Altered Gut Microbic Flora and Haemorrhoids: Could They Have a Possible Relationship?
Abstract
:1. Introduction
2. The Current Pathophysiology of Haemorrhoids
3. Constipation and Haemorrhoids
4. The Role of Intestinal Microorganisms in Functional Gastrointestinal Disorders
5. An Innovative Alternative Treatment for Anorectal Disfunction and Haemorrhoids
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lohsiriwat, V. Hemorrhoids: From basic pathophysiology to clinical management. World J. Gastroenterol. 2012, 18, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Lohsiriwat, V. Approach to haemorrhoids. Curr. Gastroenterol. Rep. 2013, 15, 332. [Google Scholar] [CrossRef] [PubMed]
- Aigner, F.; Gruber, H.; Conrad, F.; Eder, J.; Wedel, T.; Zelger, B.; Engelhardt, V.; Lametschwandtner, A.; Wienert, V.; Böhler, U.; et al. Revised morphology and hemodynamics of the anorectal vascular plexus: Impact on the course of hemorrhoidal disease. Int. J. Color. Dis. 2009, 24, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Morgado, P.J.; Suárez, J.A.; Gómez, L.G. Histoclinical basis for a new classification of hemorrhoidal disease. Dis. Colon Rectum. 1988, 31, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Hou, Y.; Pan, A.C. Endoglin (CD105) expression in the development of haemorrhoids. Eur. J. Clin. Investig. 2004, 34, 107–112. [Google Scholar] [CrossRef]
- Corman, M.L.; Gravie, J.-F.; Hager, T.; Loudon, M.A.; Mascagni, D.; Nystrom, P.-O.; Seow-Choen, F.; Abcarian, H.; Marcello, P.; Weiss, E.; et al. Stapled haemorrhoidopexy: A consensus position paper by an international working party-indications, contra-indications and technique. Color. Dis. 2003, 5, 304–310. [Google Scholar] [CrossRef]
- Janicke, D.M.; Pundt, M.R. Anorectal disorders. Emerg. Med. Clin. N. Am. 1996, 14, 757–788. [Google Scholar] [CrossRef]
- Bunni, J.; Laugharne, M.J. Pathophysiological basis, clinical assessment, investigation and management of patients with obstruction defecation syndrome. Langenbecks Arch. Surg. 2023, 408, 75. [Google Scholar] [CrossRef]
- Parks, A.G. De haemorrhois; a study in surgical history. Guy’s Hosp. Rep. 1955, 104, 135–156. [Google Scholar]
- Thomson, W.H.F. The nature of haemorrhoids. Br. J. Surg. 1975, 62, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Parks, A.G. The surgical treatment of hæmorrhoids. Br. J. Surg. 1956, 43, 337–351. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Bubrick, M.P.; Onstad, G.R.; Hitchcock, C.R. The relationship of haemorrhoids to portal hypertension. Dis. Colon Rectum. 1980, 23, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Burkitt, D.P. Varicose Veins, Deep Vein Thrombosis, and Haemorrhoids: Epidemiology and Suggested Aetiology. BMJ 1972, 2, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Broader, J.H.; Gunn, I.F.; Alexander-Williams, J. Evaluation of a bulk-forming evacuant in the management of haemorrhoids. Br. J. Surg. 1974, 61, 142–144. [Google Scholar] [CrossRef]
- Dennison, A.R.; Whiston, R.J.; Rooney, S.; Morris, D.L. The Management of Hemorrhoids. Am. J. Gastroenterol. 1989, 84, 475–481. [Google Scholar] [PubMed]
- Gibbons, C.P.; Bannister, J.J.; Read, N.W. Role of constipation and anal hypertonia in the pathogenesis of haemorrhoids. Br. J. Surg. 1988, 75, 656–660. [Google Scholar] [CrossRef]
- Johanson, J.F.; Sonnenberg, A. Temporal changes in the occurrence of haemorrhoids in the United States and England. Dis. Colon Rectum. 1991, 34, 585–593. [Google Scholar] [CrossRef]
- Loder, P.B.; Kamm, M.A.; Nicholls, R.J.; Phillips, R.K.S. Haemorrhoids: Pathology, pathophysiology and aetiology. Br. J. Surg. 1994, 81, 946–954. [Google Scholar] [CrossRef]
