Can We Predict Imbalance in Patients? Analysis of the CDC National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics and Comorbidities
3.2. Laboratory Values
3.3. Functional Assessments
3.4. Independent Predictors of Imbalance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norré, M.E. Posture in otoneurology. Volume I. Acta Otorhinolaryngol. Belg. 1990, 44, 55–181. [Google Scholar]
- Iwasaki, S.; Yamasoba, T. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System. Aging Dis. 2015, 6, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Bhanpuri, N.H.; Okamura, A.M.; Bastian, A.J. Predicting and correcting ataxia using a model of cerebellar function. Brain 2014, 137, 1931–1944. [Google Scholar] [CrossRef] [PubMed]
- Caligiore, D.; Pezzulo, G.; Baldassarre, G.; Bostan, A.C.; Strick, P.L.; Doya, K.; Houk, J.; Jörntell, H.; Lago-Rodriguez, A. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: The Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum 2017, 16, 203–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cangussu, L.M.; Nahas-Neto, J.; Petri Nahas, E.A.; Rodrigues Barral, A.B.C.; Buttros, D.D.A.; Uemura, G. Evaluation of postural balance in postmenopausal women and its relationship with bone mineral density—A cross sectional study. BMC Musculoskelet. Disord. 2012, 13, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilby, M.C.; Slobounov, S.M.; Newell, K.M. Postural Instability Detection: Aging and the Complexity of Spatial-Temporal Distributional Patterns for Virtually Contacting the Stability Boundary in Human Stance. PLoS ONE 2014, 9, e108905. [Google Scholar] [CrossRef] [PubMed]
- Gittings, N.S.; Fozard, J.L. Age related changes in visual acuity. Exp. Gerontol. 1986, 21, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Marzetti, E.; Hwang, A.-C.; Tosato, M.; Peng, L.-N.; Calvani, R.; Picca, A.; Chen, L.K.; Landi, F. Age-related changes of skeletal muscle mass and strength among Italian and Taiwanese older people: Results from the Milan EXPO 2015 survey and the I-Lan Longitudinal Aging Study. Exp. Gerontol. 2018, 102, 76–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Yao, Y.; Liu, J.; Sun, X.; Gu, D. Walking stability in patients with benign paroxysmal positional vertigo: An objective assessment using wearable accelerometers and machine learning. J. Neuroeng. Rehabil. 2021, 18, 56. [Google Scholar] [CrossRef]
- Zipori, A.B.; Colpa, L.; Wong, A.M.; Cushing, S.L.; Gordon, K.A. Postural stability and visual impairment: Assessing balance in children with strabismus and amblyopia. PLoS ONE 2018, 13, e0205857. [Google Scholar] [CrossRef] [Green Version]
- Anand, V.; Buckley, J.G.; Scally, A.; Elliott, D.B. Postural stability changes in the elderly with cataract simulation and refractive blur. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4670–4675. [Google Scholar] [CrossRef] [Green Version]
- Rumalla, K.; Karim, A.M.; Hullar, T.E. The effect of hearing aids on postural stability. Laryngoscope 2015, 125, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Allain, H.; Bentue-Ferrer, D.; Polard, E.; Akwa, Y.; Patat, A. Postural instability and consequent falls and hip fractures associated with use of hypnotics in the elderly: A comparative review. Drugs Aging 2005, 22, 749–765. [Google Scholar] [CrossRef]
- Rivasi, G.; Rafanelli, M.; Mossello, E.; Brignole, M.; Ungar, A. Drug-Related Orthostatic Hypotension: Beyond Anti-Hypertensive Medications. Drugs Aging 2020, 37, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Appeadu, M.K.; Gupta, V. Postural Instability; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Fuller, G.F. Falls in the elderly. Am. Fam. Phys. 2000, 61, 2159–2168. [Google Scholar]
- Moncada, L.V.V. Management of falls in older persons: A prescription for prevention. Am. Fam. Phys. 2011, 84, 1267–1276. [Google Scholar]
- OrthoInfo–AAOS. Preventing Falls among the Elderly. Available online: https://www.orthoinfo.org/en/staying-healthy/Preventing-Falls-Among-the-Elderly/ (accessed on 24 September 2022).
