Transoral Robotic Surgery for Head and Neck Cancer: Advances and Residual Knowledge Gaps
Abstract
:1. Introduction
2. Preoperative Considerations and Eligibility Criteria
2.1. Medical History
2.2. Imaging/Tumor Extension
2.3. Surgical Exposure
2.4. Surgeon Expertise
3. TORS Applications in HNC
3.1. Oropharyngeal Cancers
3.2. Carcinomas of Unknown Primary
3.3. Laryngeal Cancers
3.4. Hypopharyngeal Cancers
N (Patients) | Follow-Up | DSS | DFS | OS | Loco-Regional Control | |
---|---|---|---|---|---|---|
Oropharyngeal SCC | ||||||
De Almeida (2015) [38] | 410 | 2–3 years | 94.5–92.5% | - | 91–87.1% | 91.8–88.8% |
Dabas * (2017) [45] | 57 | 29 months | - | 89.6% | 93.8% | 95.8% |
Nichols ** (2021) [39] | 48 | 2.5 years | 100% | - | 95% | 98% |
Supraglottic SCC | ||||||
Lechien (2020) *** [60] | 422 | 5 years | - | 94.3% | 78.7–80.2% | 87.7–89.2% |
Doazan (2018) [64] | 122 | 42.8 months | - | 94.3% | 78.7% | 90.2% |
Hypopharyngeal SCC | ||||||
Mazerolle (2018) [23] | 57 | 4 years | - | 50% | 66% | - |
Park (2017) [77] | 38 | 5 years | Stage I/II: 100% | Stage I/II: 100% | - | - |
Stage III/IV: 74% | Stage III/IV: 68.6% | |||||
Hassid (2020) [76] | 22 | 5 years | - | 57.10% | 53.10% | - |
MDADI at 1 Year | MDADI at 2 Years | MDADI at 3 Years | |
---|---|---|---|
Radiotherapy | 86.9 ± 11.4 | 86 ± 13.5 | 88.9 ± 11.3 |
TORS + ND | 80.1 ± 13 | 84.8 ± 12.5 | 83.3 ± 13.9 |
p-value | 0.049 | 0.74 | 0.12 |
3.5. Retropharyngeal Neck Dissection
3.6. Parapharyngeal Space Surgery
4. Postoperative Course and Complications
5. Technological Advances in TORS
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Nichols, D.S.; Zhao, J.; Boyce, B.J.; Amdur, R.; Mendenhall, W.M.; Danan, D.; Hitchcock, K.; Ning, K.; Keyes, K.; Lee, J.-H.; et al. HPV/p16-positive oropharyngeal cancer treated with transoral robotic surgery: The roles of margins, extra-nodal extension and adjuvant treatment. Am. J. Otolaryngol. Head Neck Med. Surg. 2021, 42, 102793. [Google Scholar] [CrossRef]
- De Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niewinski, P.; Golusiński, W. Current indications and patient selection for transoral robotic surgery in head and neck cancer: A brief review. Wspolczesna Onkol. 2022, 26, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, G.S.; O’malley, B.W.; Snyder, W.; Sherman, E.; Quon, H. Transoral Robotic Surgery Radical Tonsillectomy. Arch. Otolaryngol. Head Neck Surg. 2007, 133, 1220–1226. [Google Scholar] [CrossRef] [Green Version]
- Farooq, S.; Khandavilli, S.; Dretzke, J.; Moore, D.; Nankivell, P.C.; Sharma, N.; de Almeida, J.R.; Winter, S.; Simon, C.; Paleri, V.; et al. Transoral tongue base mucosectomy for the identification of the primary site in the work-up of cancers of unknown origin: Systematic review and meta-analysis. Oral Oncol. 2019, 91, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Vergez, S.; Cheval, M.; Chabrillac, E. Transoral robotic removal of submandibular sialolith combined with sialendoscopic assistance. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2021, 138, 65–66. [Google Scholar] [CrossRef]
