Hemophilic Arthropathy of the Knee and Its Association with Reduced Muscle Strength and Activation and the Pressure Pain Threshold: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Ethical Considerations
2.3. Participants
2.4. Sample Size
2.5. Procedures
2.6. Outcome Measures
2.7. sEMG Analysis
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations of the Study
4.2. Relevance to Clinical Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.; Brewer, A.K.; Mauser-Bunschoten, E.P.; Key, N.S.; Kitchen, S.; Llinas, A.; Ludlam, C.A.; Mahlangu, J.N.; Mulder, K.; Poon, M.C.; et al. Guidelines for the Management of Hemophilia. Haemophilia 2013, 19, e1–e47. [Google Scholar] [CrossRef] [PubMed]
- Gualtierotti, R.; Solimeno, L.P.; Peyvandi, F. Hemophilic Arthropathy: Current Knowledge and Future Perspectives. J. Thromb. Haemost. 2021, 19, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.; Bansal, S.; Kshirsagar, S.; Rangarajan, S.; Hajirnis, K.; Phadke, V. Low-Dose Prophylaxis and Its Impact on the Health of Haemophilia Patients. Vox Sang. 2022, 117, 900–912. [Google Scholar] [CrossRef] [PubMed]
- Tomeo, F.; Mariz, S.; Brunetta, A.L.; Stoyanova-Beninska, V.; Penttila, K.; Magrelli, A. Haemophilia, State of the Art and New Therapeutic Opportunities, a Regulatory Perspective. Br. J. Clin. Pharmacol. 2021, 87, 4183–4196. [Google Scholar] [CrossRef]
- Berntorp, E.; Hermans, C.; Solms, A.; Poulsen, L.; Mancuso, M.E. Optimising Prophylaxis in Haemophilia A: The Ups and Downs of Treatment. Blood Rev. 2021, 50, 100852. [Google Scholar] [CrossRef]
- Wagner, B.; Krüger, S.; Hilberg, T.; Ay, C.; Hasenoehrl, T.; Huber, D.F.-X.; Crevenna, R. The Effect of Resistance Exercise on Strength and Safety Outcome for People with Haemophilia: A Systematic Review. Haemophilia 2020, 26, 200–215. [Google Scholar] [CrossRef]
- Strike, K.; Mulder, K.; Michael, R. Exercise for Haemophilia. Cochrane Database Syst. Rev. 2016, 12, CD011180. [Google Scholar] [CrossRef]
- Bosco, C.; Ballesteros Canel, R. La Fuerza Muscular: Aspectos Metodológicos, 1st ed.; INDE: Barcelona, Spain, 2000; ISBN 978-84-95114-54-9. [Google Scholar]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle Mass, Strength, and Physical Performance Predicting Activities of Daily Living: A Meta-Analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef]
- Tat, N.M.; Tat, A.M.; Can, F.; Antmen, B.; Öner, A.F. Muscle Strength and Joint Health in Children with Hemophilia: A Cross-Sectional Study. Turk. J. Pediatr. 2020, 62, 606–613. [Google Scholar] [CrossRef]
- Cruz-Montecinos, C.; Núñez-Cortés, R.; Chimeno-Hernández, A.; López-Bueno, R.; Andersen, L.L.; Mendez-Rebolledo, G.; Pérez-Alenda, S.; Calatayud, J. Exercise Variables and Pain Threshold Reporting for Strength Training Protocols in People with Haemophilia: A Systematic Review of Clinical Trials. Haemophilia 2023. Early Access. [Google Scholar] [CrossRef]
- van Wilgen, C.P.; Akkerman, L.; Wieringa, J.; Dijkstra, P.U. Muscle Strength in Patients with Chronic Pain. Clin. Rehabil. 2003, 17, 885–889. [Google Scholar] [CrossRef]
