The Effect of Hematocrit on All-Cause Mortality in Geriatric Patients with Hip Fractures: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Hospital Treatment
2.4. Follow-Up
2.5. Endpoint Events
2.6. Variables
2.7. Statistics Analysis
3. Results
3.1. Patient Characteristics
3.2. Univariate Analysis of Association between Variables and Mortality
3.3. Multivariate Analysis of Association between HCT and Mortality
3.4. Propensity Score Matching (PSM)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
aCCI | age-adjusted Charlson comorbidity index |
CHD | coronary heart disease |
CI | confidence interval |
COPD | chronic obstructive pulmonary disease |
HCT | hematocrit |
HR | Hazard ratio |
PSM | propensity score matching |
References
- Ramponi, D.R.; Kaufmann, J.; Drahnak, G. Hip Fractures. Adv. Emerg. Nurs. J. 2018, 40, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Mundi, S.; Pindiprolu, B.; Simunovic, N.; Bhandari, M. Similar mortality rates in hip fracture patients over the past 31 years. Acta Orthop. 2013, 85, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broggi, M.S.; Oladeji, P.O.; Tahmid, S.; Hernandez-Irizarry, R.; Allen, J. Depressive Disorders Lead to Increased Complications After Geriatric Hip Fractures. Geriatr. Orthop. Surg. Rehabil. 2021, 12, 21514593211016252. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Winzenberg, T.M.; Jiang, Q.; Chen, M.; Palmer, A.J. Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporos. Int. 2015, 26, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef]
- Downey, C.; Kelly, M.; Quinlan, J.F. Changing trends in the mortality rate at 1-year post hip fracture—A systematic review. World J. Orthop. 2019, 10, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Ferris, H.; Coughlan, T.; Hurson, C.; Ahern, E.; Sorensen, J.; Brent, L. Trends in hip fracture care in the Republic of Ireland from 2013 to 2018: Results from the Irish Hip Fracture Database. Osteoporos. Int. 2021, 32, 727–736. [Google Scholar] [CrossRef]
- Chiang, M.-H.; Huang, Y.-Y.; Kuo, Y.-J.; Huang, S.-W.; Jang, Y.-C.; Chu, F.-L.; Chen, Y.-P. Prognostic Factors for Mortality, Activity of Daily Living, and Quality of Life in Taiwanese Older Patients within 1 Year Following Hip Fracture Surgery. J. Pers. Med. 2022, 12, 102. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Kuo, Y.-J.; Hung, S.-W.; Wen, T.-W.; Chien, P.-C.; Chiang, M.-H.; Maffulli, N.; Lin, C.-Y. Loss of skeletal muscle mass can be predicted by sarcopenia and reflects poor functional recovery at one year after surgery for geriatric hip fractures. Injury 2021, 52, 3446–3452. [Google Scholar] [CrossRef]
- Groff, H.; Kheir, M.M.; George, J.; Azboy, I.; Higuera, C.A.; Parvizi, J. Causes of in-hospital mortality after hip fractures in the elderly. HIP Int. 2020, 30, 204–209. [Google Scholar] [CrossRef]
- Chang, W.; Lv, H.; Feng, C.; Yuwen, P.; Wei, N.; Chen, W.; Zhang, Y. Preventable risk factors of mortality after hip fracture surgery: Systematic review and meta-analysis. Int. J. Surg. 2018, 52, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, Z.; Huo, H.; Zhao, P. The Impact of Frailty on Adverse Outcomes in Geriatric Hip Fracture Patients: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 890652. [Google Scholar] [CrossRef]