- Quon, H.; O’Malley, B.W.; Weinstein, G.S. Transoral Robotic Surgery (TORS) for the Head and Neck: Current and Future Indications. Int. J. Head Neck Surg. 2010, 1, 133–140. [Google Scholar] [CrossRef]
- Mendelsohn, A.H. Transoral robotic assisted resection of the parapharyngeal space. Head Neck 2015, 37, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Garas, G.; Arora, A. Robotic Head and Neck Surgery: History, Technical Evolution and the Future. Orl 2018, 80, 117–124. [Google Scholar] [CrossRef]
- D’Andréa, G.; Vairel, B.; Vandersteen, C.; Chabrillac, E.; Vergez, S.; De Bonnecaze, G. Is Transoral Robotic Surgery the Best Surgical Treatment for Lingual Thyroid? A Case-Report and Literature Review. Ann. Otol. Rhinol. Laryngol. 2022, 131, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Chabrillac, E.; Morinière, S.; Jegoux, F.; Blanchard, D.; Choussy, O.; Hans, S.; Vergez, S. Transoral robotic resection of benign tumors of the upper aerodigestive tract: Experience of the French group of GETTEC. Head Neck 2018, 40, 2043–2049. [Google Scholar] [CrossRef]
- Aubry, K.; Vergez, S.; De Mones, E.; Moriniere, S.; Choussy, O.; Malard, O.; Dolivet, G.; Lallemant, B.; Ceruse, P. Morbidity and mortality revue of the French group of transoral robotic surgery: A multicentric study. J. Robot. Surg. 2016, 10, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Poissonnet, V.; Chabrillac, E.; Schultz, P.; Morinière, S.; Gorphe, P.; Baujat, B.; Garrel, R.; Lasne-Cardon, A.; Villeneuve, A.; Chambon, G.; et al. Airway management during transoral robotic surgery for head and neck cancers: A French GETTEC group survey. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 3619–3627. [Google Scholar] [CrossRef] [PubMed]
- Gazda, P.; Gauche, C.; Chaltiel, L.; Chabrillac, E.; Vairel, B.; De Bonnecaze, G.; Dupret-Bories, A.; Filleron, T.; Vergez, S. Functional and oncological outcomes of salvage transoral robotic surgery: A comparative study. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 457–466. [Google Scholar] [CrossRef]
- Iannessi, A.; Ouvrier, M.J.; Thariat, J.; Marcy, P.-Y. Imagerie des cancers ORL. Bull. Du Cancer 2014, 101, 469–480. [Google Scholar] [CrossRef]
- Gorphe, P.; Simon, C. A systematic review and meta-analysis of margins in transoral surgery for oropharyngeal carcinoma. Oral Oncol. 2019, 98, 69–77. [Google Scholar] [CrossRef]
- Warner, L.; O’Hara, J.T.; Lin, D.J.; Oozeer, N.; Fox, H.; Meikle, D.; Hamilton, D.; Iqbal, M.S.; Robinson, M.; Paleri, V. Transoral robotic surgery and neck dissection alone for head and neck squamous cell carcinoma: Influence of resection margins on oncological outcomes. Oral Oncol. 2022, 130, 105909. [Google Scholar] [CrossRef]
- Parhar, H.S.; Brody, R.M.; Shimunov, D.; Rajasekaran, K.; Rassekh, C.H.; Basu, D.; O’Malley, B.W., Jr.; Chalian, A.A.; Newman, J.G.; Loevner, L.; et al. Retropharyngeal Internal Carotid Artery Management in TORS Using Microvascular Reconstruction. Laryngoscope 2021, 131, E821–E827. [Google Scholar] [CrossRef]
- Kwan, B.Y.; Khan, N.M.; De Almeida, J.R.; Goldstein, D.; Paleri, V.; Forghani, R.; Yu, E. Transoral robotic surgery for head and neck malignancies: Imaging features in presurgical workup. Head Neck 2019, 41, 4018–4025. [Google Scholar] [CrossRef]
