Recent Advances in the Optimization of Anti-TNF Treatment in Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Therapeutic Drug Monitoring (TDM)
2.1. Anti-TNF Trough Concentrations and Antibodies
2.2. Therapeutic Drug Monitoring
Author, Year [Ref.] | Disease Type | TCs (mg/mL) | Outcome | Assay |
---|---|---|---|---|
IFX | ||||
Roblin, 2017 [34] | CD | >2.1 | Clinical remission | ELISA |
Vande Casteele, 2015 [35] | CD | >2.8 | Normal CRP (≤5 mg/L) | HMSA |
Ward, 2017 [36] | CD | >3.4 | Normal CRP (≤5 mg/L) | ELISA |
Ward, 2017 [36] | CD | >5.7 | Normal FC (<59 μg/g) | ELISA |
Papamichael, 2018 [11] | CD | ≥9.7 | Endoscopic remission | ELISA/HMSA |
Papamichael, 2018 [11] | CD | ≥9.8 | Histologic remission | ELISA/HMSA |
Yarur, 2017 [37] | CD | >10.1 | Mucosal healing | HMSA |
Yarur, 2017 [37] | CD | >10.1 | Fistula healing | HMSA |
Adedokun, 2014 [38] | UC | >2.4 | Clinical response w54 | ELISA |
Margo, 2017 [39] | UC | >3 | Normal FC (<250 μg/g) | ELISA |
Papamichael, 2017 [12] | UC | ≥7.5 | Endoscopic healing | HMSA/ELISA |
Papamichael, 2017 [12] | UC | ≥10.5 | Histologic healing | HMSA/ELISA |
ADA | ||||
Nakase, 2017 [40] | CD | >5 | Clinical remission | ELISA |
Mazor, 2014 [41] | CD | >5.9 | Normal CRP (≤5 mg/L) | ELISA |
Morita, 2016 [42] | CD | >7.9 | Mucosal healing | ELISA |
Juncadella, 2018 [43] | CD | ≥12 | Endoscopic remission | HMSA |
Juncadella, 2018 [43] | CD | ≥12.2 | Histologic remission | HMSA |
Paul, 2014 [44] | CD/UC | >4.8 | Clinical remission | ELISA/Radioimmunoassay |
Ungar, 2016 [45] | CD/UC | >6.6 | Normal CRP (≤5 mg/L) | ELISA |
Yarur, 2016 [46] | UC/CD | >7.5 | Endoscopic healing | HMSA |
Yarur, 2016 [46] | UC/CD | >7.8 | Histologic healing | HMSA |
Morita, 2016 [47] | UC | >10.3 | Mucosal healing | ELISA |
2.2.1. Reactive TDM vs. Empiric Use of Anti-TNF
2.2.2. Proactive TDM versus Empiric Use of Anti-TNF
2.2.3. Other Applications of Proactive TDM
2.3. Limitations and Challenges Implementing TDM
2.4. Current Perspectives
3. Combination Therapy
3.1. IFX Combination Therapy
3.2. Adalimumab Combination Therapy
3.3. Anti-TNF Experienced Patients
3.4. Combination Treatment with Immunomodulator: Dosage, Timing and Safety
4. Treat-to-Target Approach in IBD
4.1. Biomarkers in IBD
4.2. Future Perspectives for IBD Treatment Targets
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Haens, G.R.; van Deventer, S. 25 years of anti-TNF treatment for inflammatory bowel disease: Lessons from the past and a look to the future. Gut 2021, 70, 1396–1405. [Google Scholar] [PubMed]
- Al-Bawardy, B.; Shivashankar, R.; Proctor, D.D. Novel and Emerging Therapies for Inflammatory Bowel Disease. Front. Pharmacol. 2021, 12, 651415. [Google Scholar]
- Singh, S.; Murad, M.H.; Fumery, M.; Sedano, R.; Jairath, V.; Panaccione, R.; Sandborn, W.J.; Ma, C. Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn’s disease: A systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 1002–1014. [Google Scholar] [PubMed]
- Lasa, J.S.; Olivera, P.A.; Danese, S.; Peyrin-Biroulet, L. Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: A systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 161–170. [Google Scholar]
- Colombel, J.F.; D’Haens, G.; Lee, W.J.; Petersson, J.; Panaccione, R. Outcomes and Strategies to Support a Treat-to-target Approach in Inflammatory Bowel Disease: A Systematic Review. J. Crohn’s Colitis 2020, 14, 254–266. [Google Scholar]
- Gisbert, J.P.; Panés, J. Loss of response and requirement of infliximab dose intensification in Crohn’s disease: A review. Am. J. Gastroenterol. 2009, 104, 760–767. [Google Scholar] [PubMed]
- Fine, S.; Papamichael, K.; Cheifetz, A.S. Etiology and Management of Lack or Loss of Response to Anti-Tumor Necrosis Factor Therapy in Patients With Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2019, 15, 656–665. [Google Scholar]
- Gisbert, J.P.; Marín, A.C.; McNicholl, A.G.; Chaparro, M. Systematic review with meta-analysis: The efficacy of a second anti-TNF in patients with inflammatory bowel disease whose previous anti-TNF treatment has failed. Aliment. Pharm. Ther. 2015, 41, 613–623. [Google Scholar]
- Singh, S.; George, J.; Boland, B.S.; Casteele, N.V.; Sandborn, W.J. Primary Non-Response to Tumor Necrosis Factor Antagonists is Associated with Inferior Response to Second-line Biologics in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis. J. Crohn’s Colitis 2018, 12, 635–643. [Google Scholar] [CrossRef]
- Steenholdt, C.; Bendtzen, K.; Brynskov, J.; Ainsworth, M.A. Optimizing Treatment with TNF Inhibitors in Inflammatory Bowel Disease by Monitoring Drug Levels and Antidrug Antibodies. Inflamm. Bowel Dis. 2016, 22, 1999–2015. [Google Scholar]
- Papamichael, K.; Rakowsky, S.; Rivera, C.; Cheifetz, A.S.; Osterman, M.T. Association between Serum Infliximab trough Concentrations during Maintenance Therapy and Biochemical, Endoscopic, and Histologic Remission in Crohn’s Disease. Inflamm. Bowel Dis. 2018, 24, 2266–2271. [Google Scholar]
- Papamichael, K.; Rakowsky, S.; Rivera, C.; Cheifetz, A.S.; Osterman, M.T. Infliximab trough concentrations during maintenance therapy are associated with endoscopic and histologic healing in ulcerative colitis. Aliment. Pharm. Ther. 2018, 47, 478–484. [Google Scholar]
- Silva-Ferreira, F.; Afonso, J.; Pinto-Lopes, P.; Magro, F. A Systematic Review on Infliximab and Adalimumab Drug Monitoring: Levels, Clinical Outcomes and Assays. Inflamm. Bowel Dis. 2016, 22, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.; Corbett, G.; Moss, A.C. Systematic Review and Meta-Analysis: Serum Infliximab Levels During Maintenance Therapy and Outcomes in Inflammatory Bowel Disease. J. Crohn’s Colitis 2016, 10, 619–625. [Google Scholar]
- Ricciuto, A.; Dhaliwal, J.; Walters, T.D.; Griffiths, A.M.; Church, P.C. Clinical Outcomes With Therapeutic Drug Monitoring in Inflammatory Bowel Disease: A Systematic Review With Meta-Analysis. J. Crohn’s Colitis 2018, 12, 1302–1315. [Google Scholar]
- Martins, C.A.; Garcia, K.S.; Queiroz, N.S.F. Multi-utility of therapeutic drug monitoring in inflammatory bowel diseases. Front. Med. 2022, 9, 864888. [Google Scholar]
- Turner, D.; Ricciuto, A.; Lewis, A.; D’Amico, F.; Dhaliwal, J.; Griffiths, A.M.; Bettenworth, D.; Sandborn, W.J.; Sands, B.E.; Reinisch, W.; et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology 2021, 160, 1570–1583. [Google Scholar]
- Kennedy, N.A.; Heap, G.A.; Green, H.D.; Hamilton, B.; Bewshea, C.; Walker, G.J.; Thomas, A.; Nice, R.; Perry, M.H.; Bouri, S.; et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: A prospective, multicentre, cohort study. Lancet Gastroenterol. Hepatol. 2019, 4, 341–353. [Google Scholar]
- Papamichael, K.; Afif, W.; Drobne, D.; Dubinsky, M.C.; Ferrante, M.; Irving, P.M.; Kamperidis, N.; Kobayashi, T.; Kotze, P.G.; Lambert, J.; et al. Therapeutic drug monitoring of biologics in inflammatory bowel disease: Unmet needs and future perspectives. Lancet Gastroenterol. Hepatol. 2022, 7, 171–185. [Google Scholar]
- Lefevre, P.L.C.; Shackelton, L.M.; Casteele, N.V. Factors Influencing Drug Disposition of Monoclonal Antibodies in Inflammatory Bowel Disease: Implications for Personalized Medicine. BioDrugs 2019, 33, 453–468. [Google Scholar]
- Nanda, K.S.; Cheifetz, A.S.; Moss, A.C. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): A meta-analysis. Am. J. Gastroenterol. 2013, 108, 40–47; quiz 8. [Google Scholar] [CrossRef] [Green Version]