- Mondal, H.; Lotfollahzadeh, S. StatPearls; StatPearls Publishing LLC: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Kiya, G.T.; Zewudie, F.M. Comparison of three-fold converted hematocrit and micro-hematocrit in pregnant women. PLoS ONE 2019, 14, e0220740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaskar, D.; Parker, M.J. Haematological indices as surrogate markers of factors affecting mortality after hip fracture. Injury 2011, 42, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Izaks, G.J.; Westendorp, R.G.; Knook, D.L. The definition of anemia in older persons. JAMA 1999, 281, 1714–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halm, E.A.; Wang, J.J.; Boockvar, K.; Penrod, J.; Silberzweig, S.B.; Magaziner, J.; Koval, K.J.; Siu, A.L. The effect of perioperative anemia on clinical and functional outcomes in patients with hip fracture. J. Orthop. Trauma 2004, 18, 369–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, L.J.; Doleman, B.; Moppett, I.K. A systematic review of pre-operative anaemia and blood transfusion in patients with fractured hips. Anaesthesia 2015, 70, 483–500. [Google Scholar] [CrossRef]
- Grosso, M.J.; Boddapati, V.; Cooper, H.J.; Geller, J.A.; Shah, R.P.; Neuwirth, A.L. The Effect of Preoperative Anemia on Complications After Total Hip Arthroplasty. J. Arthroplast. 2020, 35, S214–S218. [Google Scholar] [CrossRef] [PubMed]
- Viola, J.; Gomez, M.M.; Restrepo, C.; Maltenfort, M.G.; Parvizi, J. Preoperative anemia increases postoperative complications and mortality following total joint arthroplasty. J. Arthroplast. 2015, 30, 846–848. [Google Scholar] [CrossRef]
- Ryan, G.; Nowak, L.; Melo, L.; Ward, S.; Atrey, A.; Schemitsch, E.H.; Nauth, A.; Khoshbin, A. Anemia at Presentation Predicts Acute Mortality and Need for Readmission Following Geriatric Hip Fracture. JBJS Open Access 2020, 5, e20.00048. [Google Scholar] [CrossRef]
- Du, P.; Zhu, Y.; Guo, J.; Qi, S.; Qin, J.; Zheng, C.; Hou, Z.; Zhang, Y.; Tian, Q.-B.; Feng, Z. Incidence and risk factors associated with surgical site infection after surgically treated hip fractures in older adults: A retrospective cohort study. Aging Clin. Exp. Res. 2022, 34, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Nissenholtz, A.; Levy, Y.; Cooper, L.; Bugaevsky, Y.; Weiss, A.; Beloosesky, Y. Anemia in Patients after Hip Fracture Repair Surgery. Harefuah 2020, 159, 689–693. [Google Scholar] [PubMed]
- Gruson, K.I.; Aharonoff, G.B.; Egol, K.A.; Zuckerman, J.D.; Koval, K.J. The relationship between admission hemoglobin level and outcome after hip fracture. J. Orthop. Trauma 2002, 16, 39–44. [Google Scholar] [CrossRef]