- Stelzner, F. Die Hämorrhoiden und andere Krankheiten des Corpus cavernosum recti und des Analkanals. DMW Dtsch. Med. Wochenschr. 1963, 88, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Graham-Stewart, C.W. Injection Treatment of Haemorrhoids. BMJ 1962, 1, 213–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gass, O.C.; Adams, J. Hemorrhoids: Etiology and pathology. Am. J. Surg. 1950, 79, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Haas, P.A.; Fox, T.A.; Haas, G.P. The pathogenesis of Hemorrhoids. Dis. Colon Rectum 1984, 27, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Wang, Z.; Zhao, B.; Yang, X.Q.; Wang, D.; Wang, J.P.; Tang, X.Y.; Zhao, F.; Hung, Y.T. Pathologic change of elastic fibers with difference of microvessel density and expression of angiogenesis-related proteins in internal haemorrhoid tissues. Zhonghua Wei Chang Wai Ke Za Zhi 2005, 8, 56–59. [Google Scholar]
- Yoon, S.-O.; Park, S.-J.; Yun, C.-H.; Chung, A.-S. Roles of Matrix Metalloproteinases in Tumor Metastasis and Angiogenesis. BMB Rep. 2003, 36, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.S. Constipation: Evaluation and Treatment of Colonic and Anorectal Motility Disorders. Gastroenterol. Clin. N. Am. 2007, 36, 687–711. [Google Scholar] [CrossRef]
- Rao, S.S.C. Dyssynergic defecation. Gastroenterol Clin. N. Am. 2001, 30, 97–114. [Google Scholar] [CrossRef]
- Preston, D.M.; Lennard-Jones, J.E. Anismus in chronic constipation. Dig. Dis. Sci. 1985, 30, 413–418. [Google Scholar] [CrossRef]
- Heitmann, P.T.; Vollebregt, P.F.; Knowles, C.H.; Lunniss, P.J.; Dinning, P.G.; Scott, S.M. Understanding the physiology of human defaecation and disorders of continence and evacuation. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 751–769. [Google Scholar] [CrossRef]
- Kawimbe, B.M.; Papachrysostomou, M.; Binnie, N.R.; Clare, N.; Smith, A.N. Outlet obstruction constipation (anismus) managed by biofeedback. Gut 1991, 32, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Martelli, H.; Devroede, G.; Arhan, P.; Duguay, C. Mechanisms of Idiopathic Constipation: Outlet Obstruction. Gastroenterology 1978, 75, 623–631. [Google Scholar] [CrossRef]
- Mertz, H.; Naliboff, B.; Mayer, E. Physiology of Refractory Chronic Constipation. Am. J. Gastroenterol. 1999, 94, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, A.A.; Moshkovitz, M.; Nudelman, I.; Dinari, G.; Reiss, R. Anal pressure measurements in the study of haemorrhoid etiology and their relation to treatment. Dis. Colon Rectum. 1987, 30, 855–857. [Google Scholar] [CrossRef]
- El-Gendi, M.A.F.; Abdel-Baky, N. Anorectal pressure in patients with symptomatic haemorrhoids. Dis. Colon Rectum. 1986, 29, 388–391. [Google Scholar] [CrossRef]
- Ho, Y.H.; Seow-Choen, F.; Goh, H.S. Haemorrhoidectomy and disordered rectal and anal physiology in patients with prolapsed haemorrhoids. Br. J. Surg. 1995, 82, 596–598. [Google Scholar] [CrossRef]
- Pimentel, M.; Lin, H.C.; Enayati, P.; Burg, B.V.D.; Lee, H.-R.; Chen, J.H.; Park, S.; Kong, Y.; Conklin, J. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Liver Physiol. 2006, 290, G1089–G1095. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.M.; Peck, R.J.; Shorthouse, A.J.; Read, N.W. Haemorrhoids are associated not with hypertrophy of the internal anal sphincter, but with hypertension of the anal cushions. Br. J. Surg. 1992, 79, 592–594. [Google Scholar] [CrossRef]