- Cohen, D.S.; Low, G.M.I.; Melkane, A.E.; Mutchnick, S.A.; Waxman, J.A.; Patel, S.; Shkoukani, M.A.; Lin, H. Establishing a danger zone: An anatomic study of the lingual artery in base of tongue surgery. Laryngoscope 2017, 127, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, T.; Verzeletti, V.; Ferrari, M.; Perotti, P.; Morello, R.; Taboni, S.; Palumbo, G.; Ravanelli, M.; Rampinelli, V.; Mattavelli, D.; et al. A new landmark for lingual artery identification during transoral surgery: Anatomic-radiologic study. Head Neck 2021, 43, 1487–1498. [Google Scholar] [CrossRef]
- Mazerolle, P.; Philouze, P.; Garrel, R.; Aubry, K.; Morinière, S.; El Bedoui, S.; Ton Van, J.; Ferron, C.; Malard, O.; Jegoux, F.; et al. Oncological and functional outcomes of trans-oral robotic surgery for pyriform sinus carcinoma: A French GETTEC group study. Oral Oncol. 2018, 86, 165–170. [Google Scholar] [CrossRef]
- Baskin, R.M.; Boyce, B.J.; Amdur, R.; Mendenhall, W.M.; Hitchcock, K.; Silver, N.; Dziegielewski, P.T. Transoral robotic surgery for oropharyngeal cancer: Patient selection and special considerations. Cancer Manag. Res. 2018, 10, 839–846. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Kotecha, J.; Acharya, A.; Garas, G.; Darzi, A.; Davies, D.C.; Tolley, N. Determination of biometric measures to evaluate patient suitability for transoral robotic surgery. Head Neck 2015, 37, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Gaino, F.; Gorphe, P.; Poorten, V.V.; Holsinger, F.C.; Lira, R.B.; Duvvuri, U.; Garrel, R.; Van Der Vorst, S.; Cristalli, G.; Ferreli, F.; et al. Preoperative predictors of difficult oropharyngeal exposure for transoral robotic surgery: The Pharyngoscore. Head Neck 2021, 43, 3010–3021. [Google Scholar] [CrossRef]
- Luginbuhl, A.; Baker, A.; Curry, J.; Drejet, S.; Miller, M.; Cognetti, D. Preoperative cephalometric analysis to predict transoral robotic surgery exposure. J. Robot. Surg. 2014, 8, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, N.D.; Holsinger, F.C.; Magnuson, J.S.; Duvvuri, U.; Genden, E.M.; Ghanem, T.A.; Yaremchuk, K.L.; Goldenberg, D.; Miller, M.C.; Moore, E.J.; et al. Robotics in otolaryngology and head and neck surgery: Recommendations for training and credentialing: A report of the 2015 AHNS education committee, AAO-HNS robotic task force and AAO-HNS sleep disorders committee. Head Neck 2016, 38, E151–E158. [Google Scholar] [CrossRef] [PubMed]
- Albergotti, W.G.; Gooding, W.E.; Kubik, M.W.; Geltzeiler, M.; Kim, S.; Duvvuri, U.; Ferris, R.L. Assessment of Surgical Learning Curves in Transoral Robotic Surgery for Squamous Cell Carcinoma of the Oropharynx. JAMA Otolaryngol. Head Neck Surg. 2017, 143, 542–548. [Google Scholar] [CrossRef]
- Specialised Commissioning Team. Clinical Commissioning Policy: Robotic Assisted Trans-Oral Surgery for Throat and Voice Box Cancers. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjAubHprd_9AhVuAbcAHaLMCOkQFnoECBAQAQ&url=https%3A%2F%2Fwww.england.nhs.uk%2Fwp-content%2Fuploads%2F2018%2F07%2FRobotic-assisted-trans-oral-surgery-for-throat-and-voice-box-cancers.pdf&usg=AOvVaw37XeKbT9Ly-ZPdU9PXTGn3 (accessed on 3 March 2023).