- Bolton, D.; Bush, C.; Wallace, M.T. Nonagenarian hip fractures: Morbidity and mortality at a single institution. J. Clin. Orthop. Trauma 2021, 14, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Musallam, K.M.; Tamim, H.M.; Richards, T.; Spahn, D.R.; Rosendaal, F.R.; Habbal, A.; Khreiss, M.; Dahdaleh, F.S.; Khavandi, K.; Sfeir, P.M.; et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: A retrospective cohort study. Lancet 2011, 378, 1396–1407. [Google Scholar] [CrossRef]
- Simunovic, N.; Devereaux, P.J.; Sprague, S.; Guyatt, G.H.; Schemitsch, E.; DeBeer, J.; Bhandari, M. Effect of early surgery after hip fracture on mortality and complications: Systematic review and meta-analysis. CMAJ 2010, 182, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.Y.; Yan, S.; Low, L.L.; Vasanwala, F.F.; Low, S.G. Predictors of poor functional outcomes and mortality in patients with hip fracture: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, M.; Zhang, Y.; Chen, A.C.; Liu, T.; Yang, H.; Zhu, X.; He, F. The effects of dementia on the prognosis and mortality of hip fracture surgery: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2021, 33, 3161–3172. [Google Scholar] [CrossRef]
- Musallam, K.M.; Porter, J.; Sfeir, P.M.; Tamim, H.M.; Richards, T.; Lotta, L.A.; Peyvandi, F.; Jamali, F.R. Raised haematocrit concentration and the risk of death and vascular complications after major surgery. Br. J. Surg. 2013, 100, 1030–1036. [Google Scholar] [CrossRef]
- Gupta, P.K.; Sundaram, A.; MacTaggart, J.N.; Johanning, J.M.; Gupta, H.; Fang, X.; Forse, R.A.; Balters, M.; Longo, G.M.; Sugimoto, J.T.; et al. Preoperative anemia is an independent predictor of postoperative mortality and adverse cardiac events in elderly patients undergoing elective vascular operations. Ann. Surg. 2013, 258, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Tsantes, A.G.; Papadopoulos, D.V.; Trikoupis, I.G.; Tsante, K.A.; Mavrogenis, A.F.; Koulouvaris, P.; Vaiopoulos, A.G.; Piovani, D.; Nikolopoulos, G.K.; Kokoris, S.I.; et al. The Prognostic Performance of Rotational Thromboelastometry for Excessive Bleeding and Increased Transfusion Requirements in Hip Fracture Surgeries. Thromb. Haemost. 2022, 122, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Tsantes, A.G.; Papadopoulos, D.V.; Roustemis, A.G.; Trikoupis, I.G.; Piovani, D.; Tsante, K.A.; Mantzios, P.G.; Mavrogenis, A.F.; Sokou, R.; Kokoris, S.I.; et al. Rotational Thromboelastometry Predicts Transfusion Requirements in Total Joint Arthroplasties. Semin. Thromb. Hemost. 2023, 49, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, H.R.; Sim, Y.E.; Hao, Y.; Lin, G.Y.; Liew, G.H.C.; Lamoureux, E.L.; Tan, M.H. Association between preoperative anaemia with length of hospital stay among patients undergoing primary total knee arthroplasty in Singapore: A single-centre retrospective study. BMJ Open 2017, 7, e016403. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, K.J.; Williamson, L.; Alexander, J.; Filliter, C.; Sobolev, B.; Guy, P.; Bearne, L.; Sackley, C. Prognostic factors of functional outcome after hip fracture surgery: A systematic review. Age Ageing 2018, 47, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Almeida, N.D.; Lee, R.; Bestourous, D.; Klein, A.L.; Parekh, N.R.; Sack, K.; Sherman, J.H. Perioperative Complications Associated with Severity of Anemia in Geriatric Patients Undergoing Spinal Procedures. World Neurosurg. 2022, 135, e307–e320. [Google Scholar] [CrossRef]