- Sun, W.M.; Read, N.W.; Shorthouse, A.J. Hypertensive anal cushions as a cause of the high anal canal pressures in patients with haemorrhoids. Br. J. Surg. 1990, 77, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.K. Anal manometric studies in haemorrhoids and anal fissures. Dis. Colon Rectum. 1989, 32, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Bleijenberg, G.; Kuijpers, H.C. Treatment of the spastic pelvic floor syndrome with biofeedback. Dis. Colon Rectum. 1987, 30, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.C.; Hatfield, R.; Soffer, E.; Rao, S.; Beaty, J.; Conklin, J.L. Manometric tests of anorectal function in healthy adults. Am. J. Gastroenterol. 1999, 94, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.S.; Bartolo, D.C.C. Anismus: The cause of constipation? Results of investigation and treatment. World J. Surg. 1992, 16, 831–835. [Google Scholar] [CrossRef]
- Rao, S.S.C.; Kavlock, R.; Rao, S. Influence of body position and stool characteristics on defecation in humans. Am. J. Gastroenterol. 2006, 101, 2790–2796. [Google Scholar] [CrossRef]
- Rao, S.S.C.; Welcher, K.D.; Leistikow, J.S. Obstructive defecation: A failure of rectoanal coordination. Am. J. Gastroenterol. 1998, 93, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Waldron, D.J.; Kumar, D.; Hallan, R.I.; Williams, N.S. Prolonged ambulant assessment of anorectal function in patients with prolapsing haemorrhoids. Dis. Colon Rectum. 1989, 32, 968–974. [Google Scholar] [CrossRef]
- Bassotti, G.; Betti, C.; Imbimbo, B.; Pelli, M.A.; Morelli, A. Colonic motor response to eating: A manometric investigation in proximal and distal portions of the viscus in man. Am. J. Gastroenterol. 1989, 84, 118–122. [Google Scholar]
- Rao, S.S.; Sadeghi, P.; Beaty, J.; Kavlock, R. Ambulatory 24-Hour Colonic Manometry in Slow-Transit Constipation. Am. J. Gastroenterol. 2004, 99, 2405–2416. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.C.; Welcher, K. Periodic rectal motor activity: The intrinsic colonic gatekeeper? Am. J. Gastroenterol. 1996, 91, 890–897. [Google Scholar]
- Rao, S.S.C.; Sadeghi, P.; Batterson, K.; Beaty, J. Altered periodic rectal motor activity: A mechanism for slow transit constipation. Neurogastroenterol. Motil. 2001, 13, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Corsetti, M.; Pagliaro, G.; Demedts, I.; Deloose, E.; Gevers, A.; Scheerens, C.; Rommel, N.; Tack, J. Pan-Colonic Pressurizations Associated with Relaxation of the Anal Sphincter in Health and Disease: A New Colonic Motor Pattern Identified Using High-Resolution Manometry. Am. J. Gastroenterol. 2017, 112, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Bassotti, G.; Gaburri, M. Manometric investigation of high-amplitude propagated contractile activity of the human colon. Am. J. Physiol. Liver Physiol. 1988, 255, G660–G664. [Google Scholar] [CrossRef] [PubMed]
- Milkova, N.; Parsons, S.P.; Ratcliffe, E.; Huizinga, J.D.; Chen, J.-H. On the nature of high-amplitude propagating pressure waves in the human colon. Am. J. Physiol. Liver Physiol. 2020, 318, G646–G660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldars-García, L.; Marin, A.C.; Chaparro, M.; Gisbert, J.P. The Interplay between Immune System and Microbiota in Inflammatory Bowel Disease: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 3076. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.; Preidis, G.A.; Shulman, R.; Kashyap, P.C. The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clin. Gastroenterol. Hepatol. 2019, 17, 256–274. [Google Scholar] [CrossRef]
