Donor-Derived Cell-Free DNA for Kidney Allograft Surveillance after Conversion to Belatacept: Prospective Pilot Study
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oellerich, M.; Shipkova, M.; Asendorf, T.; Walson, P.D.; Schauerte, V.; Mettenmeyer, N.; Kabakchiev, M.; Hasche, G.; Grone, H.J.; Friede, T.; et al. Absolute quantification of donor-derived cell-free DNA as a marker of rejection and graft injury in kidney transplantation: Results from a prospective observational study. Am. J. Transpl. 2019, 19, 3087–3099. [Google Scholar] [CrossRef] [PubMed]
- Bloom, R.D.; Bromberg, J.S.; Poggio, E.D.; Bunnapradist, S.; Langone, A.J.; Sood, P.; Matas, A.J.; Mehta, S.; Mannon, R.B.; Sharfuddin, A.; et al. Cell-Free DNA and Active Rejection in Kidney Allografts. J. Am. Soc. Nephrol. 2017, 28, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Sethi, S.; Peng, A.; Najjar, R.; Mirocha, J.; Haas, M.; Vo, A.; Jordan, S.C. Early clinical experience using donor-derived cell-free DNA to detect rejection in kidney transplant recipients. Am. J. Transpl. 2019, 19, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Reeve, J.; Madill-Thomsen, K.S.; Demko, Z.; Prewett, A.; Gauthier, P.; Billings, P.; Lawrence, C.; Lowe, D.; Hidalgo, L.G.; et al. Antibody-mediated Rejection Without Detectable Donor-specific Antibody Releases Donor-derived Cell-free DNA: Results from the Trifecta Study. Transplantation 2022, 107, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Reeve, J.; Madill-Thomsen, K.S.; Demko, Z.; Prewett, A.; Billings, P.; Trifecta, I. The Trifecta Study: Comparing Plasma Levels of Donor-derived Cell-Free DNA with the Molecular Phenotype of Kidney Transplant Biopsies. J. Am. Soc. Nephrol. 2022, 33, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Oellerich, M.; Budde, K.; Osmanodja, B.; Bornemann-Kolatzki, K.; Beck, J.; Schutz, E.; Walson, P.D. Donor-derived cell-free DNA as a diagnostic tool in transplantation. Front. Genet. 2022, 13, 1031894. [Google Scholar] [CrossRef]
- Oellerich, M.; Budde, K.; Osmanodja, B.; Bornemann-Kolatzki, K.; Beck, J.; Schutz, E.; Walson, P.D. Donor-Derived Cell-free DNA for Personalized Immunosuppression in Renal Transplantation. Ther. Drug Monit. 2023, 45, 20–25. [Google Scholar] [CrossRef]
- O’ Regan, J.A.; Canney, M.; Connaughton, D.M.; O’ Kelly, P.; Williams, Y.; Collier, G.; deFreitas, D.G.; O’ Seaghdha, C.M.; Conlon, P.J. Tacrolimus trough-level variability predicts long-term allograft survival following kidney transplantation. J. Nephrol. 2016, 29, 269–276. [Google Scholar] [CrossRef]
- Naesens, M.; Kuypers, D.R.; Sarwal, M. Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 481–508. [Google Scholar] [CrossRef]
- Ducloux, D.; Motte, G.; Kribs, M.; Abdelfatah, A.B.; Bresson-Vautrin, C.; Rebibou, J.M.; Chalopin, J.M. Hypertension in renal transplantation: Donor and recipient risk factors. Clin. Nephrol. 2002, 57, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Mathis, A.S.; Dave, N.; Knipp, G.T.; Friedman, G.S. Drug-related dyslipidemia after renal transplantation. Am. J. Health Syst. Pharm. 2004, 61, 565–585. [Google Scholar] [CrossRef] [PubMed]
- Roland, M.; Gatault, P.; Doute, C.; Buchler, M.; Al-Najjar, A.; Barbet, C.; Chatelet, V.; Marliere, J.F.; Nivet, H.; Lebranchu, Y.; et al. Immunosuppressive medications, clinical and metabolic parameters in new-onset diabetes mellitus after kidney transplantation. Transpl. Int. 2008, 21, 523–530. [Google Scholar] [CrossRef]