- Bodewes, T.C.; Pothof, A.B.; Darling, J.D.; Deery, S.E.; Jones, D.W.; Soden, P.A.; Moll, F.L.; Schermerhorn, M.L. Preoperative anemia associated with adverse outcomes after infrainguinal bypass surgery in patients with chronic limb-threatening ischemia. J. Vasc. Surg. 2017, 66, 1775–1785.e2. [Google Scholar] [CrossRef] [Green Version]
- Kavak, M.; Oğuz, S.; Akkoyun, Z.; İnan, U. Predictive factors associated with thirty-day mortality in geriatric patients with hip fractures. Acta Orthop. Traumatol. Turc. 2022, 56, 240–244. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Yuan, Y.; Li, X.; Liu, X.; Fan, B.; Yang, M.; Wu, X. Risk factor analysis for in-hospital death of geriatric hip fracture patients. Saudi Med. J. 2022, 43, 197–201. [Google Scholar] [CrossRef]
- Stone, A.V.; Jinnah, A.; Wells, B.; Atkinson, H.; Miller, A.N.; Futrell, W.M.; Lenoir, K.; Emory, C.L. Nutritional markers may identify patients with greater risk of re-admission after geriatric hip fractures. Int. Orthop. 2018, 42, 231–238. [Google Scholar] [CrossRef]
- Provenzano, G.; Jenkins, S.; Higginbotham, W.; Markel, D.C. Factors That Influence Time to Operating Room for Geriatric Hip Fractures: A Quality Improvement Initiative. Arthroplast. Today 2022, 15, 115–119. [Google Scholar] [CrossRef]
- Lai, Y.C.; Tang, P.L.; Kuo, T.J.; Hsu, C.J. Different impacts of dementia on two-year mortality after osteosynthesis and hemiarthroplasty in treating geriatric hip fractures. Arch. Gerontol. Geriatr. 2018, 79, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Ercin, E.; Bilgili, M.G.; Sari, C.; Basaran, S.H.; Tanriverdi, B.; Edipoglu, E.; Celen, K.M.; Cetingok, H.; Kural, C. Risk factors for mortality in geriatric hip fractures: A compressional study of different surgical procedures in 785 consecutive patients. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Guzon-Illescas, O.; Fernandez, E.P.; Villarias, N.C.; Donate, F.J.Q.; Peña, M.; Alonso-Blas, C.; Vadillo, A.G.; Mazzucchelli, R. Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors. J. Orthop. Surg. Res. 2019, 14, 203. [Google Scholar] [CrossRef] [Green Version]
- Gauci, R.; Hunter, M.; Bruce, D.G.; Davis, W.A.; Davis, T.M.E. Anemia complicating type 2 diabetes: Prevalence, risk factors and prognosis. J. Diabetes Complicat. 2017, 31, 1169–1174. [Google Scholar] [CrossRef]
- Divo, M.; Celli, B.R. Multimorbidity in Patients with Chronic Obstructive Pulmonary Disease. Clin. Chest Med. 2020, 41, 405–419. [Google Scholar] [CrossRef]
- Cherabuddi, M.R.; Kurra, N.; Doosetty, S.; Gandrakota, N. Atypical Presentation of Interval Colorectal Cancer/Post-Colonoscopy Colorectal Cancer in a Nursing Home Patient. Cureus 2022, 14, e24849. [Google Scholar] [CrossRef] [PubMed]
- Bach, V.; Schruckmayer, G.; Sam, I.; Kemmler, G.; Stauder, R. Prevalence and possible causes of anemia in the elderly: A cross-sectional analysis of a large European university hospital cohort. Clin. Interv. Aging 2014, 9, 1187–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HCT Quartiles | Q1 | Q2 | Q3 | Q4 | p-Value | p-Value * |