- Shin, S.P.; Choi, Y.M.; Kim, W.H.; Hong, S.P.; Park, J.-M.; Kim, J.; Kwon, O.; Lee, E.H.; Hahm, K.B. A double blind, placebo-controlled, randomized clinical trial that breast milk derived-Lactobacillus gasseri BNR17 mitigated diarrhea-dominant irritable bowel syndrome. J. Clin. Biochem. Nutr. 2018, 62, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Dior, M.; Delagrèverie, H.; Duboc, H.; Jouet, P.; Coffin, B.; Brot, L.; Humbert, L.; Trugnan, G.; Seksik, P.; Sokol, H.; et al. Interplay between bile acid metabolism and microbiota in irritable bowel syndrome. Neurogastroenterol. Motil. 2016, 28, 1330–1340. [Google Scholar] [CrossRef]
- Le Nevé, B.; Brazeilles, R.; Derrien, M.; Tap, J.; Guyonnet, D.; Ohman, L.; Törnblom, H.; Simrén, M. Lactulose Challenge Determines Visceral Sensitivity and Severity of Symptoms in Patients with Irritable Bowel Syndrome. Clin. Gastroenterol. Hepatol. 2016, 14, 226–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labus, J.S.; Hollister, E.B.; Jacobs, J.; Kirbach, K.; Oezguen, N.; Gupta, A.; Acosta, J.; Luna, R.A.; Aagaard, K.; Versalovic, J.; et al. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome 2017, 5, 49. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, L.; Wang, X.; Wang, F.; Zhang, J.; Jiang, R.; Wang, X.; Wang, K.; Liu, Z.; Xia, Z.; et al. Similar Fecal Microbiota Signatures in Patients with Diarrhea-Predominant Irritable Bowel Syndrome and Patients with Depression. Clin. Gastroenterol. Hepatol. 2016, 14, 1602–1611.e5. [Google Scholar] [CrossRef]
- Azpiroz, F.; Dubray, C.; Bernalier-Donadille, A.; Cardot, J.-M.; Accarino, A.; Serra, J.; Wagner, A.; Respondek, F.; Dapoigny, M. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: A randomized, double blind, placebo controlled study. Neurogastroenterol. Motil. 2017, 29, e12911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gall, G.; Noor, S.O.; Ridgway, K.; Scovell, L.; Jamieson, C.; Johnson, I.T.; Colquhoun, I.J.; Kemsley, E.K.; Narbad, A. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J. Proteome Res. 2011, 10, 4208–4218. [Google Scholar] [CrossRef]
- Heitkemper, M.M.; Cain, K.C.; Shulman, R.J.; Burr, R.L.; Ko, C.; Hollister, E.B.; Callen, N.; Zia, J.; Han, C.J.; Jarrett, M.E. Stool and urine trefoil factor 3 levels: Associations with symptoms, intestinal permeability, and microbial diversity in irritable bowel syndrome. Benef. Microbes 2018, 9, 345–355. [Google Scholar] [CrossRef]
- Bednarska, O.; Walter, S.A.; Casado-Bedmar, M.; Ström, M.; Salvo-Romero, E.; Vicario, M.; Mayer, E.A.; Keita, V. Vasoactive Intestinal Polypeptide and Mast Cells Regulate Increased Passage of Colonic Bacteria in Patients with Irritable Bowel Syndrome. Gastroenterology 2017, 153, 948–960.e3. [Google Scholar] [CrossRef] [PubMed]
- Valentin, N.; Camilleri, M.; Carlson, P.; Harrington, S.C.; Eckert, D.; O’Neill, J.; Burton, D.; Chen, J.; Shaw, A.L.; Acosta, A. Potential mechanisms of effects of serum-derived bovine immunoglobulin/protein isolate therapy in patients with diarrhea-predominant irritable bowel syndrome. Physiol. Rep. 2017, 5, e13170. [Google Scholar] [CrossRef]
- Ko, S.-J.; Han, G.; Kim, S.-K.; Seo, J.-G.; Chung, W.-S.; Ryu, B.; Kim, J.; Yeo, I.; Lee, B.-J.; Lee, J.-M.; et al. Effect of Korean Herbal Medicine Combined with a Probiotic Mixture on Diarrhea-Dominant Irritable Bowel Syndrome: A Double-Blind, Randomized, Placebo-Controlled Trial. Evid. Based Complement. Altern. Med. 2013, 2013, 824605. [Google Scholar] [CrossRef] [Green Version]