- Mandapathil, M.; Meyer, J.E. Acceptance and adoption of transoral robotic surgery in Germany. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 4021–4026. [Google Scholar] [CrossRef]
- Parimbelli, E.; Soldati, F.; Duchoud, L.; Armas, G.L.; de Almeida, J.; Broglie, M.; Quaglini, S.; Simon, C. Cost-utility of two minimally-invasive surgical techniques for operable oropharyngeal cancer: Transoral robotic surgery versus transoral laser microsurgery. BMC Health Serv. Res. 2021, 21, 1173. [Google Scholar] [CrossRef] [PubMed]
- Mäkitie, A.A.; Keski-Säntti, H.; Markkanen-Leppänen, M.; Bäck, L.; Koivunen, P.; Ekberg, T.; Sandström, K.; Laurell, G.; Von Beckerath, M.; Nilsson, J.S.; et al. Transoral Robotic Surgery in the Nordic Countries: Current Status and Perspectives. Front. Oncol. 2018, 8, 289. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.R.; Persky, M.J.; Wang, B.; Duvvuri, U.; Gross, N.D.; Vaezi, A.E.; Morris, L.G.T.; Givi, B. Transoral robotic surgery adoption and safety in treatment of oropharyngeal cancers. Cancer 2022, 128, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, G.; Mintz, J.; Foreman, A.; Hodge, J.C.; Krishnan, S. The acceptance and adoption of transoral robotic surgery in Australia and New Zealand. J. Robot. Surg. 2019, 13, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Bs, J.H.; Morse, E.; Ba, P.R.B.; Judson, B.; Mehra, S. Positive margin rates and predictors in transoral robotic surgery after federal approval: A national quality study. Head Neck 2019, 41, 3064–3072. [Google Scholar] [CrossRef]
- Laccourreye, O.; Orosco, R.; Rubin, F.; Holsinger, F. Styloglossus muscle: A critical landmark in head and neck oncology. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, 421–425. [Google Scholar] [CrossRef]
- De Almeida, J.R.; Li, R.; Magnuson, J.S.; Smith, R.V.; Moore, E.J.; Lawson, G.; Remacle, M.; Ganly, I.; Kraus, D.H.; Teng, M.S.; et al. Oncologic Outcomes After Transoral Robotic Surgery. JAMA Otolaryngol. Head Neck Surg. 2015, 141, 1043–1051. [Google Scholar] [CrossRef]
- Nichols, A.C.; Theurer, J.; Prisman, E.; Read, N.; Berthelet, E.; Tran, E.; Fung, K.; de Almeida, J.R.; Bayley, A.; Goldstein, D.P.; et al. Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): An open-label, phase 2, randomised trial. Lancet Oncol. 2019, 20, 1349–1359. [Google Scholar] [CrossRef]
- De Almeida, J.R.; Moskowitz, A.; Miles, B.A.; Goldstein, D.P.; Teng, M.S.; Sikora, A.G.; Gupta, V.; Posner, M.; Genden, E.M. Cost-effectiveness of transoral robotic surgery versus (chemo)radiotherapy for early T classification oropharyngeal carcinoma: A cost-utility analysis. Head Neck 2016, 38, 589–600. [Google Scholar] [CrossRef]
- De Almeida, J.R.; Byrd, J.K.; Wu, R.; Stucken, C.L.; Duvvuri, U.; Goldstein, D.P.; Miles, B.A.; Teng, M.S.; Gupta, V.; Genden, E.M. A systematic review of transoral robotic surgery and radiotherapy for early oropharynx cancer: A systematic review. Laryngoscope 2014, 124, 2096–2102. [Google Scholar] [CrossRef]
- Cohen, M.A.; Weinstein, G.S.; O’Malley, B.W.; Feldman, M.; Quon, H. Transoral robotic surgery and human papillomavirus status: Oncologic results. Head Neck 2011, 33, 573–580. [Google Scholar] [CrossRef]