- Ungar, B.; Chowers, Y.; Yavzori, M.; Picard, O.; Fudim, E.; Har-Noy, O.; Kopylov, U.; Eliakim, R.; Ben-Horin, S. The temporal evolution of antidrug antibodies in patients with inflammatory bowel disease treated with infliximab. Gut 2014, 63, 1258–1264. [Google Scholar] [CrossRef]
- Vande Casteele, N.; Gils, A.; Singh, S.; Ohrmund, L.; Hauenstein, S.; Rutgeerts, P.; Vermeire, S. Antibody response to infliximab and its impact on pharmacokinetics can be transient. Am. J. Gastroenterol. 2013, 108, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Lodhia, N.; Rao, S. Updates in therapeutic drug monitoring in inflammatory bowel disease. World J. Gastroenterol. 2022, 28, 2282–2290. [Google Scholar] [CrossRef]
- Vande Casteele, N. Assays for measurement of TNF antagonists in practice. Frontline Gastroenterol. 2017, 8, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Kharlamova, N.; Hermanrud, C.; Dunn, N.; Ryner, M.; Hambardzumyan, K.; Vivar Pomiano, N.; Marits, P.; Gjertsson, I.; Saevarsdottir, S.; Pullerits, R.; et al. Drug Tolerant Anti-drug Antibody Assay for Infliximab Treatment in Clinical Practice Identifies Positive Cases Earlier. Front. Immunol. 2020, 11, 1365. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, K.; Cheifetz, A.S. Therapeutic drug monitoring in inflammatory bowel disease: For every patient and every drug? Curr. Opin. Gastroenterol. 2019, 35, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Dreesen, E.; Papamichael, K.; Dubinsky, M.C. How, When, and for Whom Should We Perform Therapeutic Drug Monitoring? Clin. Gastroenterol. Hepatol. 2020, 18, 1291–1299. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, A.; Selvanderan, S.P.; Xuan, W.; Andrews, J.M.; Koo, J.H.; Williams, A.-J.; Ng, W.; Connor, S. Management Decisions in Crohn’s Disease Are Changed by Knowledge of Proactive and Reactive Testing of Antitumor Necrosis Factor Drug Levels. Crohn’s Colitis 360 2021, 3, otab042. [Google Scholar] [CrossRef]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2019, 14, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68 (Suppl 3), s1–s106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feuerstein, J.D.; Nguyen, G.C.; Kupfer, S.S.; Falck-Ytter, Y.; Singh, S. American Gastroenterological Association Institute Guideline on Therapeutic Drug Monitoring in Inflammatory Bowel Disease. Gastroenterology 2017, 153, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheifetz, A.S.; Abreu, M.T.; Afif, W.; Cross, R.K.; Dubinsky, M.C.; Loftus, E.V., Jr.; Osterman, M.T.; Saroufim, A.; Siegel, C.A.; Yarur, A.J.; et al. A Comprehensive Literature Review and Expert Consensus Statement on Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease. Am. J. Gastroenterol. 2021, 116, 2014–2025. [Google Scholar] [CrossRef] [PubMed]
- Roblin, X.; Boschetti, G.; Duru, G.; Williet, N.; Deltedesco, E.; Phelip, J.M.; Peyrin-Biroulet, L.; Nancey, S.; Flourié, B.; Paul, S. Distinct Thresholds of Infliximab Trough Level Are Associated with Different Therapeutic Outcomes in Patients with Inflammatory Bowel Disease: A Prospective Observational Study. Inflamm. Bowel Dis. 2017, 23, 2048–2053. [Google Scholar] [CrossRef]
- Vande Casteele, N.; Khanna, R.; Levesque, B.G.; Stitt, L.; Zou, G.Y.; Singh, S.; Lockton, S.; Hauenstein, S.; Ohrmund, L.; Greenberg, G.R.; et al. The relationship between infliximab concentrations, antibodies to infliximab and disease activity in Crohn’s disease. Gut 2015, 64, 1539–1545. [Google Scholar] [CrossRef]
- Ward, M.G.; Warner, B.; Unsworth, N.; Chuah, S.W.; Brownclarke, C.; Shieh, S.; Parkes, M.; Sanderson, J.D.; Arkir, Z.; Reynolds, J.; et al. Infliximab and adalimumab drug levels in Crohn’s disease: Contrasting associations with disease activity and influencing factors. Aliment. Pharm. Ther. 2017, 46, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarur, A.J.; Kanagala, V.; Stein, D.J.; Czul, F.; Quintero, M.A.; Agrawal, D.; Patel, A.; Best, K.; Fox, C.; Idstein, K.; et al. Higher infliximab trough levels are associated with perianal fistula healing in patients with Crohn’s disease. Aliment. Pharm. Ther. 2017, 45, 933–940. [Google Scholar] [CrossRef] [Green Version]
- Adedokun, O.J.; Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Xu, Z.; Marano, C.W.; Johanns, J.; Zhou, H.; Davis, H.M.; Cornillie, F.; et al. Association between serum concentration of infliximab and efficacy in adult patients with ulcerative colitis. Gastroenterology 2014, 147, 1296–1307.e5. [Google Scholar] [CrossRef] [Green Version]
- Magro, F.; Afonso, J.; Lopes, S.; Coelho, R.; Gonçalves, R.; Caldeira, P.; Lago, P.; de Sousa, H.T.; Ramos, J.; Gonçalves, A.R.; et al. Clinical performance of an infliximab rapid quantification assay. Ther. Adv. Gastroenterol. 2017, 10, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Nakase, H.; Motoya, S.; Matsumoto, T.; Watanabe, K.; Hisamatsu, T.; Yoshimura, N.; Ishida, T.; Kato, S.; Nakagawa, T.; Esaki, M.; et al. Significance of measurement of serum trough level and anti-drug antibody of adalimumab as personalised pharmacokinetics in patients with Crohn’s disease: A subanalysis of the DIAMOND trial. Aliment. Pharm. Ther. 2017, 46, 873–882. [Google Scholar] [CrossRef]
- Mazor, Y.; Almog, R.; Kopylov, U.; Ben Hur, D.; Blatt, A.; Dahan, A.; Waterman, M.; Ben-Horin, S.; Chowers, Y. Adalimumab drug and antibody levels as predictors of clinical and laboratory response in patients with Crohn’s disease. Aliment. Pharm. Ther. 2014, 40, 620–628. [Google Scholar] [CrossRef]
- Morita, Y.; Imaeda, H.; Nishida, A.; Inatomi, O.; Bamba, S.; Sasaki, M.; Tsujikawa, T.; Sugimoto, M.; Andoh, A. Association between serum adalimumab concentrations and endoscopic disease activity in patients with Crohn’s disease. J. Gastroenterol. Hepatol. 2016, 31, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Juncadella, A.; Papamichael, K.; Vaughn, B.P.; Cheifetz, A.S. Maintenance Adalimumab Concentrations Are Associated with Biochemical, Endoscopic, and Histologic Remission in Inflammatory Bowel Disease. Dig. Dis. Sci. 2018, 63, 3067–3073. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Moreau, A.C.; Del Tedesco, E.; Rinaudo, M.; Phelip, J.M.; Genin, C.; Peyrin-Biroulet, L.; Roblin, X. Pharmacokinetics of adalimumab in inflammatory bowel diseases: A systematic review and meta-analysis. Inflamm. Bowel Dis. 2014, 20, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Ungar, B.; Levy, I.; Yavne, Y.; Yavzori, M.; Picard, O.; Fudim, E.; Loebstein, R.; Chowers, Y.; Eliakim, R.; Kopylov, U.; et al. Optimizing Anti-TNF-α Therapy: Serum Levels of Infliximab and Adalimumab Are Associated With Mucosal Healing in Patients With Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2016, 14, 550–557.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarur, A.J.; Jain, A.; Hauenstein, S.I.; Quintero, M.A.; Barkin, J.S.; Deshpande, A.R.; Sussman, D.A.; Singh, S.; Abreu, M.T. Higher Adalimumab Levels Are Associated with Histologic and Endoscopic Remission in Patients with Crohn’s Disease and Ulcerative Colitis. Inflamm. Bowel Dis. 2016, 22, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, Y.; Bamba, S.; Takahashi, K.; Imaeda, H.; Nishida, A.; Inatomi, O.; Sasaki, M.; Tsujikawa, T.; Sugimoto, M.; Andoh, A. Prediction of clinical and endoscopic responses to anti-tumor necrosis factor-α antibodies in ulcerative colitis. Scand. J. Gastroenterol. 2016, 51, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Kelly, O.B.; Donnell, S.O.; Stempak, J.M.; Steinhart, A.H.; Silverberg, M.S. Therapeutic Drug Monitoring to Guide Infliximab Dose Adjustment is Associated with Better Endoscopic Outcomes than Clinical Decision Making Alone in Active Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1202–1209. [Google Scholar] [CrossRef] [Green Version]