- Compare, D.; Rocco, A.; Coccoli, P.; Angrisani, D.; Sgamato, C.; Iovine, B.; Salvatore, U.; Nardone, G. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: An ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 2017, 17, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hustoft, T.N.; Hausken, T.; Ystad, S.O.; Valeur, J.; Brokstad, K.; Hatlebakk, J.G.; Lied, G.A. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 2017, 29, e12969. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, K.; Reed, D.E.; Schneider, T.; Dang, F.; Keshteli, A.H.; De Palma, G.; Madsen, K.; Bercik, P.; Vanner, S. FODMAPs alter symptoms and the metabolome of patients with IBS: A randomised controlled trial. Gut 2017, 66, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Sundin, J.; Rangel, I.; Fuentes, S.; Jong, I.H.-D.; Hultgren-Hörnquist, E.; de Vos, W.M.; Brummer, R.J. Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment. Pharmacol. Ther. 2015, 41, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Sundin, J.; Rangel, I.; Repsilber, D.; Brummer, R.-J. Cytokine Response after Stimulation with Key Commensal Bacteria Differ in Post-Infectious Irritable Bowel Syndrome (PI-IBS) Patients Compared to Healthy Controls. PLoS ONE 2015, 10, e0134836. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, I.; O’Toole, P.; Öhman, L.; Claesson, M.; Deane, J.; Quigley, E.M.M.; Simrén, M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 2012, 61, 997–1006. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Chen, J.; Chen, X.; Chia, N.; O’Connor, H.M.; Wolf, P.G.; Gaskins, H.R.; Bharucha, A.E. Relationship between Microbiota of the Colonic Mucosa vs Feces and Symptoms, Colonic Transit, and Methane Production in Female Patients with Chronic Constipation. Gastroenterology 2016, 150, 367–379.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Liu, X.; An, Y.; Zhou, G.; Liu, Y.; Xu, M.; Dong, W.; Wang, S.; Yan, F.; Jiang, K.; et al. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci. Rep. 2017, 7, 10322. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, M.; Chatterjee, S.; Chow, E.J.; Park, S.; Kong, Y. Neomycin Improves Constipation-Predominant Irritable Bowel Syndrome in a Fashion That Is Dependent on the Presence of Methane Gas: Subanalysis of a Double-Blind Randomized Controlled Study. Dig. Dis. Sci. 2006, 51, 1297–1301. [Google Scholar] [CrossRef]
- Pimentel, M.; Mayer, A.G.; Park, S.; Chow, E.J.; Hasan, A.; Kong, Y. Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig. Dis. Sci. 2003, 48, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Attaluri, A.; Jackson, M.; Valestin, J.; Rao, S.S. Methanogenic Flora Is Associated with Altered Colonic Transit but Not Stool Characteristics in Constipation without IBS. Am. J. Gastroenterol. 2010, 105, 1407–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, X.; Zhao, W.; Ding, C.; Tian, H.; Xu, L.; Wang, H.; Ni, L.; Jiang, J.; Gong, J.; Zhu, W.; et al. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ticinesi, A.; Nouvenne, A.; Meschi, T.; van Sinderen, D.; et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci. Rep. 2017, 7, 9879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, P.G.; Parthasarathy, G.; Chen, J.; O’Connor, H.M.; Chia, N.; Bharucha, A.E.; Gaskins, H.R. Assessing the colonic microbiome, hydrogenogenic and hydrogenotrophic genes, transit and breath methane in constipation. Neurogastroenterol. Motil. 2017, 29, e13056–e13059. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Liu, W.; Alkhouri, R.; Baker, R.D.; Bard, J.E.; Quigley, E.M.; Baker, S.S. Structural changes in the gut microbiome of constipated patients. Physiol. Genom. 2014, 46, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Coccorullo, P.; Strisciuglio, C.; Martinelli, M.; Miele, E.; Greco, L.; Staiano, A. Lactobacillus reuteri (DSM 17938) in Infants with Functional Chronic Constipation: A Double-Blind, Randomized, Placebo-Controlled Study. J. Pediatr. 2010, 157, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.V.P.; Lima, L.N.; Souza, T.C.; Mazochi, V.; Penna, F.J.; Silva, A.M.; Nicoli, J.R.; Guimarães, E.V. Pediatric functional constipation treatment with bifidobacterium-containing yogurt: A crossover, double-blind, controlled trial. WJG 2011, 17, 3916–3921. [Google Scholar] [CrossRef]