- Hilibrand, A.; Pearson Riley, L. AAOS Announces Its 2018 Public Service Advertising Campaign; AAOS Acad News: Rosemont, IL, USA, 2018. [Google Scholar]
- Ganz, D.A.; Bao, Y.; Shekelle, P.G.; Rubenstein, L.Z. Will My Patient Fall? JAMA 2007, 297, 77. [Google Scholar] [CrossRef] [PubMed]
- Rossiter-Fornoff, J.E.; Wolf, S.L.; Wolfson, L.I.; Buchner, D.M. A cross-sectional validation study of the FICSIT common data base static balance measures. Frailty and Injuries: Cooperative Studies of Intervention Techniques. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, M291–M297. [Google Scholar] [CrossRef] [PubMed]
- Speechley, M.; Tinetti, M. Falls and Injuries in Frail and Vigorous Community Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 46–52. [Google Scholar] [CrossRef]
- Phelan, E.A.; Mahoney, J.E.; Voit, J.C.; Stevens, J.A. Assessment and management of fall risk in primary care settings. Med. Clin. N. Am. 2015, 99, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Prevention and Control. National Health and Nutrition Examination Survey Overview. 2017. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_13_14/NHANES_Overview_Brochure.pdf (accessed on 24 September 2022).
- Fontanarosa, P.B.; Christiansen, S. Laboratory Values. AMA Man. Style; Oxford University Press: Oxford, UK, 2007. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. December 2015. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 24 September 2022).
- Kim, S.D.; Allen, N.E.; Canning, C.G.; Fung, V.S.C. Postural Instability in Patients with Parkinson’s Disease. CNS Drugs 2013, 27, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Mesbah, N.; Perry, M.; Hill, K.D.; Kaur, M.; Hale, L. Postural Stability in Older Adults With Alzheimer Disease. Phys. Ther. 2017, 97, 290–309. [Google Scholar] [CrossRef]
- Yeoh, H.T.; Lockhart, T.E.; Wu, X. Non-fatal occupational falls on the same level. Ergonomics 2013, 56, 153–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, E.V.; Rose, J.; Rohlfing, T.; Pfefferbaum, A. Postural sway reduction in aging men and women: Relation to brain structure, cognitive status, and stabilizing factors. Neurobiol. Aging 2009, 30, 793–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Era, P.; Schroll, M.; Ytting, H.; Gause-Nilsson, I.; Heikkinen, E.; Steen, B. Postural balance and its sensory-motor correlates in 75-year-old men and women: A cross-national comparative study. J. Gerontol. A Biol. Sci. Med. Sci. 1996, 51, M53–M63. [Google Scholar] [CrossRef]
- Chang, V.C.; Do, M.T. Risk Factors for Falls Among Seniors: Implications of Gender. Am. J. Epidemiol. 2015, 181, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Mahlknecht, P.; Kiechl, S.; Bloem, B.R.; Willeit, J.; Scherfler, C.; Gasperi, A.; Rungger, G.; Poewe, W.; Seppi, K. Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: A population-based study. PLoS ONE 2013, 8, e69627. [Google Scholar] [CrossRef]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta- analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Urrea, R.; Garcia-Meseguer, M.J. Malnutrition in an Elderly Population without Cognitive Impairment Living in Nursing Homes in Spain: Study of Prevalence Using the Mini Nutritional Assessment Test. Gerontology 2013, 59, 490–498. [Google Scholar] [CrossRef]