- Restellini, S.; Chao, C.Y.; Lakatos, P.L.; Aruljothy, A.; Aziz, H.; Kherad, O.; Bitton, A.; Wild, G.; Afif, W.; Bessissow, T. Therapeutic Drug Monitoring Guides the Management of Crohn’s Patients with Secondary Loss of Response to Adalimumab. Inflamm. Bowel Dis. 2018, 24, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.; Vermeire, S.; Lambrecht, G.; Baert, F.; Bossuyt, P.; Pariente, B.; Buisson, A.; Bouhnik, Y.; Filippi, J.; Vander Woude, J.; et al. Increasing Infliximab Dose Based on Symptoms, Biomarkers, and Serum Drug Concentrations Does Not Increase Clinical, Endoscopic, and Corticosteroid-Free Remission in Patients with Active Luminal Crohn’s Disease. Gastroenterology 2018, 154, 1343–1351.e1. [Google Scholar] [CrossRef]
- Steenholdt, C.; Brynskov, J.; Thomsen, O.; Munck, L.K.; Fallingborg, J.; Christensen, L.A.; Pedersen, G.; Kjeldsen, J.; Jacobsen, B.A.; Oxholm, A.S.; et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: A randomised, controlled trial. Gut 2014, 63, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Hoffman, G.R.; El-Dallal, M.; Goldowsky, A.M.; Chen, Y.; Feuerstein, J.D. Is Therapeutic Drug Monitoring for Anti-tumour Necrosis Factor Agents in Adults with Inflammatory Bowel Disease Ready for Standard of Care? A Systematic Review and Meta-analysis. J. Crohn’s Colitis 2020, 14, 1057–1065. [Google Scholar] [CrossRef]
- Cornillie, F.; Hanauer, S.B.; Diamond, R.H.; Wang, J.; Tang, K.L.; Xu, Z.; Rutgeerts, P.; Vermeire, S. Postinduction serum infliximab trough level and decrease of C-reactive protein level are associated with durable sustained response to infliximab: A retrospective analysis of the ACCENT I trial. Gut 2014, 63, 1721–1727. [Google Scholar] [CrossRef] [PubMed]
- Davidov, Y.; Ungar, B.; Bar-Yoseph, H.; Carter, D.; Haj-Natour, O.; Yavzori, M.; Chowers, Y.; Eliakim, R.; Ben-Horin, S.; Kopylov, U. Association of Induction Infliximab Levels With Clinical Response in Perianal Crohn’s Disease. J. Crohn’s Colitis 2017, 11, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Dreesen, E.; Baert, F.; Laharie, D.; Bossuyt, P.; Bouhnik, Y.; Buisson, A.; Lambrecht, G.; Louis, E.; Oldenburg, B.; Pariente, B.; et al. Monitoring a Combination of Calprotectin and Infliximab Identifies Patients With Mucosal Healing of Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2020, 18, 637–646.e11. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, K.; Casteele, N.V.; Jeyarajah, J.; Jairath, V.; Osterman, M.T.; Cheifetz, A.S. Higher Postinduction Infliximab Concentrations Are Associated With Improved Clinical Outcomes in Fistulizing Crohn’s Disease: An ACCENT-II Post Hoc Analysis. Am. J. Gastroenterol. 2021, 116, 1007–1014. [Google Scholar] [CrossRef]
- Clarkston, K.; Tsai, Y.T.; Jackson, K.; Rosen, M.J.; Denson, L.A.; Minar, P. Development of Infliximab Target Concentrations During Induction in Pediatric Crohn Disease Patients. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 68–74. [Google Scholar] [CrossRef]
- Gonczi, L.; Vegh, Z.; Golovics, P.A.; Rutka, M.; Gecse, K.B.; Bor, R.; Farkas, K.; Szamosi, T.; Bene, L.; Gasztonyi, B.; et al. Prediction of Short- and Medium-term Efficacy of Biosimilar Infliximab Therapy. Do Trough Levels and Antidrug Antibody Levels or Clinical And Biochemical Markers Play the More Important Role? J. Crohn’s Colitis 2016, 11, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Suzuki, Y.; Motoya, S.; Hirai, F.; Ogata, H.; Ito, H.; Sato, N.; Ozaki, K.; Watanabe, M.; Hibi, T. First trough level of infliximab at week 2 predicts future outcomes of induction therapy in ulcerative colitis-results from a multicenter prospective randomized controlled trial and its post hoc analysis. J. Gastroenterol. 2016, 51, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Bar-Yoseph, H.; Levhar, N.; Selinger, L.; Manor, U.; Yavzori, M.; Picard, O.; Fudim, E.; Kopylov, U.; Eliakim, R.; Ben-Horin, S.; et al. Early drug and anti-infliximab antibody levels for prediction of primary nonresponse to infliximab therapy. Aliment. Pharm. Ther. 2018, 47, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Casteele, N.V.; Jeyarajah, J.; Jairath, V.; Feagan, B.G.; Sandborn, W.J. Infliximab Exposure-Response Relationship and Thresholds Associated with Endoscopic Healing in Patients with Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2019, 17, 1814–1821.e1. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, K.; Van Stappen, T.; Casteele, N.V.; Gils, A.; Billiet, T.; Tops, S.; Claes, K.; Van Assche, G.; Rutgeerts, P.; Vermeire, S.; et al. Infliximab Concentration Thresholds during Induction Therapy Are Associated with Short-term Mucosal Healing in Patients With Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2016, 14, 543–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tighe, D.; Smith, S.; O’Connor, A.; Breslin, N.; Ryan, B.; McNamara, D. Positive relationship between infliximab and adalimumab trough levels at completion of induction therapy with clinical response rates, at a tertiary referral center. JGH Open 2017, 1, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortlik, M.; Duricova, D.; Malickova, K.; Machkova, N.; Bouzkova, E.; Hrdlicka, L.; Komarek, A.; Lukas, M. Infliximab trough levels may predict sustained response to infliximab in patients with Crohn’s disease. J. Crohn’s Colitis 2013, 7, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Ungar, B.; Engel, T.; Yablecovitch, D.; Lahat, A.; Lang, A.; Avidan, B.; Har-Noy, O.; Carter, D.; Levhar, N.; Selinger, L.; et al. Prospective Observational Evaluation of Time-Dependency of Adalimumab Immunogenicity and Drug Concentrations: The POETIC Study. Am. J. Gastroenterol. 2018, 113, 890–898. [Google Scholar] [CrossRef]
- Verstockt, B.; Moors, G.; Bian, S.; Van Stappen, T.; Van Assche, G.; Vermeire, S.; Gils, A.; Ferrante, M. Influence of early adalimumab serum levels on immunogenicity and long-term outcome of anti-TNF naive Crohn’s disease patients: The usefulness of rapid testing. Aliment. Pharm. Ther. 2018, 48, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Casteele, N.V.; Baert, F.; Bian, S.; Dreesen, E.; Compernolle, G.; Van Assche, G.; Ferrante, M.; Vermeire, S.; Gils, A. Subcutaneous Absorption Contributes to Observed Interindividual Variability in Adalimumab Serum Concentrations in Crohn’s Disease: A Prospective Multicentre Study. J. Crohn’s Colitis 2019, 13, 1248–1256. [Google Scholar] [CrossRef]
- Papamichael, K.; Baert, F.; Tops, S.; Assche, G.V.; Rutgeerts, P.; Vermeire, S.; Gils, A.; Ferrante, M. Post-Induction Adalimumab Concentration is Associated with Short-Term Mucosal Healing in Patients with Ulcerative Colitis. J. Crohn’s Colitis 2017, 11, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Baert, F.; Casteele, N.V.; Tops, S.; Noman, M.; Van Assche, G.; Rutgeerts, P.; Gils, A.; Vermeire, S.; Ferrante, M. Prior response to infliximab and early serum drug concentrations predict effects of adalimumab in ulcerative colitis. Aliment. Pharm. Ther. 2014, 40, 1324–1332. [Google Scholar] [CrossRef]