- Nichols, A.C.; Theurer, J.; Prisman, E.; Read, N.; Berthelet, E.; Tran, E.; Fung, K.; de Almeida, J.R.; Bayley, A.; Goldstein, D.P.; et al. Randomized Trial of Radiotherapy Versus Transoral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma: Long-Term Results of the ORATOR Trial. J. Clin. Oncol. 2022, 40, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Dabas, S.; Gupta, K.; Sharma, A.K.; Shukla, H.; Ranjan, R.; Sharma, D.K. Oncological outcome following initiation of treatment for stage III and IV HPV negative oropharyngeal cancers with transoral robotic surgery (TORS). Eur. J. Surg. Oncol. (EJSO) 2019, 45, 2137–2142. [Google Scholar] [CrossRef] [PubMed]
- Parhar, H.S.; Yver, C.M.; Brody, R.M. Current Indications for Transoral Robotic Surgery in Oropharyngeal Cancer. Otolaryngol. Clin. N. Am. 2020, 53, 949–964. [Google Scholar] [CrossRef] [PubMed]
- Culié, D.; Viotti, J.; Modesto, A.; Schiappa, R.; Chamorey, E.; Dassonville, O.; Poissonnet, G.; Guelfucci, B.; Bizeau, A.; Vergez, S.; et al. Upfront surgery or definitive radiotherapy for patients with p16-negative oropharyngeal squamous cell carcinoma. A GETTEC multicentric study. Eur. J. Surg. Oncol. 2021, 47, 367–374. [Google Scholar] [CrossRef]
- Culié, D.; Schiappa, R.; Modesto, A.; Viotti, J.; Chamorey, E.; Dassonville, O.; Poissonnet, G.; Bizeau, A.; Vergez, S.; Dupret-Bories, A.; et al. Upfront surgery or definitive radiotherapy for p16+ oropharyngeal cancer. A GETTEC multicentric study. Eur. J. Surg. Oncol. (EJSO) 2021, 47, 1389–1397. [Google Scholar] [CrossRef]
- Zebolsky, A.L.; George, E.; Gulati, A.; Wai, K.C.; Carpenter, P.; Van Zante, A.; Ha, P.K.; Heaton, C.M.; Ryan, W.R. Risk of Pathologic Extranodal Extension and Other Adverse Features After Transoral Robotic Surgery in Patients With HPV-Positive Oropharynx Cancer. JAMA Otolaryngol. Head Neck Surg. 2021, 147, 1080–1088. [Google Scholar] [CrossRef]
- Graboyes, E.M.; Sinha, P.; Thorstad, W.L.; Rich, J.T.; Haughey, B.H. Management of human papillomavirus-related unknown primaries of the head and neck with a transoral surgical approach. Head Neck 2015, 37, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Weert, S.; Rijken, J.A.; Plantone, F.; Bloemena, E.; Vergeer, M.R.; Witte, B.I.L.; Leemans, C.R. A systematic review on Transoral robotic surgery (TORS) for carcinoma of unknown primary origin: Has tongue base mucosectomy become indispensable? Clin. Otolaryngol. 2020, 45, 732–738. [Google Scholar] [CrossRef]
- Fu, T.S.; Foreman, A.; Goldstein, D.P.; De Almeida, J.R. The role of transoral robotic surgery, transoral laser microsurgery, and lingual tonsillectomy in the identification of head and neck squamous cell carcinoma of unknown primary origin: A systematic review. J. Otolaryngol. Head Neck Surg. 2016, 45, 28. [Google Scholar] [CrossRef] [Green Version]
- Eskander, A.; Ghanem, T.; Agrawal, A. AHNS Series: Do you know your guidelines? Guideline recommendations for head and neck cancer of unknown primary site. Head Neck 2018, 40, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Maghami, E.; Ismaila, N.; Alvarez, A.; Chernock, R.; Duvvuri, U.; Geiger, J.; Caudell, J. Diagnosis and management of squamous cell carcinoma of unknown primary in the head and neck: ASCO guideline. J. Clin. Oncol. 2020, 38, 2570–2596. [Google Scholar] [CrossRef] [PubMed]
- NCCN. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®); NCCN Evidence Blocks TM Head and Neck Cancers; NCCN: Plymouth Meeting, PA, USA, 2023. [Google Scholar]