- Wojtyniak, K.; Szajewska, H. Systematic review: Probiotics for functional constipation in children. Eur. J. Pediatr. 2017, 176, 1155–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Morais, M.B.; Vitolo, M.R.; Aguirre, A.N.C.; Fagundes-Neto, U. Measurement of Low Dietary Fiber Intake As a Risk Factor for Chronic Constipation in Children. J. Craniofacial Surg. 1999, 29, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Pijpers, M.A.M.; Tabbers, M.M.; Benninga, M.A.; Berger, M.Y. Currently recommended treatments of childhood constipation are not evidence based: A systematic literature review on the effect of laxative treatment and dietary measures. Arch. Dis. Child. 2009, 94, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Tabbers, M.M.; Benninga, M.A. Constipation in children: Fibre and probiotics. BMJ Clin. Évid. 2015, 2015, 0303. [Google Scholar] [PubMed]
- Tabbers, M.M.; Boluyt, N.; Berger, M.Y.; Benninga, M.A. Nonpharmacologic Treatments for Childhood Constipation: Systematic Review. Pediatrics 2011, 128, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.; Naidoo, K.; Akobeng, A.K.; Thomas, A.G. Cochrane Review: Osmotic and stimulant laxatives for the management of childhood constipation (Review). Evid. Based Child Health A Cochrane Rev. J. 2013, 8, 57–109. [Google Scholar] [CrossRef]
- Mishra, K.; Bukavina, L.; Ghannoum, M. Symbiosis and Dysbiosis of the Human Mycobiome. Front. Microbiol. 2021, 12, 636131. [Google Scholar] [CrossRef]
- Dodi, G.; Pirone, E.; Bettin, A.; Veller, C.; Infantino, A.; Pianon, P.; Mortellaro, L.M.; Lise, M. The mycotic flora in proctological patients with and without pruritus ani. Br. J. Surg. 1985, 72, 967–969. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Nonzom, S. Superficial mycoses, a matter of concern: Global and Indian scenario-an updated analysis. Mycoses 2021, 64, 890–908. [Google Scholar] [CrossRef]
- Sauper, T.; Lanthaler, M.; Biebl, M.; Weiss, H.; Nehoda, H. Impaired anal sphincter function in professional cyclists. Wien. Klin. Wochenschr. 2007, 119, 170–173. [Google Scholar] [CrossRef]
- Chong, P.S.; Bartolo, D.C.C. Hemorrhoids and Fissure in Ano. Gastrointest. Endosc. Clin. N. Am. 2008, 37, 627–644. [Google Scholar] [CrossRef]
- Perera, N.; Liolitsa, D.; Iype, S.; Croxford, A.; Yassin, M.; Lang, P.; van Issum, C. Phlebotonics for haemorrhoids. Cochrane. Database. Syst. Rev. 2012, 8, CD004322. [Google Scholar] [CrossRef] [PubMed]
- Madoff, R.D.; Fleshman, J.W. American gastroenterological association technical review on the diagnosis and treatment of hemorrhoids. Gastroenterology 2004, 126, 1463–1473. [Google Scholar] [CrossRef]
- Ganz, R.A. The evaluation and treatment of haemorrhoids: A guide for the gastroenterologist. Clin. Gastroenterol. Hepatol. 2013, 11, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Massot, J.; Sanchez, O.; Couchy, R.; Astoin, J.; Parodi, A.L. Bacterio-pharmacological activity of Saccharomyces boulardii in clindamycin-induced colitis in the hamster. Arzneimittelforschung 1984, 34, 794–797. [Google Scholar]
- Lessard, M.; Dupuis, M.; Gagnon, N.; Nadeau, E.; Matte, J.J.; Goulet, J.; Fairbrother, J.M. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge1,2. J. Anim. Sci. 2009, 87, 922–934. [Google Scholar] [CrossRef] [Green Version]