- Baert, F.; Kondragunta, V.; Lockton, S.; Casteele, N.V.; Hauenstein, S.; Singh, S.; Karmiris, K.; Ferrante, M.; Gils, A.; Vermeire, S. Antibodies to adalimumab are associated with future inflammation in Crohn’s patients receiving maintenance adalimumab therapy: A post hoc analysis of the Karmiris trial. Gut 2016, 65, 1126–1131. [Google Scholar] [CrossRef]
- Hindryckx, P.; Novak, G.; Casteele, N.V.; Laukens, D.; Parker, C.; Shackelton, L.M.; Narula, N.; Khanna, R.; Dulai, P.; Levesque, B.G.; et al. Review article: Dose optimisation of infliximab for acute severe ulcerative colitis. Aliment. Pharm. Ther. 2017, 45, 617–630. [Google Scholar] [CrossRef] [Green Version]
- Alsoud, D.; Verstockt, B.; Vermeire, S. Letter: Immunogenicity is not the root cause for loss of response to anti-TNF agents in patients with IBD in TDM era. Aliment. Pharm. Ther. 2022, 55, 885–886. [Google Scholar] [CrossRef]
- Syversen, S.W.; Goll, G.L.; Jørgensen, K.K.; Sandanger, Ø.; Sexton, J.; Olsen, I.C.; Gehin, J.E.; Warren, D.J.; Brun, M.K.; Klaasen, R.A.; et al. Effect of Therapeutic Drug Monitoring vs Standard Therapy During Infliximab Induction on Disease Remission in Patients With Chronic Immune-Mediated Inflammatory Diseases: A Randomized Clinical Trial. JAMA 2021, 325, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Casteele, N.V.; Ferrante, M.; Van Assche, G.; Ballet, V.; Compernolle, G.; Van Steen, K.; Simoens, S.; Rutgeerts, P.; Gils, A.; Vermeire, S. Trough concentrations of infliximab guide dosing for patients with inflammatory bowel disease. Gastroenterology 2015, 148, 1320–1329.e3. [Google Scholar] [CrossRef] [PubMed]
- Syversen, S.W.; Jahnsen, J.; Haavardsholm, E.A. Therapeutic Drug Monitoring vs Standard Therapy During Maintenance Infliximab Therapy and Control of Immune-Mediated Inflammatory Diseases-Reply. JAMA 2022, 327, 1506–1507. [Google Scholar] [CrossRef]
- Assa, A.; Matar, M.; Turner, D.; Broide, E.; Weiss, B.; Ledder, O.; Guz-Mark, A.; Rinawi, F.; Cohen, S.; Topf-Olivestone, C.; et al. Proactive Monitoring of Adalimumab Trough Concentration Associated with Increased Clinical Remission in Children with Crohn’s Disease Compared with Reactive Monitoring. Gastroenterology 2019, 157, 985–996.e2. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, J.G.; Rebollo, N.; Martin-Suarez, A.; Calvo, M.V.; Muñoz, F. A 3-year prospective study of a multidisciplinary early proactive therapeutic drug monitoring programme of infliximab treatments in inflammatory bowel disease. Br. J. Clin. Pharmacol. 2020, 86, 1165–1175. [Google Scholar] [CrossRef]
- Fernandes, S.R.; Bernardo, S.; Simões, C.; Gonçalves, A.R.; Valente, A.; Baldaia, C.; Moura Santos, P.; Correia, L.A.; Tato Marinho, R. Proactive Infliximab Drug Monitoring Is Superior to Conventional Management in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 263–270. [Google Scholar] [CrossRef]
- Vaughn, B.P.; Martinez-Vazquez, M.; Patwardhan, V.R.; Moss, A.C.; Sandborn, W.J.; Cheifetz, A.S. Proactive therapeutic concentration monitoring of infliximab may improve outcomes for patients with inflammatory bowel disease: Results from a pilot observational study. Inflamm. Bowel Dis. 2014, 20, 1996–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, N.; Tolaymat, M.; Brown, S.A.; Sivasailam, B.; Cross, R.K. Proactive Drug Monitoring Is Associated With Higher Persistence to Infliximab and Adalimumab Treatment and Lower Healthcare Utilization Compared With Reactive and Clinical Monitoring. Crohns Colitis 360 2020, 2, otaa050. [Google Scholar] [CrossRef]
- Lyles, J.L.; Mulgund, A.A.; Bauman, L.E.; Su, W.; Fei, L.; Chona, D.L.; Sharma, P.; Etter, R.K.; Hellmann, J.; Denson, L.A.; et al. Effect of a Practice-wide Anti-TNF Proactive Therapeutic Drug Monitoring Program on Outcomes in Pediatric Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 482–492. [Google Scholar] [CrossRef]
- Papamichael, K.; Cheifetz, A.S. Proactive Adalimumab Monitoring in Inflammatory Bowel Disease: Current Data and Future Perspectives. J. Crohn’s Colitis 2020, 14, 878–879. [Google Scholar] [CrossRef]
- Papamichael, K.; Juncadella, A.; Wong, D.; Rakowsky, S.; Sattler, L.A.; Campbell, J.P.; Vaughn, B.P.; Cheifetz, A.S. Proactive Therapeutic Drug Monitoring of Adalimumab Is Associated with Better Long-term Outcomes Compared with Standard of Care in Patients with Inflammatory Bowel Disease. J. Crohn’s Colitis 2019, 13, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, S.; Fernandes, S.; Gonçalves, A.R.; Baldaia, C.; Valente, A.; Moura Santos, P.; Correia, L.; Velosa, J. P453 Efficacy of therapeutic drug monitoring of anti-TNF therapy in the control of patients with inflammatory bowel disease. J. Crohn’s Colitis 2017, 11, S308–S309. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.H.; Solitano, V.; Vuyyuru, S.K.; MacDonald, J.K.; Syversen, S.W.; Jørgensen, K.K.; Crowley, E.; Ma, C.; Jairath, V.; Singh, S. Proactive Therapeutic Drug Monitoring Versus Conventional Management for Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Gastroenterology 2022, 163, 937–949.e2. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Dias, S.; Kumar, A.; Blackwell, J.; Brookes, M.J.; Segal, J.P. Meta-analysis: The efficacy of therapeutic drug monitoring of anti-TNF-therapy in inflammatory bowel disease. Aliment. Pharm. Ther. 2022. [Google Scholar] [CrossRef] [PubMed]
- Amiot, A.; Hulin, A.; Belhassan, M.; Andre, C.; Gagniere, C.; Le Baleur, Y.; Farcet, J.P.; Delchier, J.C.; Hüe, S. Therapeutic drug monitoring is predictive of loss of response after de-escalation of infliximab therapy in patients with inflammatory bowel disease in clinical remission. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 90–98. [Google Scholar] [CrossRef]
- Lucidarme, C.; Petitcollin, A.; Brochard, C.; Siproudhis, L.; Dewitte, M.; Landemaine, A.; Bellissant, E.; Bouguen, G. Predictors of relapse following infliximab de-escalation in patients with inflammatory bowel disease: The value of a strategy based on therapeutic drug monitoring. Aliment. Pharm. Ther. 2019, 49, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Aguas Peris, M.; Bosó, V.; Navarro, B.; Marqués-Miñana, M.R.; Bastida, G.; Beltrán, B.; Iborra, M.; Sáez-González, E.; Monte-Boquet, E.; Poveda-Andrés, J.L.; et al. Serum Adalimumab Levels Predict Successful Remission and Safe Deintensification in Inflammatory Bowel Disease Patients in Clinical Practice. Inflamm. Bowel Diseases. 2017, 23, 1454–1460. [Google Scholar] [CrossRef] [Green Version]
- Petitcollin, A.; Brochard, C.; Siproudhis, L.; Tron, C.; Verdier, M.C.; Lemaitre, F.; Lucidarme, C.; Bouguen, G.; Bellissant, É. Pharmacokinetic Parameters of Infliximab Influence the Rate of Relapse after De-Escalation in Adults with Inflammatory Bowel Diseases. Clin. Pharm. Ther. 2019, 106, 605–615. [Google Scholar] [CrossRef]
- Drobne, D.; Bossuyt, P.; Breynaert, C.; Cattaert, T.; Casteele, N.V.; Compernolle, G.; Jürgens, M.; Ferrante, M.; Ballet, V.; Wollants, W.J.; et al. Withdrawal of immunomodulators after co-treatment does not reduce trough level of infliximab in patients with Crohn’s disease. Clin. Gastroenterol. Hepatol. 2015, 13, 514–521.e4. [Google Scholar] [CrossRef]