- Di Maio, P.; Iocca, O.; De Virgilio, A.; Ferreli, F.; Cristalli, G.; Pellini, R.; Golusinski, P.; Ricci, G.; Spriano, G. Role of palatine tonsillectomy in the diagnostic workup of head and neck squamous cell carcinoma of unknown primary origin: A systematic review and meta-analysis. Head Neck 2019, 41, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Kubik, M.W.; Channir, H.I.; Rubek, N.; Kim, S.; Ferris, R.L.; von Buchwald, C.; Duvvuri, U. TORS Base-of-Tongue Mucosectomy in Human Papilloma Virus-Negative Carcinoma of Unknown Primary. Laryngoscope 2021, 131, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Podeur, P.; Mancini, J.; Delgrande, J.; Santini, L.; Salas, S.; Wong, S.; Giovanni, A.; Dessi, P.; Michel, J.; Radulesco, T.; et al. Role of Tonsillectomy in the Management of Carcinomas of Unknown Primary of the Head and Neck: A Retrospective Study Based on p16 Analysis. Front. Oncol. 2020, 10, 594168. [Google Scholar] [CrossRef]
- Vergez, S.; Lallemant, B.; Ceruse, P.; Moriniere, S.; Aubry, K.; De Mones, E.; Benlyazid, A.; Mallet, Y. Initial Multi-institutional Experience with Transoral Robotic Surgery. Otolaryngol. Head Neck Surg. 2012, 147, 475–481. [Google Scholar] [CrossRef]
- Lechien, J.R.; Fakhry, N.; Saussez, S.; Chiesa-Estomba, C.-M.; Chekkoury-Idrissi, Y.; Cammaroto, G.; Melkane, A.E.; Barillari, M.R.; Crevier-Buchman, L.; Ayad, T.; et al. Surgical, clinical and functional outcomes of transoral robotic surgery for supraglottic laryngeal cancers: A systematic review. Oral Oncol. 2020, 109, 104848. [Google Scholar] [CrossRef]
- Gupta, K.; Dabas, S.; Ranjan, R.; Sharma, A.K.; Shukla, H. Oncological outcome following TORS in HPV negative supraglottic carcinoma. Indian J. Cancer 2019, 56, 9. [Google Scholar] [CrossRef]
- Lallemant, B.; Chambon, G.; Garrel, R.; Kacha, S.; Rupp, D.; Galy-Bernadoy, C.; Chapuis, H.; Lallemant, J.; Pham, H.T. Transoral robotic surgery for the treatment of T1–T2 carcinoma of the larynx: Preliminary study. Laryngoscope 2013, 123, 2485–2490. [Google Scholar] [CrossRef]
- Ansarin, M.; Zorzi, S.; Massaro, M.A.; Tagliabue, M.; Proh, M.; Giugliano, G.; Calabrese, L.; Chiesa, F. Transoral robotic surgery vs transoral laser microsurgery for resection of supraglottic cancer: A pilot surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2014, 10, 107–112. [Google Scholar] [CrossRef]
- Doazan, M.; Hans, S.; Morinière, S.; Lallemant, B.; Vergez, S.; Aubry, K.; De Monès, E.; Espitalier, F.; Jegoux, F.; Pradat, P.; et al. Oncologic outcomes with transoral robotic surgery for supraglottic squamous cell carcinoma: Results of the French Robotic Surgery Group of GETTEC. Head Neck 2018, 40, 2050–2059. [Google Scholar] [CrossRef]
- Razafindranaly, V.; Lallemant, B.; Aubry, K.; Moriniere, S.; Vergez, S.; De Mones, E.; Malard, O.; Céruse, P. Clinical outcomes with transoral robotic surgery for supraglottic squamous cell carcinoma: Experience of a French evaluation cooperative subgroup of GETTEC. Head Neck 2016, 38, E1097–E1101. [Google Scholar] [CrossRef]
- Vergez, S.; Céruse, P.; Lallemant, B.; Morinière, S.; Vairel, B.; Dupret-Bories, A.; de Bonnecaze, G. Principes Généraux de la Chirurgie Ro-Botique en Cancérologie ORL: Techniques, Indications, Résultats. 2017. Available online: https://www.em-consulte.com/article/1137996/principes-generaux-de-la-chirurgie-robotique-en-ca (accessed on 9 February 2023).