- Schäfer, G.S.; Valderramas, S.; Gomes, A.R.; Budib, M.B.; Wolff, Á.L.P.; Ramos, A.A.T. Physical Exercise, Pain and Musculoskeletal Function in Patients with Haemophilia: A Systematic Review. Haemophilia 2016, 22, e119–e129. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; de Kleijn, P. Using the Haemophilia Joint Health Score for Assessment of Teenagers and Young Adults: Exploring Reliability and Validity. Haemophilia 2013, 19, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Barriuso, R.; Pérez-Llanes, R.; Donoso-Úbeda, E.; Ucero-Lozano, R. LongHest Project: A Prospective, Observational Study of Extended Half-Life Treatment in the Musculoskeletal Health of Patients with Severe Haemophilia A. Haemophilia 2022, 28, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Baschung Pfister, P.; de Bruin, E.D.; Sterkele, I.; Maurer, B.; de Bie, R.A.; Knols, R.H. Manual Muscle Testing and Hand-Held Dynamometry in People with Inflammatory Myopathy: An Intra- and Interrater Reliability and Validity Study. PLoS ONE 2018, 13, e0194531. [Google Scholar] [CrossRef]
- Leffler, A.-S.; Kosek, E.; Lerndal, T.; Nordmark, B.; Hansson, P. Somatosensory Perception and Function of Diffuse Noxious Inhibitory Controls (DNIC) in Patients Suffering from Rheumatoid Arthritis. Eur. J. Pain 2002, 6, 161–176. [Google Scholar] [CrossRef]
- Skou, S.T.; Simonsen, O.; Rasmussen, S. Examination of Muscle Strength and Pressure Pain Thresholds in Knee Osteoarthritis: Test-Retest Reliability and Agreement. J. Geriatr. Phys. Ther. 2015, 38, 141–147. [Google Scholar] [CrossRef]
- Banos, O.; Moral-Munoz, J.A.; Diaz-Reyes, I.; Arroyo-Morales, M.; Damas, M.; Herrera-Viedma, E.; Hong, C.S.; Lee, S.; Pomares, H.; Rojas, I.; et al. MDurance: A Novel Mobile Health System to Support Trunk Endurance Assessment. Sensors 2015, 15, 13159–13183. [Google Scholar] [CrossRef]
- Calatayud, J.; Martín-Cuesta, J.; Carrasco, J.J.; Pérez-Alenda, S.; Cruz-Montecinos, C.; Andersen, L.L.; Querol-Giner, F.; Casaña, J. Safety, Fear and Neuromuscular Responses after a Resisted Knee Extension Performed to Failure in Patients with Severe Haemophilia. J. Clin. Med. 2021, 10, 2587. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Molina-Molina, A.; Ruiz-Malagón, E.J.; Carrillo-Pérez, F.; Roche-Seruendo, L.E.; Damas, M.; Banos, O.; García-Pinillos, F. Validation of MDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment. Front. Physiol. 2020, 11, 606287. [Google Scholar] [CrossRef] [PubMed]
- Kelley, K.; Preacher, K.J. On Effect Size. Psychol. Methods 2012, 17, 137–152. [Google Scholar] [CrossRef]
- Hilberg, T.; Herbsleb, M.; Gabriel, H.H.; Jeschke, D.; Schramm, W. Proprioception and Isometric Muscular Strength in Haemophilic Subjects. Haemophilia 2001, 7, 582–588. [Google Scholar] [CrossRef]
- Culvenor, A.G.; Ruhdorfer, A.; Juhl, C.; Eckstein, F.; Øiestad, B.E. Knee Extensor Strength and Risk of Structural, Symptomatic, and Functional Decline in Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res. 2017, 69, 649–658. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Hernández-Belmonte, A.; Martínez-Cava, A.; Vetrovsky, T.; Steffl, M.; Courel-Ibáñez, J. Effects of Range of Motion on Resistance Training Adaptations: A Systematic Review and Meta-Analysis. Scand. J. Med. Sci. Sports 2021, 31, 1866–1881. [Google Scholar] [CrossRef]
- Lieber, R.L.; Fridén, J. Functional and Clinical Significance of Skeletal Muscle Architecture. Muscle Nerve 2000, 23, 1647–1666. [Google Scholar] [CrossRef]