- Colombel, J.F.; Adedokun, O.J.; Gasink, C.; Gao, L.L.; Cornillie, F.J.; D’Haens, G.R.; Rutgeerts, P.J.; Reinisch, W.; Sandborn, W.J.; Hanauer, S.B. Combination Therapy With Infliximab and Azathioprine Improves Infliximab Pharmacokinetic Features and Efficacy: A Post Hoc Analysis. Clin. Gastroenterol. Hepatol. 2019, 17, 1525–1532.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drobne, D.; Kurent, T.; Golob, S.; Švegl, P.; Rajar, P.; Hanžel, J.; Koželj, M.; Novak, G.; Smrekar, N.; Ferkolj, I.; et al. Optimised infliximab monotherapy is as effective as optimised combination therapy, but is associated with higher drug consumption in inflammatory bowel disease. Aliment. Pharm. Ther. 2019, 49, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Lega, S.; Phan, B.L.; Rosenthal, C.J.; Gordon, J.; Haddad, N.; Pittman, N.; Benkov, K.J.; Dubinsky, M.C. Proactively Optimized Infliximab Monotherapy Is as Effective as Combination Therapy in IBD. Inflamm. Bowel Dis. 2019, 25, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Baert, F.; Drobne, D.; Gils, A.; Casteele, N.V.; Hauenstein, S.; Singh, S.; Lockton, S.; Rutgeerts, P.; Vermeire, S. Early trough levels and antibodies to infliximab predict safety and success of reinitiation of infliximab therapy. Clin. Gastroenterol. Hepatol. 2014, 12, 1474–1481.e2; quiz e91. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.; Dubinsky, M.; Melmed, G.; Vasiliauskas, E.; Berel, D.; McGovern, D.; Ippoliti, A.; Shih, D.; Targan, S.; Fleshner, P. The impact of preoperative serum anti-TNFα therapy levels on early postoperative outcomes in inflammatory bowel disease surgery. Ann. Surg. 2015, 261, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Cohen, B.L.; Fleshner, P.; Kane, S.V.; Herfarth, H.H.; Palekar, N.; Farraye, F.A.; Leighton, J.A.; Katz, J.A.; Cohen, R.D.; Gerich, M.E.; et al. Prospective Cohort Study to Investigate the Safety of Preoperative Tumor Necrosis Factor Inhibitor Exposure in Patients With Inflammatory Bowel Disease Undergoing Intra-abdominal Surgery. Gastroenterology 2022, 163, 204–221. [Google Scholar] [CrossRef]
- Fumery, M.; Seksik, P.; Auzolle, C.; Munoz-Bongrand, N.; Gornet, J.M.; Boschetti, G.; Cotte, E.; Buisson, A.; Dubois, A.; Pariente, B.; et al. Postoperative Complications after Ileocecal Resection in Crohn’s Disease: A Prospective Study from the REMIND Group. Am. J. Gastroenterol. 2017, 112, 337–345. [Google Scholar] [CrossRef]
- Waterman, M.; Xu, W.; Dinani, A.; Steinhart, A.H.; Croitoru, K.; Nguyen, G.C.; McLeod, R.S.; Greenberg, G.R.; Cohen, Z.; Silverberg, M.S. Preoperative biological therapy and short-term outcomes of abdominal surgery in patients with inflammatory bowel disease. Gut 2013, 62, 387–394. [Google Scholar] [CrossRef]
- Liefferinckx, C.; Bottieau, J.; Toubeau, J.-F.; Thomas, D.; Rahier, J.-F.; Louis, E.; Baert, F.; Dewint, P.; Pouillon, L.; Lambrecht, G.; et al. Collecting New Peak and Intermediate Infliximab Levels to Predict Remission in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2021, 28, 208–217. [Google Scholar] [CrossRef]
- Yoshihara, T.; Shinzaki, S.; Kawai, S.; Fujii, H.; Iwatani, S.; Yamaguchi, T.; Araki, M.; Hiyama, S.; Inoue, T.; Hayashi, Y.; et al. Tissue Drug Concentrations of Anti-tumor Necrosis Factor Agents Are Associated with the Long-term Outcome of Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2017, 23, 2172–2179. [Google Scholar] [CrossRef]
- Afonso, J.; Lopes, S.; Gonçalves, R.; Caldeira, P.; Lago, P.; Tavares de Sousa, H.; Ramos, J.; Gonçalves, A.R.; Ministro, P.; Rosa, I.; et al. Proactive therapeutic drug monitoring of infliximab: A comparative study of a new point-of-care quantitative test with two established ELISA assays. Aliment. Pharmacol. Ther. 2016, 44, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Cherry, M.; Dutzer, D.; Nasser, Y.; Berger, A.E.; Roblin, X.; Paul, S. Point-of-Care Assays Could Be Useful for Therapeutic Drug Monitoring of IBD Patients in a Proactive Strategy with Adalimumab. J. Clin. Med. 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Facchin, S.; Buda, A.; Cardin, R.; Agbariah, N.; Zingone, F.; De Bona, M.; Zaetta, D.; Bertani, L.; Ghisa, M.; Barberio, B.; et al. Rapid point-of-care anti-infliximab antibodies detection in clinical practice: Comparison with ELISA and potential for improving therapeutic drug monitoring in IBD patients. Ther. Adv. Gastroenterol. 2021, 14, 1756284821999902. [Google Scholar] [CrossRef]
- Dutzer, D.; Nasser, Y.; Berger, A.E.; Roblin, X.; Paul, S. Letter: New thresholds need to be defined when using point of care assays to monitor infliximab trough levels in IBD patients. Aliment. Pharmacol. Ther. 2018, 47, 1571–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossuyt, P.; Pouillon, L.; Claeys, S.; D’Haens, S.; Hoefkens, E.; Strubbe, B.; Marichal, D.; Peeters, H. Ultra-proactive Therapeutic Drug Monitoring of Infliximab Based on Point of Care Testing in Inflammatory Bowel Disease: Results of a Pragmatic Trial. J. Crohn’s Colitis 2021, 16, 199–206. [Google Scholar] [CrossRef]
- Strik, A.S.; Löwenberg, M.; Mould, D.R.; Berends, S.E.; Ponsioen, C.I.; van den Brande, J.M.H.; Jansen, J.M.; Hoekman, D.R.; Brandse, J.F.; Duijvestein, M.; et al. Efficacy of dashboard driven dosing of infliximab in inflammatory bowel disease patients; a randomized controlled trial. Scand. J. Gastroenterol. 2021, 56, 145–154. [Google Scholar] [CrossRef]
- Dubinsky, M.C.; Mendiolaza, M.L.; Phan, B.L.; Moran, H.R.; Tse, S.S.; Mould, D.R. Dashboard-Driven Accelerated Infliximab Induction Dosing Increases Infliximab Durability and Reduces Immunogenicity. Inflamm. Bowel Dis. 2022, 28, 1375–1385. [Google Scholar] [CrossRef]
- Papamichael, K.; Jairath, V.; Zou, G.; Cohen, B.; Ritter, T.; Sands, B.; Siegel, C.; Valentine, J.; Smith, M.; Vande Casteele, N.; et al. Proactive infliximab optimisation using a pharmacokinetic dashboard versus standard of care in patients with Crohn’s disease: Study protocol for a randomised, controlled, multicentre, open-label study (the OPTIMIZE trial). BMJ Open 2022, 12, e057656. [Google Scholar] [CrossRef]
- Smolen, J.S.; Van Der Heijde, D.M.; Clair, E.W.S.; Emery, P.; Bathon, J.M.; Keystone, E.; Maini, R.N.; Kalden, J.R.; Schiff, M.; Baker, D.; et al. Predictors of joint damage in patients with early rheumatoid arthritis treated with high-dose methotrexate with or without concomitant infliximab: Results from the ASPIRE trial. Arthritis Rheum. 2006, 54, 702–710. [Google Scholar] [CrossRef]
- Breedveld, F.C.; Weisman, M.H.; Kavanaugh, A.F.; Cohen, S.B.; Pavelka, K.; Vollenhoven, R.V.; Sharp, J.; Perez, J.L.; Spencer-Green, G.T. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 2006, 54, 26–37. [Google Scholar] [PubMed]
- Brandse, J.F.; Mathôt, R.A.; van der Kleij, D.; Rispens, T.; Ashruf, Y.; Jansen, J.M.; Rietdijk, S.; Löwenberg, M.; Ponsioen, C.Y.; Singh, S.; et al. Pharmacokinetic Features and Presence of Antidrug Antibodies Associate With Response to Infliximab Induction Therapy in Patients With Moderate to Severe Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2016, 14, 251–258.e1–2. [Google Scholar] [CrossRef] [PubMed]