- Gaziano, R.; Sabbatini, S.; Roselletti, E.; Perito, S.; Monari, C. Saccharomyces cerevisiae-Based Probiotics as Novel Antimicrobial Agents to Prevent and Treat Vaginal Infections. Front. Microbiol. 2020, 11, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.L.; Liang, J.B.; Jahromi, M.F.; Wu, Y.B.; Wright, A.G.; Liao, X.D. Mode of action of Saccharomyces cerevisiae in enteric methane mitigation in pigs. Animal 2018, 12, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Hager, C.L.; Ghannoum, M.A. The mycobiome: Role in health and disease, and as a potential probiotic target in gastrointestinal disease. Dig. Liver Dis. 2017, 49, 1171–1176. [Google Scholar] [CrossRef]
- Kumamoto, C.A. Inflammation and gastrointestinal Candida colonization. Curr. Opin. Microbiol. 2011, 14, 386–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwolinska-Wcislo, M.; Brzozowski, T.; Budak, A.; Kwiecień, S.; Sliwowski, Z.; Drozdowicz, D.; Trojanowska, D.; Rudnicka-Sosin, L.; Mach, T.; Konturek, S.J.; et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2009, 60, 107–118. [Google Scholar]
- Zwolińska-Wcisło, M.; Brzozowski, T.; Mach, T.; Budak, A.; Trojanowska, D.; Konturek, P.C.; Pajdo, R.; Drozdowicz, D.; Kwiecień, S. Are probiotics effective in the treatment of fungal colonization of the gastrointestinal tract? Experimental and clinical studies. J. Physiol. Pharmacol Off. J. Pol. Physiol. Soc. 2006, 57 (Suppl. S9), 35–49. [Google Scholar]
- Brzozowski, T.; Zwolinska-Wcislo, M.; Konturek, P.C.; Kwiecien, S.; Drozdowicz, D.; Konturek, S.J.; Stachura, J.; Budak, A.; Bogdal, J.; Pawlik, W.W.; et al. Influence of gastric colonization with Candida albicans on ulcer healing in rats: Effect of ranitidine, aspirin and probiotic therapy. Scand. J. Gastroenterol. 2005, 40, 286–296. [Google Scholar] [CrossRef]
- Ng, K.S.; Holzgang, M.; Young, C. Still a Case of “No Pain, No Gain”? An Updated and Critical Review of the Pathogenesis, Diagnosis, and Management Options for Hemorrhoids in 2020. Ann. Coloproctol. 2020, 36, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Ng, S.C. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front. Microbiol. 2018, 9, 2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panpetch, W.; Hiengrach, P.; Nilgate, S.; Tumwasorn, S.; Somboonna, N.; Wilantho, A.; Chatthanathon, P.; Prueksapanich, P.; Leelahavanichkul, A. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes 2020, 11, 465–480. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, V.D.; Tutino, R.; Messina, M.; Santarelli, M.; Nigro, C.; Lo Secco, G.; Piceni, C.; Montanari, E.; Barletta, G.; Venturelli, P.; et al. Altered Gut Microbic Flora and Haemorrhoids: Could They Have a Possible Relationship? J. Clin. Med. 2023, 12, 2198. https://doi.org/10.3390/jcm12062198
Palumbo VD, Tutino R, Messina M, Santarelli M, Nigro C, Lo Secco G, Piceni C, Montanari E, Barletta G, Venturelli P, et al. Altered Gut Microbic Flora and Haemorrhoids: Could They Have a Possible Relationship? Journal of Clinical Medicine. 2023; 12(6):2198. https://doi.org/10.3390/jcm12062198
Chicago/Turabian StylePalumbo, Vincenzo Davide, Roberta Tutino, Marianna Messina, Mauro Santarelli, Casimiro Nigro, Giacomo Lo Secco, Chiara Piceni, Elena Montanari, Gabriele Barletta, Paolina Venturelli, and et al. 2023. "Altered Gut Microbic Flora and Haemorrhoids: Could They Have a Possible Relationship?" Journal of Clinical Medicine 12, no. 6: 2198. https://doi.org/10.3390/jcm12062198
APA StylePalumbo, V. D., Tutino, R., Messina, M., Santarelli, M., Nigro, C., Lo Secco, G., Piceni, C., Montanari, E., Barletta, G., Venturelli, P., Geraci, G., Bonventre, S., & Lo Monte, A. I. (2023). Altered Gut Microbic Flora and Haemorrhoids: Could They Have a Possible Relationship? Journal of Clinical Medicine, 12(6), 2198. https://doi.org/10.3390/jcm12062198