- Gray-Donald, K.; Payette, H.; Boutier, V. Randomized clinical trial of nutritional supplementation shows little effect on functional status among free-living frail elderly. J. Nutr. 1995, 125, 2965–2971. [Google Scholar] [CrossRef]
- Gafner, S.C.; Bastiaenen, C.H.; Ferrari, S.; Gold, G.; Terrier, P.; Hilfiker, R.; Allet, L. Hip muscle and hand-grip strength to differentiate between older fallers and non-fallers: A cross-sectional validity study. Clin. Interv. Aging 2018, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tinetti, M.E. Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Mathias, S.; Nayak, U.S.; Isaacs, B. Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 1986, 67, 387–389. [Google Scholar] [PubMed]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Wood-Dauphine, S.; Williams, J.I.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Diebo, B.G.; Challier, V.; Shah, N.V.; Kim, D.; Murray, D.P.; Kelly, J.J.; Lafage, R.; Paulino, C.B.; Passias, P.G.; Schwab, F.J.; et al. The Dubousset Functional Test is a Novel Assessment of Physical Function and Balance. Clin. Orthop. 2019, 477, 2307. [Google Scholar] [CrossRef] [PubMed]
- Diebo, B.G.; Shah, N.V.; Kim, D.; Krol, O.; Kim, D.J.; Dubner, M.G.; Patel, N.; Axman, R.; Kaur, H.; Wolfert, A.K.; et al. First Application of the Dubousset Functional Test (DFT) in Patients with Spinal Pathologies: The Future of Objective Clinical Outcomes is Now. In Proceedings of the 26th International Meeting on Advanced Spine Techniques, Amsterdam, The Netherlands, 19 July 2019; p. 75. [Google Scholar]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef] [PubMed]
Comorbidity | Imbalanced Patients | Balanced Patients | p-Value |
---|---|---|---|
Osteoporosis | 14.4% (n = 379/2624) | 6.6% (n = 482/7292) | <0.001 ^ |
Arthritis | 51.6% (n = 1361/2638) | 31.9% (n = 2336/7326) | <0.001 ^ |
Neck Pain | 10.8% (n = 286/2638) | 4.3% (n = 318/7326) | <0.001 ^ |
Low Back Pain | 54.4% (n = 1434/2638) | 32.7% (n = 2392/7326) | <0.001 ^ |
Depression/Anxiety | 1.5% (n = 40/2638) | 0.6% (n = 43/7326) | <0.001 ^ |
Lab Value | Imbalanced Patients Intake | Balanced Patients Intake | p-Value |
---|---|---|---|
Albumin (g/dL) (3.5–5.0) * (IQR) | 4.30 (4.00) | 4.40 (3.00) | <0.001 ^ |
ALT (U/L) (10–40) * (IQR) | 19.00 (11.00) | 19.00 (10.00) | <0.001 ^ |
AST (U/L) (5–30) * (IQR) | 20.00 (9.00) | 21.00 (7.00) | 0.002 ^ |
Alkaline phosphatase (U/L) (30–120) * (IQR) | 85.00 (35.00) | 77.00 (31.00) | 0.001 ^ |
Blood urea nitrogen (mg/dL) (8–23) * (IQR) | 12.00 (5.00) | 12.90 (4.20) | <0.001 ^ |
Calcium, total (mg/dL) (8.2–10.2) * (IQR) | 9.30 (0.60) | 9.30 (0.50) | 0.132 |
Cholesterol, total (mg/dL) (<200 (desirable)) * (IQR) | 200.00 (43.00) | 200.00 (49) | 0.132 |
Bicarbonate (mmol/L) (21–28) * (IQR) | 23.00 (3.00) | 24.00 (3.00) | 0.666 |
Glucose (mg/dL) (70–110) * (IQR) | 91.00 (20.00) | 88.00 (12.00) | <0.001 ^ |
Iron (µgl/dL) (60–150) * (IQR) | 70.00 (37.00) | 75 (40.00) | <0.001 ^ |
Phosphorus (mg/dL) (2.3–4.7) * (IQR) | 3.40 (0.50) | 3.50 (0.70) | 0.036 ^ |