- Vincenti, F.; Charpentier, B.; Vanrenterghem, Y.; Rostaing, L.; Bresnahan, B.; Darji, P.; Massari, P.; Mondragon-Ramirez, G.A.; Agarwal, M.; Di Russo, G.; et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am. J. Transpl. 2010, 10, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Budde, K.; Prashar, R.; Haller, H.; Rial, M.; Kamar, N.; Agarwal, A.; de Fijter, J.; Rostaing, L.; Berger, S.; Djamali, A.; et al. Conversion from Calcineurin Inhibitor to Belatacept-based Maintenance Immunosuppression in Renal Transplant Recipients: A Randomized Phase 3b Trial. J. Am. Soc. Nephrol. 2021, 32, 3252–3264. [Google Scholar] [CrossRef]
- Schmidt, D.; Osmanodja, B.; Pfefferkorn, M.; Graf, V.; Raschke, D.; Duettmann, W.; Naik, M.G.; Gethmann, C.J.; Mayrdorfer, M.; Halleck, F.; et al. TBase—An Integrated Electronic Health Record and Research Database for Kidney Transplant Recipients. J. Vis. Exp. 2021. [Google Scholar] [CrossRef]
- López del Moral, C.; Wu, K.; Naik, M.; Osmanodja, B.; Akifova, A.; Lachmann, N.; Stauch, D.; Hergovits, S.; Choi, M.; Bachmann, F.; et al. The natural history of de novo donor-specific HLA antibodies after kidney transplantation. Front. Med. 2022, 9, 2683. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, N.; Niemann, M.; Reinke, P.; Budde, K.; Schmidt, D.; Halleck, F.; Pruß, A.; Schönemann, C.; Spierings, E.; Staeck, O. Donor-Recipient Matching Based on Predicted Indirectly Recognizable HLA Epitopes Independently Predicts the Incidence of De Novo Donor-Specific HLA Antibodies Following Renal Transplantation. Am. J. Transpl. 2017, 17, 3076–3086. [Google Scholar] [CrossRef]
- Lachmann, N.; Terasaki, P.I.; Budde, K.; Liefeldt, L.; Kahl, A.; Reinke, P.; Pratschke, J.; Rudolph, B.; Schmidt, D.; Salama, A.; et al. Anti-human leukocyte antigen and donor-specific antibodies detected by luminex posttransplant serve as biomarkers for chronic rejection of renal allografts. Transplantation 2009, 87, 1505–1513. [Google Scholar] [CrossRef]
- Rostaing, L.; Massari, P.; Garcia, V.D.; Mancilla-Urrea, E.; Nainan, G.; del Carmen Rial, M.; Steinberg, S.; Vincenti, F.; Shi, R.; Di Russo, G.; et al. Switching from calcineurin inhibitor-based regimens to a belatacept-based regimen in renal transplant recipients: A randomized phase II study. Clin. J. Am. Soc. Nephrol. 2011, 6, 430–439. [Google Scholar] [CrossRef]
- Beck, J.; Bierau, S.; Balzer, S.; Andag, R.; Kanzow, P.; Schmitz, J.; Gaedcke, J.; Moerer, O.; Slotta, J.E.; Walson, P.; et al. Digital Droplet PCR for Rapid Quantification of Donor DNA in the Circulation of Transplant Recipients as a Potential Universal Biomarker of Graft Injury. Clin. Chem. 2013, 59, 1732–1741. [Google Scholar] [CrossRef]
- Osmanodja, B.; Akifova, A.; Budde, K.; Choi, M.; Oellerich, M.; Schutz, E.; Beck, J. Absolute or Relative Quantification of Donor-derived Cell-free DNA in Kidney Transplant Recipients: Case Series. Transpl. Direct 2021, 7, e778. [Google Scholar] [CrossRef]
- Schutz, E.; Asendorf, T.; Beck, J.; Schauerte, V.; Mettenmeyer, N.; Shipkova, M.; Wieland, E.; Kabakchiev, M.; Walson, P.D.; Schwenger, V.; et al. Time-Dependent Apparent Increase in dd-cfDNA Percentage in Clinically Stable Patients Between One and Five Years Following Kidney Transplantation. Clin. Chem. 2020, 66, 1290–1299. [Google Scholar] [CrossRef]
- Mishra, R.; van Drogen, F.; Dechant, R.; Oh, S.; Jeon, N.L.; Lee, S.S.; Peter, M. Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proc. Natl. Acad. Sci. USA 2017, 114, 13471–13476. [Google Scholar] [CrossRef]
- Berchtold, D.; Piccolis, M.; Chiaruttini, N.; Riezman, I.; Riezman, H.; Roux, A.; Walther, T.C.; Loewith, R. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 2012, 14, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.K.; Tunc, I.; Berry, G.J.; Marboe, C.; Kong, H.; Keller, M.B.; Shah, P.D.; Timofte, I.; Brown, A.W.; Ponor, I.L.; et al. Donor-derived cell-free DNA accurately detects acute rejection in lung transplant patients, a multicenter cohort study. J. Heart Lung Transpl. 2021, 40, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Graver, A.S.; Lee, D.; Power, D.A.; Whitlam, J.B. Understanding Donor-derived Cell-free DNA in Kidney Transplantation: An Overview and Case-based Guide for Clinicians. Transplantation 2022, 10-1097. [Google Scholar] [CrossRef]