---|---|---|---|---|---|---|
N | 633 | 635 | 659 | 662 | ||
HCT (%) | 26.16 ± 2.94 | 31.78 ± 1.13 | 35.47 ± 1.02 | 40.47 ± 2.80 | <0.001 | <0.001 |
Age (year) | 81.87 ± 6.47 | 79.96 ± 6.56 | 78.98 ± 6.47 | 77.65 ± 6.97 | <0.001 | <0.001 |
Sex | <0.001 | - | ||||
Male | 156 (24.64%) | 186 (29.29%) | 217 (32.93%) | 290 (43.81%) | ||
Female | 477 (75.36%) | 449 (70.71%) | 442 (67.07%) | 372 (56.19%) | ||
Occupation | 0.103 | - | ||||
Retirement | 347 (54.82%) | 350 (55.12%) | 395 (59.94%) | 397 (59.97%) | ||
Farmer | 164 (25.91%) | 151 (23.78%) | 162 (24.58%) | 152 (22.96%) | ||
Other | 122 (19.27%) | 134 (21.10%) | 102 (15.48%) | 113 (17.07%) | ||
History of allergy | 25 (3.95%) | 17 (2.68%) | 32 (4.86%) | 27 (4.08%) | 0.241 | - |
Injury mechanism | 0.397 | - | ||||
Falling | 614 (97.00%) | 614 (96.69%) | 635 (96.36%) | 638 (96.37%) | ||
Accident | 12 (1.90%) | 17 (2.68%) | 22 (3.34%) | 17 (2.57%) | ||
Other | 7 (1.11%) | 4 (0.63%) | 2 (0.30%) | 7 (1.06%) | ||
Fracture classification | <0.001 | - | ||||
Intertrochanteric fracture | 558 (88.15%) | 520 (81.89%) | 467 (70.86%) | 342 (51.66%) | ||
Femoral neck fracture | 53 (8.37%) | 95 (14.96%) | 176 (26.71%) | 311 (46.98%) | ||
Subtrochanteric fracture | 22 (3.48%) | 20 (3.15%) | 16 (2.43%) | 9 (1.36%) | ||
Hypertension | 277 (43.76%) | 293 (46.14%) | 341 (51.75%) | 347 (52.42%) | 0.003 | - |
Diabetes | 107 (16.90%) | 116 (18.27%) | 145 (22.00%) | 148 (22.36%) | 0.03 | - |
CHD | 335 (52.92%) | 352 (55.43%) | 336 (50.99%) | 354 (53.47%) | 0.456 | - |
Arrhythmia | 227 (35.86%) | 206 (32.44%) | 196 (29.74%) | 243 (36.71%) | 0.028 | - |
Hemorrhagic stroke | 17 (2.69%) | 11 (1.73%) | 12 (1.82%) | 17 (2.57%) | 0.533 | - |
Ischemic stroke | 167 (26.38%) | 180 (28.35%) | 190 (28.83%) | 218 (32.93%) | 0.067 | - |
Cancer | 28 (4.42%) | 21 (3.31%) | 14 (2.12%) | 12 (1.81%) | 0.02 | - |
Multiple injuries | 64 (10.11%) | 48 (7.56%) | 43 (6.53%) | 26 (3.93%) | <0.001 | - |
Dementia | 37 (5.85%) | 22 (3.46%) | 23 (3.49%) | 21 (3.17%) | 0.051 | - |
COPD | 40 (6.32%) | 37 (5.83%) | 51 (7.74%) | 40 (6.04%) | 0.493 | - |
Hepatitis | 32 (5.06%) | 14 (2.20%) | 19 (2.88%) | 16 (2.42%) | 0.013 | - |
Gastritis | 16 (2.53%) | 14 (2.20%) | 9 (1.37%) | 7 (1.06%) | 0.15 | - |
aCCI | 4.43 ± 1.03 | 4.21 ± 1.05 | 4.19 ± 1.12 | 4.05 ± 1.10 | <0.001 | <0.001 |
Treatment Strategy | <0.001 | - | ||||
Conservation | 75 (11.85%) | 53 (8.35%) | 46 (6.98%) | 51 (7.70%) | ||
ORIF | 503 (79.46%) | 482 (75.91%) | 447 (67.83%) | 311 (46.98%) | ||
HA | 54 (8.53%) | 97 (15.28%) | 160 (24.28%) | 275 (41.54%) | ||
THA | 1 (0.16%) | 3 (0.47%) | 6 (0.91%) | 25 (3.78%) | ||
Time to admission (h) | 69.30 ± 146.65 | 93.35 ± 310.53 | 82.37 ± 252.96 | 78.56 ± 253.14 | 0.382 | <0.001 |
Time to operation (d) | 4.47 ± 2.64 | 4.26 ± 2.47 | 4.16 ± 2.61 | 4.35 ± 2.58 | 0.21 | 0.071 |
Operation time (mins) | 98.18 ± 41.49 | 91.15 ± 33.78 | 94.53 ± 40.22 | 92.67 ± 32.26 | 0.01 | 0.072 |