- van Schaik, T.; Maljaars, J.P.; Roopram, R.K.; Verwey, M.H.; Ipenburg, N.; Hardwick, J.C.; Veenendaal, R.A.; van der Meulen-de Jong, A.E. Influence of combination therapy with immune modulators on anti-TNF trough levels and antibodies in patients with IBD. Inflamm. Bowel Dis. 2014, 20, 2292–2298. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.G.; Orchard, T.R.; Jewell, D.P. The efficacy of azathioprine for the treatment of inflammatory bowel disease: A 30 year review. Gut 2002, 50, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Mantzaris, G.J. Thiopurines and Methotrexate Use in IBD Patients in a Biologic Era. Curr. Treat Options Gastroenterol. 2017, 15, 84–104. [Google Scholar] [CrossRef]
- Colombel, J.F.; Sandborn, W.J.; Reinisch, W.; Mantzaris, G.J.; Kornbluth, A.; Rachmilewitz, D.; Lichtiger, S.; D’Haens, G.; Diamond, R.H.; Broussard, D.L.; et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med. 2010, 362, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Panaccione, R.; Ghosh, S.; Middleton, S.; Márquez, J.R.; Scott, B.B.; Flint, L.; van Hoogstraten, H.J.; Chen, A.C.; Zheng, H.; Danese, S.; et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology 2014, 146, 392–400.e3. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Motoya, S.; Watanabe, K.; Hisamatsu, T.; Nakase, H.; Yoshimura, N.; Ishida, T.; Kato, S.; Nakagawa, T.; Esaki, M.; et al. Adalimumab Monotherapy and a Combination with Azathioprine for Crohn’s Disease: A Prospective, Randomized Trial. J. Crohn’s Colitis 2016, 10, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Schröder, O.; Blumenstein, I.; Stein, J. Combining infliximab with methotrexate for the induction and maintenance of remission in refractory Crohn’s disease: A controlled pilot study. Eur. J. Gastroenterol. Hepatol. 2006, 18, 11–16. [Google Scholar] [CrossRef]
- Roblin, X.; Williet, N.; Boschetti, G.; Phelip, J.M.; Del Tedesco, E.; Berger, A.E.; Vedrines, P.; Duru, G.; Peyrin-Biroulet, L.; Nancey, S.; et al. Addition of azathioprine to the switch of anti-TNF in patients with IBD in clinical relapse with undetectable anti-TNF trough levels and antidrug antibodies: A prospective randomised trial. Gut 2020, 69, 1206–1212. [Google Scholar] [CrossRef]
- Feagan, B.G.; McDonald, J.W.; Panaccione, R.; Enns, R.A.; Bernstein, C.N.; Ponich, T.P.; Bourdages, R.; Macintosh, D.G.; Dallaire, C.; Cohen, A.; et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology 2014, 146, 681–688.e1. [Google Scholar] [CrossRef] [PubMed]
- Targownik, L.E.; Benchimol, E.I.; Bernstein, C.N.; Singh, H.; Tennakoon, A.; Zubieta, A.A.; Coward, S.; Jones, J.; Kaplan, G.G.; Kuenzig, M.E.; et al. Combined Biologic and Immunomodulatory Therapy is Superior to Monotherapy for Decreasing the Risk of Inflammatory Bowel Disease-Related Complications. J. Crohn’s Colitis 2020, 14, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, R.; Schultheiss, H.P.; Louwers, J.; van der Kaaij, M.; van Hellemondt, B.; Mahmmod, N.; van Boeckel, P.; Jharap, B.; Fidder, H.; Oldenburg, B. Immunomodulator Withdrawal From Anti-TNF Therapy Is Not Associated With Loss of Response in Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2022, 20, 2577–2587.e6. [Google Scholar] [CrossRef] [PubMed]
- Lucas Ramos, J.; Suárez Ferrer, C.; Poza Cordón, J.; Sánchez Azofra, M.; Rueda García, J.L.; Martin Arranz, E.; Yebra Carmona, J.; Andaluz García, I.; Martín Arranz, M.D. Optimization of azathioprine dose in combined treatment with anti-TNF-alpha in inflammatory bowel disease. Gastroenterol. Hepatol. 2021, 44, 337–345. [Google Scholar] [CrossRef]
- Nawaz, A.; Glick, L.R.; Chaar, A.; Li, D.K.; Gaidos, J.K.J.; Proctor, D.D.; Al-Bawardy, B. Impact of thiopurine dose in anti-tumor necrosis factor combination therapy on outcomes in inflammatory bowel disease. Ann. Gastroenterol. 2023, 36, 39–44. [Google Scholar] [CrossRef]
- Roblin, X.; Boschetti, G.; Williet, N.; Nancey, S.; Marotte, H.; Berger, A.; Phelip, J.M.; Peyrin-Biroulet, L.; Colombel, J.F.; Del Tedesco, E.; et al. Azathioprine dose reduction in inflammatory bowel disease patients on combination therapy: An open-label, prospective and randomised clinical trial. Aliment. Pharm. Ther. 2017, 46, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Lambrescak, E.; Vaysse, T.; Allez, M.; Ungar, B.; Gleizes, A.; Hacein-Bey, S.; Chowers, Y.; Roblin, X.; Kopylov, U.; Rachas, A.; et al. Duration of combination therapy and risk of treatment failure in patients with inflammatory bowel disease. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101503. [Google Scholar] [CrossRef]
- Oussalah, A.; Chevaux, J.B.; Fay, R.; Sandborn, W.J.; Bigard, M.A.; Peyrin-Biroulet, L. Predictors of infliximab failure after azathioprine withdrawal in Crohn’s disease treated with combination therapy. Am. J. Gastroenterol. 2010, 105, 1142–1149. [Google Scholar] [CrossRef]
- Chen, C.; Hartzema, A.G.; Xiao, H.; Wei, Y.J.; Chaudhry, N.; Ewelukwa, O.; Glover, S.C.; Zimmermann, E.M. Real-world Pattern of Biologic Use in Patients With Inflammatory Bowel Disease: Treatment Persistence, Switching, and Importance of Concurrent Immunosuppressive Therapy. Inflamm. Bowel Dis. 2019, 25, 1417–1427. [Google Scholar] [CrossRef]
- Fousekis, F.S.; Papamichael, K.; Kourtis, G.; Albani, E.N.; Orfanidou, A.; Saridi, M.; Katsanos, K.H.; Christodoulou, D.K. The efficacy of immunomodulators in the prevention and suppression of anti-drug antibodies to anti-tumor necrosis factor therapy in inflammatory bowel disease. Ann. Gastroenterol. 2022, 35, 1–7. [Google Scholar] [CrossRef]
- Ben-Horin, S.; Waterman, M.; Kopylov, U.; Yavzori, M.; Picard, O.; Fudim, E.; Awadie, H.; Weiss, B.; Chowers, Y. Addition of an immunomodulator to infliximab therapy eliminates antidrug antibodies in serum and restores clinical response of patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2013, 11, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Kirchgesner, J.; Lemaitre, M.; Carrat, F.; Zureik, M.; Carbonnel, F.; Dray-Spira, R. Risk of Serious and Opportunistic Infections Associated With Treatment of Inflammatory Bowel Diseases. Gastroenterology 2018, 155, 337–346.e10. [Google Scholar] [CrossRef] [Green Version]
- Lemaitre, M.; Kirchgesner, J.; Rudnichi, A.; Carrat, F.; Zureik, M.; Carbonnel, F.; Dray-Spira, R. Association Between Use of Thiopurines or Tumor Necrosis Factor Antagonists Alone or in Combination and Risk of Lymphoma in Patients with Inflammatory Bowel Disease. JAMA 2017, 318, 1679–1686. [Google Scholar] [CrossRef] [PubMed]
- Sturm, A.; Maaser, C.; Mendall, M.; Karagiannis, D.; Karatzas, P.; Ipenburg, N.; Sebastian, S.; Rizzello, F.; Limdi, J.; Katsanos, K.; et al. European Crohn’s and Colitis Organisation Topical Review on IBD in the Elderly. J. Crohn’s Colitis 2017, 11, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaugerie, L. Lymphoma: The bête noire of the long-term use of thiopurines in adult and elderly patients with inflammatory bowel disease. Gastroenterology 2013, 145, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Peyrin-Biroulet, L.; Sandborn, W.; Sands, B.E.; Reinisch, W.; Bemelman, W.; Bryant, R.V.; D’Haens, G.; Dotan, I.; Dubinsky, M.; Feagan, B.; et al. Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE): Determining Therapeutic Goals for Treat-to-Target. Am. J. Gastroenterol. 2015, 110, 1324–1338. [Google Scholar] [CrossRef]
- Bouguen, G.; Peyrin-Biroulet, L. Surgery for adult Crohn’s disease: What is the actual risk? Gut 2011, 60, 1178–1181. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Reinisch, W.; Colombel, J.F.; Mantzaris, G.J.; Kornbluth, A.; Diamond, R.; Rutgeerts, P.; Tang, L.K.; Cornillie, F.J.; Sandborn, W.J. Clinical disease activity, C-reactive protein normalisation and mucosal healing in Crohn’s disease in the SONIC trial. Gut 2014, 63, 88–95; quiz 20. [Google Scholar] [CrossRef]