- Choi, M.; Bachmann, F.; Wu, K.; Lachmann, N.; Schmidt, D.; Brakemeier, S.; Duerr, M.; Kahl, A.; Eckardt, K.U.; Budde, K.; et al. Microvascular inflammation is a risk factor in kidney transplant recipients with very late conversion from calcineurin inhibitor-based regimens to belatacept. BMC Nephrol. 2020, 21, 354. [Google Scholar] [CrossRef] [PubMed]
- Schinstock, C.A.; Mannon, R.B.; Budde, K.; Chong, A.S.; Haas, M.; Knechtle, S.; Lefaucheur, C.; Montgomery, R.A.; Nickerson, P.; Tullius, S.G.; et al. Recommended Treatment for Antibody-mediated Rejection After Kidney Transplantation: The 2019 Expert Consensus from the Transplantion Society Working Group. Transplantation 2020, 104, 911–922. [Google Scholar] [CrossRef]
- Mayer, K.A.; Budde, K.; Jilma, B.; Doberer, K.; Bohmig, G.A. Emerging drugs for antibody-mediated rejection after kidney transplantation: A focus on phase II & III trials. Expert Opin. Emerg. Drugs 2022, 27, 151–167. [Google Scholar] [CrossRef]
- Brakemeier, S.; Kannenkeril, D.; Durr, M.; Braun, T.; Bachmann, F.; Schmidt, D.; Wiesener, M.; Budde, K. Experience with belatacept rescue therapy in kidney transplant recipients. Transpl. Int. 2016, 29, 1184–1195. [Google Scholar] [CrossRef]
Patient Count | 22 |
---|---|
Demographics | |
Patient age in years (IQR) | 53 (36–59) |
Patient sex (female/male) | 16 (73%) vs. 6 (27%) |
Clinical history | |
Primary disease
| 9 (41%) 4 (18%) 2 (9%) 2 (9%) 1 (5%) 4 (18%) |
Preemptive/PD/HD | 3 (14%)/5 (23%)/14 (64%) |
Median time on dialysis in years (IQR) | 1 (1–6.5) |
Transplantation | |
Median years since transplantation (IQR) Converted in the first 6 months after transplantation (n) | 9.5 (5.5–13) 2 |
Living vs. deceased donation AB0-incompatible | 14 (64%) vs. 8 (36%) 4 (18%) |
Median donor age in years (IQR) | 55 (50–61) |
Mean cold ischemia time in minutes +/− SD (for deceased donors) | 725 +/− 284 |
Induction immunosuppression
| 15 (68%) 2 (9%) 5 (23%) |
Maintenance immunosuppression
| 17 (77%)/4 (18%)/1 (5%) 20 (91%) 17 (77%) |
Latest biopsy results before conversion (more than one can apply)
| 8 (36%) 3 (14%) 1 (5%)/15 (68%) 4 (18%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osmanodja, B.; Akifova, A.; Oellerich, M.; Beck, J.; Bornemann-Kolatzki, K.; Schütz, E.; Budde, K. Donor-Derived Cell-Free DNA for Kidney Allograft Surveillance after Conversion to Belatacept: Prospective Pilot Study. J. Clin. Med. 2023, 12, 2437. https://doi.org/10.3390/jcm12062437
Osmanodja B, Akifova A, Oellerich M, Beck J, Bornemann-Kolatzki K, Schütz E, Budde K. Donor-Derived Cell-Free DNA for Kidney Allograft Surveillance after Conversion to Belatacept: Prospective Pilot Study. Journal of Clinical Medicine. 2023; 12(6):2437. https://doi.org/10.3390/jcm12062437
Chicago/Turabian StyleOsmanodja, Bilgin, Aylin Akifova, Michael Oellerich, Julia Beck, Kirsten Bornemann-Kolatzki, Ekkehard Schütz, and Klemens Budde. 2023. "Donor-Derived Cell-Free DNA for Kidney Allograft Surveillance after Conversion to Belatacept: Prospective Pilot Study" Journal of Clinical Medicine 12, no. 6: 2437. https://doi.org/10.3390/jcm12062437
APA StyleOsmanodja, B., Akifova, A., Oellerich, M., Beck, J., Bornemann-Kolatzki, K., Schütz, E., & Budde, K. (2023). Donor-Derived Cell-Free DNA for Kidney Allograft Surveillance after Conversion to Belatacept: Prospective Pilot Study. Journal of Clinical Medicine, 12(6), 2437. https://doi.org/10.3390/jcm12062437