- Park, Y.M.; Kim, W.S.; Byeon, H.K.; Lee, S.Y.; Kim, S. Surgical techniques and treatment outcomes of transoral robotic supraglottic partial laryngectomy. Laryngoscope 2013, 123, 670–677. [Google Scholar] [CrossRef]
- Olsen, S.M.; Moore, E.J.; Koch, C.A.; Price, D.L.; Kasperbauer, J.L.; Olsen, K.D. Transoral robotic surgery for supraglottic squamous cell carcinoma. Am. J. Otolaryngol. 2012, 33, 379–384. [Google Scholar] [CrossRef]
- Hans, S.; Chebib, E.; Chekkoury-Idrissi, Y.; Distinguin, L.; Circiu, M.; de Pemille, G.V.; Julien-Laferriere, A.; Crevier-Buchman, L.; Lechien, J.R. Surgical and oncological outcomes of transoral robotic total laryngectomy: A case series. Oral Oncol. 2021, 121, 105511. [Google Scholar] [CrossRef]
- Krishnan, G.; Krishnan, S. Transoral Robotic Surgery Total Laryngectomy: Evaluation of Functional and Survival Outcomes in a Retrospective Case Series at a Single Institution. Orl 2017, 79, 191–201. [Google Scholar] [CrossRef]
- Dowthwaite, S.; Nichols, A.C.; Yoo, J.; Smith, R.V.; Dhaliwal, S.; Basmaji, J.; Franklin, J.H.; Fung, K. Transoral robotic total laryngectomy: Report of 3 cases. Head Neck 2013, 35, E338–E342. [Google Scholar] [CrossRef]
- Lawson, G.; Mendelsohn, A.; Fakhoury, R.; Van Der Vorst, S.; Remacle, M.; Bachy, V.; Delahaut, G. Transoral Robotic Surgery Total Laryngectomy. Orl 2018, 80, 171–177. [Google Scholar] [CrossRef]
- Smith, R.V.; Schiff, B.A.; Sarta, C.; Hans, S.; Brasnu, D. Transoral robotic total laryngectomy. Laryngoscope 2013, 123, 678–682. [Google Scholar] [CrossRef]
- De Virgilio, A.; Iocca, O.; Malvezzi, L.; Di Maio, P.; Pellini, R.; Ferreli, F.; Cugini, G.; Colombo, G.; Spriano, G. The Emerging Role of Robotic Surgery among Minimally Invasive Surgical Approaches in the Treatment of Hypopharyngeal Carcinoma: Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Hassid, S.; Van Der Vorst, S.; Delahaut, G.; Ambroise, J.; Lawson, G. Transoral robotic surgery hypopharyngectomy (TORSH): Feasibility and outcomes. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 2883–2892. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Jung, C.M.; Cha, D.; Kim, S.-H. The long-term oncological and functional outcomes of transoral robotic surgery in patients with hypopharyngeal cancer. Oral Oncol. 2017, 71, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Kim, D.H.; Kang, M.S.; Lim, J.Y.; Choi, E.C.; Koh, Y.W.; Kim, S.-H. The First Human Trial of Transoral Robotic Surgery Using a Single-Port Robotic System in the Treatment of Laryngo-Pharyngeal Cancer. Ann. Surg. Oncol. 2019, 26, 4472–4480. [Google Scholar] [CrossRef] [PubMed]
- Carsuzaa, F.; Gorphe, P.; Vergez, S.; Malard, O.; Fakhry, N.; Righini, C.; Philouze, P.; Lasne-Cardon, A.; Gallet, P.; Tonnerre, D.; et al. Consensus on resectability in N3 head and neck squamous cell carcinomas: GETTEC recommendations. Oral Oncol. 2020, 106, 104733. [Google Scholar] [CrossRef]
- Troob, S.; Givi, B.; Hodgson, M.; Mowery, A.; Gross, N.D.; Andersen, P.E.; Clayburgh, D. Transoral robotic retropharyngeal node dissection in oropharyngeal squamous cell carcinoma: Patterns of metastasis and functional outcomes. Head Neck 2017, 39, 1969–1975. [Google Scholar] [CrossRef]
- Givi, B.; Troob, S.H.; Stott, W.; Cordeiro, T.; Andersen, P.E.; Gross, N.D. Transoral robotic retropharyngeal node dissection. Head Neck 2016, 38, E981–E986. [Google Scholar] [CrossRef]
- Al Zadjali, F.; Chabrillac, E.; Vergez, S. Surgical approaches for pleomorphic adenoma of the parapharyngeal space. J. Laryngol. Otol. 2022; first view. [Google Scholar] [CrossRef]
- O’Malley, B.W., Jr.; Quon, H.; Leonhardt, F.D.; Chalian, A.A.; Weinstein, G.S. Transoral Robotic Surgery for Parapharyngeal Space Tumors. Orl 2010, 72, 332–336. [Google Scholar] [CrossRef]