- Thomas, K.; Brownstein, C.G.; Dent, J.; Parker, P.; Goodall, S.; Howatson, G. Neuromuscular Fatigue and Recovery after Heavy Resistance, Jump, and Sprint Training. Med. Sci. Sports Exerc. 2018, 50, 2526–2535. [Google Scholar] [CrossRef]
- Kurz, E.; Herbsleb, M.; Anders, C.; Puta, C.; Vollandt, R.; Czepa, D.; Ziezio, R.; Scholle, H.-C.; Hilberg, T. SEMG Activation Patterns of Thigh Muscles during Upright Standing in Haemophilic Patients. Haemophilia 2011, 17, 669–675. [Google Scholar] [CrossRef]
- Cruz-Montecinos, C.; Maas, H.; Cerda, M.; Pérez-Alenda, S. Altered Neural Control of Gait and Its Association with Pain and Joint Impairment in Adults with Haemophilic Arthropathy: Clinical and Methodological Implications. Haemophilia 2022, 28, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Kurz, E.; Herbsleb, M.; Gabriel, H.H.W.; Hilberg, T. Posturographic and Ankle Muscle Activation Characteristics in Patients with Haemophilia. Haemophilia 2019, 25, 136–143. [Google Scholar] [CrossRef]
- Roussel, N.A.; Chantrain, V.-A.; Foubert, A.; Lambert, C.; Hermans, C.; Meeus, M.; Guillaume, S.; Lecouvet, F.; Krüger, S.; Hilberg, T.; et al. Gaining More Insight into Ankle Pain in Haemophilia: A Study Exploring Pain, Structural and Functional Evaluation of the Ankle Joint. Haemophilia 2022, 28, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Fouda, R.; Argueta, D.A.; Gupta, K. Pain in Hemophilia: Unexplored Role of Oxidative Stress. Antioxidants 2022, 11, 1113. [Google Scholar] [CrossRef]
- Santoro, C.; Di Minno, M.N.D.; Corcione, A.; Di Minno, G.; Martinelli, M.; Mancuso, M.E.; Acone, B.; Molinari, A.C.; Passeri, E.V.; Rocino, A.; et al. Improving Assessment and Management of Pain in Hemophilia: An Italian Delphi Consensus Statement. Blood Rev. 2022, 51, 100885. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, T.; Czepa, D.; Freialdenhoven, D.; Boettger, M.K. Joint Pain in People with Hemophilia Depends on Joint Status. Pain 2011, 152, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Teyssler, P.; Kolostova, K.; Bobek, V. Assessment of Pain Threshold in Haemophilic Patients. Haemophilia 2014, 20, 207–211. [Google Scholar] [CrossRef]
- Duffell, L.D.; Dharni, H.; Strutton, P.H.; McGregor, A.H. Electromyographic Activity of the Quadriceps Components during the Final Degrees of Knee Extension. J. Back Musculoskelet. Rehabil. 2011, 24, 215–223. [Google Scholar] [CrossRef]
- Groen, W.G.; den Uijl, I.E.M.; van der Net, J.; Grobbee, D.E.; de Groot, P.G.; Fischer, K. Protected by Nature? Effects of Strenuous Physical Exercise on FVIII Activity in Moderate and Mild Haemophilia A Patients: A Pilot Study. Haemophilia 2013, 19, 519–523. [Google Scholar] [CrossRef]
- Watanabe, K.; Kouzaki, M.; Ogawa, M.; Akima, H.; Moritani, T. Relationships between muscle strength and multi-channel surface EMG parameters in eighty-eight elderly. Eur. Rev. Aging Phys. Act. 2018, 15, 3. [Google Scholar] [CrossRef]