Blood loss (mL) | 271.03 ± 201.70 | 240.86 ± 152.99 | 242.65 ± 145.87 | 229.05 ± 143.63 | <0.001 | 0.375 |
Infusion (mL) | 1488.79 ± 407.67 | 1511.17 ± 386.41 | 1587.45 ± 384.04 | 1642.77 ± 356.39 | <0.001 | <0.001 |
Transfusion (U) | 1.84 ± 1.35 | 1.22 ± 1.22 | 1.00 ± 1.19 | 0.63 ± 1.02 | <0.001 | <0.001 |
Length of hospital (d) | 9.17 ± 3.59 | 8.86 ± 3.77 | 8.82 ± 3.62 | 8.86 ± 3.77 | 0.281 | 0.031 |
Follow up (months) | 36.96 ± 22.01 | 40.53 ± 20.81 | 40.57 ± 18.27 | 37.70 ± 17.11 | <0.001 | <0.001 |
Mortality | 288 (45.50%) | 212 (33.39%) | 192 (29.14%) | 183 (27.64%) | <0.001 | - |
Exposure | Non-Adjusted | Minimally-Adjusted Model | Fully-Adjusted Model |
---|---|---|---|
HCT | 0.96 (0.95, 0.97) < 0.0001 | 0.97 (0.96, 0.98) < 0.0001 | 0.97 (0.96, 0.99) 0.0002 |
HCT quartiles | |||
Q1 | 1 | 1 | 1 |
Q2 | 0.67 (0.56, 0.80) < 0.0001 | 0.75 (0.63, 0.90) 0.0017 | 0.78 (0.63, 0.95) 0.0158 |
Q3 | 0.59 (0.49, 0.70) < 0.0001 | 0.68 (0.56, 0.81) < 0.0001 | 0.72 (0.58, 0.90) 0.0034 |
Q4 | 0.60 (0.50, 0.72) < 0.0001 | 0.71 (0.58, 0.85) 0.0004 | 0.72 (0.56, 0.91) 0.0062 |
p for trend | <0.0001 | <0.0001 | 0.0036 |
Outcome: | HR (95%CI) p-Value |
---|---|
Fitting model by stand linear regression | 0.97 (0.96, 0.99) 0.0002 |
Fitting model by two-piecewise linear regression | |
Inflection point | 28 |
<28 | 0.91 (0.87, 0.95) < 0.0001 |
>28 | 0.99 (0.97, 1.01) 0.3792 |
p for log-likelihood ratio test | 0.002 |
Nonlinearity Model | PSM Model | PSM-Adjust Model | |
---|---|---|---|
Fitting model by stand linear regression | 0.97 (0.96, 0.99) 0.0002 | 0.99 (0.98, 1.00) 0.1328 | 0.99 (0.97, 1.00) 0.0381 |
Fitting model by two-piecewise linear regression | |||
Inflection point | 28 | 29.7 | 29.7 |
<Inflection point | 0.91 (0.87, 0.95) < 0.0001 | 0.95 (0.91, 0.98) 0.0010 | 0.95 (0.91, 0.98) 0.0007 |
>Inflection point | 0.99 (0.97, 1.01) 0.3792 | 1.01 (0.99, 1.03) 0.2740 | 0.95 (0.91, 0.98) 0.0007 |
p for log-likelihood ratio test | 0.002 | 0.005 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-M.; Li, K.; Cao, W.-W.; Chen, S.-H.; Zhang, B.-F. The Effect of Hematocrit on All-Cause Mortality in Geriatric Patients with Hip Fractures: A Prospective Cohort Study. J. Clin. Med. 2023, 12, 2010. https://doi.org/10.3390/jcm12052010
Zhang Y-M, Li K, Cao W-W, Chen S-H, Zhang B-F. The Effect of Hematocrit on All-Cause Mortality in Geriatric Patients with Hip Fractures: A Prospective Cohort Study. Journal of Clinical Medicine. 2023; 12(5):2010. https://doi.org/10.3390/jcm12052010
Chicago/Turabian StyleZhang, Yu-Min, Kun Li, Wen-Wen Cao, Shao-Hua Chen, and Bin-Fei Zhang. 2023. "The Effect of Hematocrit on All-Cause Mortality in Geriatric Patients with Hip Fractures: A Prospective Cohort Study" Journal of Clinical Medicine 12, no. 5: 2010. https://doi.org/10.3390/jcm12052010
APA StyleZhang, Y.-M., Li, K., Cao, W.-W., Chen, S.-H., & Zhang, B.-F. (2023). The Effect of Hematocrit on All-Cause Mortality in Geriatric Patients with Hip Fractures: A Prospective Cohort Study. Journal of Clinical Medicine, 12(5), 2010. https://doi.org/10.3390/jcm12052010