- Mosli, M.H.; Zou, G.; Garg, S.K.; Feagan, S.G.; MacDonald, J.K.; Chande, N.; Sandborn, W.J.; Feagan, B.G. C-Reactive Protein, Fecal Calprotectin, and Stool Lactoferrin for Detection of Endoscopic Activity in Symptomatic Inflammatory Bowel Disease Patients: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2015, 110, 802–819; quiz 20. [Google Scholar] [CrossRef]
- Rokkas, T.; Portincasa, P.; Koutroubakis, I.E. Fecal calprotectin in assessing inflammatory bowel disease endoscopic activity: A diagnostic accuracy meta-analysis. J. Gastrointestin. Liver Dis. 2018, 27, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Kostas, A.; Siakavellas, S.I.; Kosmidis, C.; Takou, A.; Nikou, J.; Maropoulos, G.; Vlachogiannakos, J.; Papatheodoridis, G.V.; Papaconstantinou, I.; Bamias, G. Fecal calprotectin measurement is a marker of short-term clinical outcome and presence of mucosal healing in patients with inflammatory bowel disease. World J. Gastroenterol. 2017, 23, 7387–7396. [Google Scholar] [CrossRef]
- Diederen, K.; Hoekman, D.R.; Leek, A.; Wolters, V.M.; Hummel, T.Z.; de Meij, T.G.; Koot, B.G.; Tabbers, M.M.; Benninga, M.A.; Kindermann, A. Raised faecal calprotectin is associated with subsequent symptomatic relapse, in children and adolescents with inflammatory bowel disease in clinical remission. Aliment. Pharm. Ther. 2017, 45, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Gisbert, J.P.; Marín, A.C.; Chaparro, M. Systematic review: Factors associated with relapse of inflammatory bowel disease after discontinuation of anti-TNF therapy. Aliment. Pharm. Ther. 2015, 42, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Reinisch, W.; Wang, Y.; Oddens, B.J.; Link, R. C-reactive protein, an indicator for maintained response or remission to infliximab in patients with Crohn’s disease: A post-hoc analysis from ACCENT I. Aliment. Pharm. Ther. 2012, 35, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Hong, S.N.; Lee, J.E.; Kim, K.; Kim, T.J.; Kim, E.R.; Chang, D.K.; Kim, Y.H. C-Reactive protein reduction rate following initiation of anti-tumor necrosis factor α induction therapy predicts secondary loss of response in patients with Crohn’s disease. Scand. J. Gastroenterol. 2019, 54, 876–885. [Google Scholar] [CrossRef]
- Colombel, J.F.; Panaccione, R.; Bossuyt, P.; Lukas, M.; Baert, F.; Vaňásek, T.; Danalioglu, A.; Novacek, G.; Armuzzi, A.; Hébuterne, X.; et al. Effect of tight control management on Crohn’s disease (CALM): A multicentre, randomised, controlled phase 3 trial. Lancet 2017, 390, 2779–2789. [Google Scholar] [CrossRef]
- Ungaro, R.C.; Yzet, C.; Bossuyt, P.; Baert, F.J.; Vanasek, T.; D’Haens, G.R.; Joustra, V.W.; Panaccione, R.; Novacek, G.; Reinisch, W.; et al. Deep Remission at 1 Year Prevents Progression of Early Crohn’s Disease. Gastroenterology 2020, 159, 139–147. [Google Scholar] [CrossRef]
- Arias, M.T.; Casteele, N.V.; Vermeire, S.; de Buck van Overstraeten, A.; Billiet, T.; Baert, F.; Wolthuis, A.; Van Assche, G.; Noman, M.; Hoffman, I.; et al. A panel to predict long-term outcome of infliximab therapy for patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 2015, 13, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Xiao, Y.L.; Gao, X.; Chen, B.L.; He, Y.; Yang, L.; Hu, P.J.; Chen, M.H. Fecal calprotectin in predicting relapse of inflammatory bowel diseases: A meta-analysis of prospective studies. Inflamm. Bowel Dis. 2012, 18, 1894–1899. [Google Scholar] [CrossRef]
- Roblin, X.; Marotte, H.; Leclerc, M.; Del Tedesco, E.; Phelip, J.M.; Peyrin-Biroulet, L.; Paul, S. Combination of C-reactive protein, infliximab trough levels, and stable but not transient antibodies to infliximab are associated with loss of response to infliximab in inflammatory bowel disease. J. Crohn’s Colitis 2015, 9, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollelis, E.; Quinard, R.M.; Bouguen, G.; Goutte, M.; Goutorbe, F.; Bouvier, D.; Pereira, B.; Bommelaer, G.; Buisson, A. Combined evaluation of biomarkers as predictor of maintained remission in Crohn’s disease. World J. Gastroenterol. 2019, 25, 2354–2364. [Google Scholar]
- Danese, S.; Vermeire, S.; D’Haens, G.; Panés, J.; Dignass, A.; Magro, F.; Nazar, M.; Le Bars, M.; Lahaye, M.; Ni, L.; et al. Treat to target versus standard of care for patients with Crohn’s disease treated with ustekinumab (STARDUST): An open-label, multicentre, randomised phase 3b trial. Lancet Gastroenterol. Hepatol. 2022, 7, 294–306. [Google Scholar]
- Gupta, A.; Yu, A.; Peyrin-Biroulet, L.; Ananthakrishnan, A.N. Treat to Target: The Role of Histologic Healing in Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 19, 1800–1813.e4. [Google Scholar]
- Yoon, H.; Jangi, S.; Dulai, P.S.; Boland, B.S.; Prokop, L.J.; Jairath, V.; Feagan, B.G.; Sandborn, W.J.; Singh, S. Incremental Benefit of Achieving Endoscopic and Histologic Remission in Patients With Ulcerative Colitis: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 159, 1262–1275.e7. [Google Scholar] [PubMed]
- Castiglione, F.; Imperatore, N.; Testa, A.; De Palma, G.D.; Nardone, O.M.; Pellegrini, L.; Caporaso, N.; Rispo, A. One-year clinical outcomes with biologics in Crohn’s disease: Transmural healing compared with mucosal or no healing. Aliment. Pharm. Ther. 2019, 49, 1026–1039. [Google Scholar]
- Fernandes, S.R.; Rodrigues, R.V.; Bernardo, S.; Cortez-Pinto, J.; Rosa, I.; da Silva, J.P.; Gonçalves, A.R.; Valente, A.; Baldaia, C.; Santos, P.M.; et al. Transmural Healing Is Associated with Improved Long-term Outcomes of Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2017, 23, 1403–1409. [Google Scholar] [CrossRef]
- Messadeg, L.; Hordonneau, C.; Bouguen, G.; Goutorbe, F.; Reimund, J.M.; Goutte, M.; Boucher, A.L.; Scanzi, J.; Reymond, M.; Allimant, C.; et al. Early Transmural Response Assessed Using Magnetic Resonance Imaging Could Predict Sustained Clinical Remission and Prevent Bowel Damage in Patients with Crohn’s Disease Treated with Anti-Tumour Necrosis Factor Therapy. J. Crohn’s Colitis 2020, 14, 1524–1534. [Google Scholar]
- Singh, S.; Murad, M.H.; Fumery, M.; Dulai, P.S.; Sandborn, W.J. First- and Second-Line Pharmacotherapies for Patients With Moderate to Severely Active Ulcerative Colitis: An Updated Network Meta-Analysis. Clin. Gastroenterol. Hepatol. 2020, 18, 2179–2191.e6. [Google Scholar]
Factors | Effect on TCs |
---|---|
Anti-drug antibodies (+) | ↓ |
Combination therapy with immunomodulators | ↑ |
Low albumin levels | ↓ |
High CRP levels | ↓ |
High BMI | ↓ |
Male gender | ↓ |
High serum TNF concentrations | ↓ |
Polymorphisms in the neonatal Fc receptor | ↓ |
Pegylation | ↑ |
Author, Year [Ref.] | Study Design | Disease Type | Anti-TNF Agent | Patients (N) | TCs (mg/L) | Week | Outcome |
---|---|---|---|---|---|---|---|
Dreesen, 2020 [55] | Post hoc analysis of RCT | CD | IFX | 122 | >23.1 >10 | 2 6 | Endoscopic remission week 12 Endoscopic remission week 12 |
Davidov, 2017 [54] | Retrospective | CD fistulizing | IFX | 36 | >9.3 >7.3 | 2 6 | Fistula response week 14 Fistula response week 14 |