- Chen, C.-M.; Lin, C.-H.; Kung, K.-Y. Effects of Physical Therapy on Joint Pain, Joint Range of Motion, Joint Health, Strength, and Mobility in Patients with Hemophilia: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2023. Early Access. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.; Gregory, N.S.; Allen, L.-A.H.; Sluka, K.A. Regular Physical Activity Prevents Chronic Pain by Altering Resident Muscle Macrophage Phenotype and Increasing Interleukin-10 in Mice. Pain 2016, 157, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, T.; Herbsleb, M.; Puta, C.; Gabriel, H.H.W.; Schramm, W. Physical Training Increases Isometric Muscular Strength and Proprioceptive Performance in Haemophilic Subjects. Haemophilia 2003, 9, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Pérez-Alenda, S.; Carrasco, J.J.; Cruz-Montecinos, C.; Andersen, L.L.; Bonanad, S.; Querol, F.; Megías-Vericat, J.E.; Casaña, J. Safety and Effectiveness of Progressive Moderate-to-Vigorous Intensity Elastic Resistance Training on Physical Function and Pain in People With Hemophilia. Phys. Ther. 2020, 100, 1632–1644. [Google Scholar] [CrossRef]
- Calatayud, J.; Ogrezeanu, D.C.; Carrasco, J.J.; Martinez-Valdes, E.; Pérez-Alenda, S.; Cruz-Montecinos, C.; Andersen, L.L.; Aagaard, P.; Suso-Martí, L.; Casaña, J. Safety, Feasibility, and Neuromuscular Activity of Acute Low-Load Resistance Exercise with or without Blood Flow Restriction in Patients with Severe Hemophilia. Eur. J. Haematol. 2023. Early Access. [Google Scholar] [CrossRef]
Variables | Hemophilia Group (n = 23) | Control Group (n = 24) | p-Value |
---|---|---|---|
Age (years) | 37.30 (7.04) 1 | 41.50 (8.15) 1 | 0.06 2 |
Weight (Kg) | 80.98 (10.85) 1 | 76.62 (8.12) 1 | 0.12 2 |
Height (m) | 1.73 (0.09) 3 | 1.74 (0.09) 3 | 0.28 4 |
Body mass index (kg/m2) | 25.75 (6.3013) 3 | 25.78 (4.43) 3 | 0.44 4 |
Knee joint damage (0–40) | 20.43 (5.19) 1 | - | - |
Lower limb joint damage (0–84) | 41.91 (9.32) 1 | - | - |
Knee range of motion, dominant joint (degrees) | 124.00 (8.00) 3 | 138.00 (3.00) 3 | 0.00 4 |
Knee range of motion, non-dominant joint (degrees) | 128.00 (6.00) 3 | 138.50 (2.00) 3 | 0.00 4 |
n (%) | |||
Type of hemophilia (A/B) | 17/6 (73.9/26.1) | - | - |
Inhibitor (yes/no) | 7/16 (30.4/69.6) | - | - |
Treatment (on-demand/prophylaxis) | 7/16 (30.4/69.6) | - | - |
Type of treatment (SHL/EHL/BMA) | 7/9/7 (14.9/19.1/14.9) |
Variables | Hemophilia Group | Control Group | p-Value | ||
---|---|---|---|---|---|
Dominant Joint | Non-Dominant Joint | Dominant Joint | Non-Dominant Joint | Dominant Joint/Non-Dominant Joint | |
Quadriceps strength (N/cm2) | 216.70 (56.12) 1 | 224.72 (49.94) 1 | 316.66 (47.97) 1 | 289.31 (42.80) 1 | 0.00 2/0.00 2 |
Pressure pain threshold (kg/cm2) | 75.93 (33.10) 1 | 64.10 (55.8) 3 | 99.43 (31.96) 1 | 96.95 (53.72) 3 | 0.01 2/0.03 4 |
RMS vastus medialis (microV) | 125.12 (63.45) 3 | 121.72 (65.43) 3 | 139.23 (77.41) 3 | 150.89 (91.2) 3 | 0.29 4/0.05 4 |
RMS vastus lateralis (microV) | 154.82 (84.56) 3 | 150.12 (85.66) 3 | 172.90 (71.31) 3 | 153.67 (104.13) 3 | 0.34 4/0.55 4 |
RMS rectus femoris (microV) | 201.52 (161.17) 3 | 198.42 (162.19) 3 | 198.96 (164.19) 3 | 173.88 (82.18) 3 | 0.18 4/0.91 4 |
VMF vastus medialis (microV) | 58.98 (10.31) 1 | 57.08 (11,62) 1 | 57.74 (7.50) 1 | 71.69 (9.59) 1 | 0.64 2/0.00 2 |
VMF vastus lateralis (microV) | 62.88 (21.97) 3 | 63.13 (17.95) 1 | 61.66 (16.52) 3 | 73.98 (9.81) 1 | 0.79 4/0.02 2 |
VMF rectus femoris (microV) | 67.79 (11.84) 1 | 65.65 (11.92) 1 | 75.48 (11.12) 1 | 81.28 (14.74) 1 | 0.02 2/0.00 2 |
Variables | Joint | MD | CI95% | ES |
---|---|---|---|---|
Quadriceps strength | Dominant joint | 100.52 | 64.69; 129.2 | 1.38 |
Non-dominant joint | 65.57 | 29.95; 93.55 | 1.14 | |
Pressure pain threshold | Dominant joint | 23.02 | 3.3; 43.54 | 0.68 |