- Larson, A.R.; Ryan, W.R. Transoral Excision of Parapharyngeal Space Tumors. Otolaryngol. Clin. N. Am. 2021, 54, 531–541. [Google Scholar] [CrossRef]
- Vianini, M.; Fiacchini, G.; Benettini, G.; Dallan, I.; Bruschini, L. Experience in Transoral Robotic Surgery in Pediatric Subjects: A Systematic Literature Review. Front. Surg. 2021, 8. [Google Scholar] [CrossRef]
- Sethi, R.K.; Chen, M.M.; Malloy, K.M. Complications of Transoral Robotic Surgery. Otolaryngol. Clin. N. Am. 2020, 53, 1109–1115. [Google Scholar] [CrossRef]
- Bollig, C.A.; Gilley, D.R.; Ahmad, J.; Jorgensen, J.B. Prophylactic arterial ligation following transoral robotic surgery: A systematic review and meta-analysis. Head Neck 2020, 42, 739–746. [Google Scholar] [CrossRef]
- Turner, M.T.; Stokes, W.A.; Stokes, C.M.; Hassid, S.; Holsinger, F.C.; Lawson, G. Airway and bleeding complications of transoral robotic supraglottic laryngectomy (TORS-SGL): A systematic review and meta-analysis. Oral Oncol. 2021, 118, 105301. [Google Scholar] [CrossRef]
- Stokes, W.; Ramadan, J.; Lawson, G.; Ferris, F.R.L.; Holsinger, F.C.; Turner, M.T. Bleeding Complications After Transoral Robotic Surgery: A Meta-Analysis and Systematic Review. Laryngoscope 2021, 131, 95–105. [Google Scholar] [CrossRef]
- Parhar, H.S.; Gausden, E.; Patel, J.; Prisman, E.; Anderson, D.W.; Durham, J.S.; Rush, B. Analysis of readmissions after transoral robotic surgery for oropharyngeal squamous cell carcinoma. Head Neck 2018, 40, 2416–2423. [Google Scholar] [CrossRef]
- Carpentier, C.; Bobillier, C.; Blanchard, D.; Lallemant, B.; Garrel, R.; Gorphe, P.; Mastronicola, R.; Morinière, S. Spondylodiscitis after transoral robotic surgery: Retrospective 7-case series from the GETTEC group. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2019, 136, 179–183. [Google Scholar] [CrossRef]
- White, H.N.; Frederick, J.; Zimmerman, T.; Carroll, W.R.; Magnuson, J.S. Learning Curve for Transoral Robotic Surgery A 4-Year Analysis. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 564–567. [Google Scholar] [CrossRef] [Green Version]
- Sampieri, C.; Pirola, F.; Costantino, A.; Kim, D.; Ho, J.J.; Lee, K.; De Virgilio, A.; Park, Y.M.; Kim, S. Single-Port Versus Multiport da Vinci System for Transoral Robotic Surgery of Hypopharyngeal and Laryngeal Carcinoma. Otolaryngol. Neck Surg. 2023. [CrossRef]
- Van Abel, K.M.; Yin, L.X.; Price, D.L.; Janus, J.R.; Kasperbauer, J.L.; Moore, E.J. One-year outcomes for da Vinci single port robot for transoral robotic surgery. Head Neck 2020, 42, 2077–2087. [Google Scholar] [CrossRef]
- Mendelsohn, A.H.; Lawson, G. Single-port transoral robotic surgery hypopharyngectomy. Head Neck 2021, 43, 3234–3237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mella, M.H.; Chabrillac, E.; Dupret-Bories, A.; Mirallie, M.; Vergez, S. Transoral Robotic Surgery for Head and Neck Cancer: Advances and Residual Knowledge Gaps. J. Clin. Med. 2023, 12, 2303. https://doi.org/10.3390/jcm12062303
Mella MH, Chabrillac E, Dupret-Bories A, Mirallie M, Vergez S. Transoral Robotic Surgery for Head and Neck Cancer: Advances and Residual Knowledge Gaps. Journal of Clinical Medicine. 2023; 12(6):2303. https://doi.org/10.3390/jcm12062303
Chicago/Turabian StyleMella, Mariam H., Emilien Chabrillac, Agnès Dupret-Bories, Mathilde Mirallie, and Sébastien Vergez. 2023. "Transoral Robotic Surgery for Head and Neck Cancer: Advances and Residual Knowledge Gaps" Journal of Clinical Medicine 12, no. 6: 2303. https://doi.org/10.3390/jcm12062303
APA StyleMella, M. H., Chabrillac, E., Dupret-Bories, A., Mirallie, M., & Vergez, S. (2023). Transoral Robotic Surgery for Head and Neck Cancer: Advances and Residual Knowledge Gaps. Journal of Clinical Medicine, 12(6), 2303. https://doi.org/10.3390/jcm12062303