Papamichael, 2021 [56] | Post hoc analysis of RCT | CD fistulizing | IFX | 282 | ≥20.2 ≥15 ≥7.2 | 2 6 14 | Complete remission week 14 Complete remission week 14 Complete remission week 14 (defined as combined complete fistula response and CRP normalization) |
Clarkston, 2019 [57] | Prospective | CD pediatric | IFX | 72 | ≥26.7 ≥15.9 | 2 6 | Clinical response week 14 Clinical response week 14 |
Gonzi, 2017 [58] | Prospective | CD | IFX (biosimilar) | 184 | >16.9 >20.4 | 2 | Clinical response week 14 Clinical remission week 14 |
Gonzi, 2017 [58] | Prospective | UC | IFX (biosimilar) | 107 | >11.5 >15.3 | 2 | Clinical response week 14 Clinical remission week 14 |
Gonzi, 2017 [58] | Prospective | UC | IFX (biosimilar) | 107 | >11.5 >14.5 | 2 | Clinical response week 30 Clinical remission week 30 |
Kobayashi, 2016 [59] | Post hoc analysis of RCT | UC | IFX | 82 | >21.3 | 2 | Clinical response week 14 |
Bar Yoseph, 2018 [60] | Retrospective case control | CD | IFX | 140 | <6.8 | 2 | Primary non-response week 14 |
Vande Castelle, 2019 [61] | Post hoc analysis of RCTs | UC | IFX | 484 | ≥18.6 >10.6 ≥5.1 ≥6.7 | 2 6 14 14 | Mayo endoscopic score ≤1 week 8 Mayo endoscopic score ≤1 week 8 Mayo endoscopic score ≤1 week 30 Mayo endoscopic score 0 week 30 |
Papamichael, 2016 [62] | Retrospective | UC | IFX | 101 | ≥28.3 ≥15 ≥2.1 | 2 6 14 | Short-term mucosal healing weeks 10–12 (Mayo endoscopic score ≤ 1) Short-term mucosal healing weeks 10–12 (Mayo endoscopic score ≤ 1) Short-term mucosal healing weeks 10–12 (Mayo endoscopic score ≤ 1) |
Adedokun, 2014 [38] | Post hoc analysis of RCTs | UC | IFX | 728 | ≥22 >5.1 | 6 14 | Clinical response week 8 Clinical response week 30 |
Kennedy, 2019 [18] | Prospective | CD | IFX | 955 | >7 | 14 | Remission week 14 and 54 (CRP ≤ 3 mg/L and HBI≤ 4, no ongoing steroid therapy, and no exit due to treatment failure) |
Cornille, 2014 [53] | Post hoc analysis of RCT | CD | IFX | 291 | ≥ 3.5 | 14 | Sustained clinical response up to week 54 |
Tighe, 2017 [63] | Prospective | CD/UC | IFX | 17 | >4.8 | 14 | Predicts clinical response week 14 |
Bortlik, 2013 [64] | Retrospective | CD | IFX | 84 | >3 | 14 | Sustained clinical response, decreased risk of treatment failure |
Ungar, 2018 [65] | Prospective | CD | ADA | 98 | >6.7 | 2 | Clinical remission week 14 |
Verstockt, 2018 [66] | Prospective | CD | ADA | 116 | >12 <8.3 | 4 4 | Biological remission at week 12 Positive anti-drug antibodies by week 12 |
Vande Castelle, 2019 [67] | Prospective | CD | ADA | 28 | >7.3 | 4 | Clinical remission week 12 |
Papamichael, 2017 [68] | Retrospective | UC | ADA | 43 | ≥7.5 | 4 | Mucosal healing weeks 8–14 |
Baert, 2014 [69] | Retrospective | UC | ADA | 73 | ≥4.6 ≥7 | 4 | Clinical response week 12 Clinical response week 52 |
Tighe, 2017 [63] | Prospective | CD/UC | ADA | 18 | >3.5 | 4 | Predicts clinical response week 4 |
Baert, 2016 [70] | Retrospective | CD | ADA | 148 | <5 | 4 | Development of anti-drug antibodies |
Author, Year [Ref.] | Study Design | Patients (N) | Male (%) | Disease Type (UC/CD) | Age (Median Years) | Disease Duration (Median Years) | Follow-up (Months, Median) | Monotherapy | Combination Therapy | Concomitant Therapy | Primary Endpoint | Outcomes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Colombel, 2010 (SONIC) [116] | Randomized, double-blind trial | 508 | 52 | CD | 34 | 2.3 | 11.5 | IFX standard dose 5 mg/kg | IFX + AZA standard dose 2.5 mg/kg | Mesalamine, steroids | Steroid-free clinical remission at week 26 | Combo better outcome vs. monotherapy (p = 0.02) |
Panaccione, 2014 (SUCCESS) [117] | Randomized, double-blind trial | 239 | 54 | UC | 38 | NA | 4 | IFX standard dose 5 mg/kg | IFX + AZA standard dose 2.5 mg/kg | Steroids (tapering after the induction) | Steroid-free remission at week 16 | Combo better outcomes vs. monotherapy ( p= 0.017) |
Schröder, 2006 [119] | Randomized, controlled, open label, clinical trial | 19 | 42 | CD | 35 | 9 | 11.2 | IFX 5 mg/kg | IFX + MTX 20 mg in weeks 0–5 and then 20 mg orally weekly | 5 ASA steroids (tapering) | Clinical remission (CDAI < 150) | Combo achieved remission in 91% vs. 50% in monotherapy (p = 0.04), earlier (2 w vs. 18 w) |
Matsumoto, 2016 (Diamond trial) [118] | Multicentre, randomized, prospective, open label study | 176 | 72 | CD | 31 | At least 3 months | 12 | ADA standard dose (40 mg/2 w) | ADA standard dose + AZA 25–100 mg | 5 ASA, steroids | Clinical remission (SCAI < 150) at week 26 | No difference in clinical remission in the two groups (p = 0.63) |
Roblin, 2020 [120] | Randomized, open label and prospective trial | 100 | 49 | CD/UC | 39.5 | 3.5 | 24 | IFX standard dose (to pts with previous failure to ADA intensified dose) ADA standard dose (to pts with previous failure to IFX intensified dose) | IFX standard dose + AZA 2.5 mg/Kg ADA standard dose + AZA 2.5 mg/kg | NA | Clinical failure and occurrence of undesirable effects at 24 months | Combo better outcome vs. monotherapy, (p < 0.001) |
Feagan, 2014 [121] | Double-blind, placebo-controlled trial | 126 | 56 | CD | 39.5 | 10 | 11.5 | IFX (5 mg/kg at weeks 1, 3, 7, 14, 22, 30, 38 and 46) | IFX (5 mg/kg at weeks 1, 3, 7, 14, 22, 30, 38 and 46) + MTX (10 mg/w to 20 mg/w at week 3, and to 25 mg/w at week 5 till week 50) | Folic acid, antibiotics, steroids tapering | Time to clinical failure | No significant difference (p = 0.63) |
Targownik, 2020 [122] | Single, open label, retrospective clinical trial | 78,413 | 50.1 | CD/UC | NA (the majority between 25–65) | 1.2–8.7 | NA | IFX or ADA | IFX +MTX/thiopurine, ADA + MTX/thiopurine | NA | The first occurrence of treatment failure (IBD-related hospitalization, IBD-related surgery, new/recurrent corticosteroid use or anti-TNF switch for 52 weeks) | Combo therapy was associated with a significant decrease in treatment ineffectiveness for both CD and UC (aHR 0.77 (95% CI 0.66–0.90) for CD) (0.72 (95% CI 0.62–0.84) for UC) |
Mahmoud, 2022 [123] | Retrospective cohort study | 543 | 45 | CD/UC | 33.5 | 4.1 | 20.4 | IFX/ADA monotherapy after discontinuation of concomitant MTX/thiopurine | IFX/ADA + MTX/thiopurine | NA | LOR, detection of anti-drug antibodies to anti-TNF therapy | Immunomodulator withdrawal did not increase the risk of LOR (aHR 1.08; 95% CI, 0.72–1.61),but it was associated with an increased risk of anti-drug antibodies in the entire cohort (aHR, 2.14; 95% CI, 1.17–3.94) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orfanoudaki, E.; Foteinogiannopoulou, K.; Theodoraki, E.; Koutroubakis, I.E. Recent Advances in the Optimization of Anti-TNF Treatment in Patients with Inflammatory Bowel Disease. J. Clin. Med. 2023, 12, 2452. https://doi.org/10.3390/jcm12072452
Orfanoudaki E, Foteinogiannopoulou K, Theodoraki E, Koutroubakis IE. Recent Advances in the Optimization of Anti-TNF Treatment in Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine. 2023; 12(7):2452. https://doi.org/10.3390/jcm12072452
Chicago/Turabian StyleOrfanoudaki, Eleni, Kalliopi Foteinogiannopoulou, Eirini Theodoraki, and Ioannis E. Koutroubakis. 2023. "Recent Advances in the Optimization of Anti-TNF Treatment in Patients with Inflammatory Bowel Disease" Journal of Clinical Medicine 12, no. 7: 2452. https://doi.org/10.3390/jcm12072452
APA StyleOrfanoudaki, E., Foteinogiannopoulou, K., Theodoraki, E., & Koutroubakis, I. E. (2023). Recent Advances in the Optimization of Anti-TNF Treatment in Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine, 12(7), 2452. https://doi.org/10.3390/jcm12072452