Non-dominant joint | 23.45 | 3.09; 45.25 | 0.56 | |
RMS vastus medialis | Dominant joint | 16.92 | −14.47; 45.88 | 0.37 |
Non-dominant joint | 31.17 | −1.02; 67.62 | 0.63 | |
RMS vastus lateralis | Dominant joint | 16.59 | −17.03; 62.68 | 0.40 |
Non-dominant joint | 11.98 | −32.18; 49.16 | 0.24 | |
RMS rectus femoris | Dominant joint | 46.33 | −24.67; 105.5 | 0.49 |
Non-dominant joint | −2.46 | −63.86; 73.91 | 0.07 | |
VMF vastus medialis | Dominant joint | −0.69 | −7.23; 5.5 | −0.14 |
Non-dominant joint | 14.46 | 8.72; 21.51 | 1.18 | |
VMF vastus lateralis | Dominant joint | 0.48 | −8.07; 8.07 | −0.13 |
Non-dominant joint | 14.56 | 4.84; 21.66 | 0.68 | |
VMF rectus femoris | Dominant joint | 7.30 | 0.76; 14.79 | 0.64 |
Non-dominant joint | 15.71 | 6.48; 24.95 | 1.01 |
Group | Variables | ROM | Strength | PPT | RMS-VM | RMS-VL | RMS-RF | VMF-VM | VMF-VL |
---|---|---|---|---|---|---|---|---|---|
Hemophilia | Strength | 0.29 (0.04) | |||||||
PPT | 0.17 (0.23) | 0.04 (0.78) | |||||||
RMS-VM | 0.01 (0.92) | 0.33 (0.02) | 0.09 (0.54) | ||||||
RMS-VL | −0.09 (0.54) | 0.37 (0.01) | −0.05 (0.69) | 0.71 (0.00) | |||||
RMS-RF | −0.10 (0.48) | 0.10 (0.49) | 0.38 (0.01) | 0.63 (0.00) | 0.62 (0.00) | ||||
VMF-VM | −0.34 (0.01) | 0.12 (0.40) | 0.13 (0.36) | 0.67 (0.00) | 0.54 (0.00) | 0.61 (0.00) | |||
VMF-VL | −0.20 (0.17) | 0.21 (0.15) | 0.06 (0.65) | 0.67 (0.00) | 0.28 (0.05) | 0.53 (0.00) | 0.77 (0.00) | ||
VMF-RF | −0.17 (0.24) | 0.42 (0.00) | −0.05 (0.73) | 0.57 (0.00) | 0.37 (0.01) | 0.24 (0.10) | 0.73 (0.00) | 0.74 (0.00) | |
Controls | Strength | 0.02 (0.89) | |||||||
PPT | −0.01 (0.93) | −0.06 (0.67) | |||||||
RMS-VM | −0.09 (0.54) | −0.05 (0.72) | −0.09 (0.53) | ||||||
RMS-VL | −0.17 (0.23) | 0.08 (0.58) | −0.08 (0.55) | 0.67 (0.00) | |||||
RMS-RF | 0.07 (0.61) | −0.04 (0.74) | −0.08 (0.57) | 0.41 (0.01) | 0.49 (0.00) | ||||
VMF-VM | 0.13 (0.34) | −0.29 (0.04) | −0.09 (0.52) | 0.06 (0.64) | −0.12 (0.41) | −0.19 (0.19) | |||
VMF-VL | 0.06 (0.65) | −0.20 (0.16) | 0.03 (0.80) | −0.12 (0.41) | −0.12 (0.40) | −0.57 (0.00) | 0.58 (0.00) | ||
VMF-RF | 0.09 (0.50) | 0.15 (0.30) | −0.11 (0.43) | −0.15 (0.29) | −0.19 (0.19) | −0.26 (0.07) | 0.14 (0.34) | 0.18 (0.21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalón-González, M.; Fernández de Luco-Santamaría, Í.; Cuesta-Barriuso, R.; López-Pina, J.A.; Pérez-Llanes, R. Hemophilic Arthropathy of the Knee and Its Association with Reduced Muscle Strength and Activation and the Pressure Pain Threshold: A Case-Control Study. J. Clin. Med. 2023, 12, 3275. https://doi.org/10.3390/jcm12093275
Villalón-González M, Fernández de Luco-Santamaría Í, Cuesta-Barriuso R, López-Pina JA, Pérez-Llanes R. Hemophilic Arthropathy of the Knee and Its Association with Reduced Muscle Strength and Activation and the Pressure Pain Threshold: A Case-Control Study. Journal of Clinical Medicine. 2023; 12(9):3275. https://doi.org/10.3390/jcm12093275
Chicago/Turabian StyleVillalón-González, Mar, Íñigo Fernández de Luco-Santamaría, Rubén Cuesta-Barriuso, José Antonio López-Pina, and Raúl Pérez-Llanes. 2023. "Hemophilic Arthropathy of the Knee and Its Association with Reduced Muscle Strength and Activation and the Pressure Pain Threshold: A Case-Control Study" Journal of Clinical Medicine 12, no. 9: 3275. https://doi.org/10.3390/jcm12093275