoz, P.-E. Vascular access for extracorporeal life support: Tips and tricks. J. Thorac. Dis. 2016, 8 (Suppl. S4), S353–S363. [Google Scholar] [CrossRef]
- Abrams, D.; Brodie, D.; Arcasoy, S.M. Extracorporeal Life Support in Lung Transplantation. Clin. Chest Med. 2017, 38, 655–666. [Google Scholar] [CrossRef]
- Napp, L.C.; Kühn, C.; Hoeper, M.M.; Vogel-Claussen, J.; Haverich, A.; Schäfer, A.; Bauersachs, J. Cannulation strategies for percutaneous extracorporeal membrane oxygenation in adults. Clin. Res. Cardiol. 2015, 105, 283–296. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laskey, D.; Housman, B.; Dawodu, G.; Scheinin, S. Intraoperative Extracorporeal Support during Lung Transplantation: Not Just for the High-Risk Patient. J. Clin. Med. 2024, 13, 192. https://doi.org/10.3390/jcm13010192
Laskey D, Housman B, Dawodu G, Scheinin S. Intraoperative Extracorporeal Support during Lung Transplantation: Not Just for the High-Risk Patient. Journal of Clinical Medicine. 2024; 13(1):192. https://doi.org/10.3390/jcm13010192
Chicago/Turabian StyleLaskey, Daniel, Brian Housman, Gbalekan Dawodu, and Scott Scheinin. 2024. "Intraoperative Extracorporeal Support during Lung Transplantation: Not Just for the High-Risk Patient" Journal of Clinical Medicine 13, no. 1: 192. https://doi.org/10.3390/jcm13010192
APA StyleLaskey, D., Housman, B., Dawodu, G., & Scheinin, S. (2024). Intraoperative Extracorporeal Support during Lung Transplantation: Not Just for the High-Risk Patient. Journal of Clinical Medicine, 13(1), 192. https://doi.org/10.3390/jcm13010192