Bilirubin, total (mg/dL) (0.3–1.2) * (IQR) | 0.40 (0.30) | 0.40 (0.10) | 0.001 ^ |
Protein, total (g/dL) (6.0–8.0) * (IQR) | 7.60 (0.70) | 7.60 (0.60) | 0.003 ^ |
Triglycerides (mg/dL) (<160) * (IQR) | 118.00 (104) | 111.00 (89.00) | <0.001 ^ |
Uric acid (mg/dL) (4.0–8.0) * (IQR) | 4.50 (1.70) | 4.40 (17.70) | 0.412 |
Creatinine (mg/dL) (0.8–1.3) * (IQR) | 0.60 (0.20) | 0.60 (0.20) | 0.037 ^ |
Sodium (mmol/L) (136–142) *# (STD) | 139.10 (2.82) | 139.22 (2.53) | 0.071 |
Potassium (mmol/L) (3.5–5.0) * (IQR) | 4.03 (0.43) | 4.03 (0.39) | 0.001 ^ |
Chloride (mmol/L) (96–106) *# (STD) | 102.51 (3.44) | 102.78 (3.01) | 0.001 ^ |
Osmolality (mOsm/kg) (275–295) * (IQR) | 278.00 (9.00) | 278.00 (6.00) | <0.001 ^ |
Nutritional Parameter | Imbalanced Patients Intake | Balanced Patients Intake | p-Value |
---|---|---|---|
Energy (kcal) [1600–2200] * (IQR) | 1674.00 (942) | 1822.00 (1066) | <0.001 ^ |
Dietary Fiber (gm) [25.2–33.6] * (IQR) | 12.80 (10.40) | 13.60 (10.90) | 0.017 ^ |
Protein, total (gm) [46–56] * (IQR) | 62.66 (42.39) | 69.90 (43.19) | <0.001 ^ |
Thiamine (B1) (mg) [1.1–1.2] * (IQR) | 1.29 (0.88) | 1.40 (0.95) | 0.001 ^ |
B2 (mg) [1–1.3] * (IQR) | 1.82 (1.37) | 1.88 (1.24) | 0.028 ^ |
B3 Niacin (mg) [14–16] * (IQR) | 17.46 (13.80) | 19.83 (13.36) | <0.001 ^ |
B6 (mg) [1.2–1.5] * (IQR) | 1.43 (1.16) | 1.53 (1.11) | 0.002 ^ |
B12 (mcg) [1.8–2.4] * (IQR) | 3.37 (3.83) | 3.64 (3.88) | 0.048 ^ |
Vitamin D (nmol/L) [50] * (IQR) | 55.70 (31.90) | 58.10 (29.50) | 0.002 ^ |
Vitamin C (mg) [45–90] * (IQR) | 54.50 (692.00) | 59.60 (99.3) | 0.007 ^ |
Ca (mg) [1000–1300] * (IQR) | 645.00 (565.00) | 659.00 (575.00) | 0.166 |
PO4 (mg) [700–1250] * (IQR) | 1044.00 (692.00) | 1132.00 (708) | <0.001 ^ |
Alpha carotene (mcg) (IQR) | 35.00 (163) | 47.00 (224) | 0.003 ^ |
Beta Carotene (mcg) [5000–6000] * (IQR) | 654 (1655) | 740.00 (2018) | 0.011 ^ |
Functional Test | Imbalanced Patients | Balanced Patients | p-Value |
---|---|---|---|
Stooping/crouching/kneeling | 74.3% (n = 1069/1439) | 44.7% (n = 1307/2927) | <0.001 ^ |
Standing for prolonged periods of time | 67.6% (n = 968/1433) | 36.44% (n = 1055/2895) | <0.001 ^ |
Lifting or carrying | 52.6% (n = 754/1433) | 24.3% (n = 711/2923) | <0.001 ^ |
Rising from armless chair | 48.6% (n = 699/1438) | 21.0% (n = 615/2927) | <0.001 ^ |
Walking up 10 steps | 43.8% (n = 500/1142) | 21.0% (n = 569/2711) | <0.001 ^ |
Grasping small objects | 32.2% (n = 463/1438) | 12.8% (n = 375/2927) | <0.001 ^ |
Standing up on their own | 4.0% (n = 65/1628) | 0.9% (n = 45/4794) | <0.001 ^ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diebo, B.G.; Stroud, S.G.; Shah, N.V.; Messina, J.; Hong, J.M.; Alsoof, D.; Ansari, K.; Lafage, R.; Passias, P.G.; Lafage, V.; et al. Can We Predict Imbalance in Patients? Analysis of the CDC National Health and Nutrition Examination Survey. J. Clin. Med. 2023, 12, 1943. https://doi.org/10.3390/jcm12051943
Diebo BG, Stroud SG, Shah NV, Messina J, Hong JM, Alsoof D, Ansari K, Lafage R, Passias PG, Lafage V, et al. Can We Predict Imbalance in Patients? Analysis of the CDC National Health and Nutrition Examination Survey. Journal of Clinical Medicine. 2023; 12(5):1943. https://doi.org/10.3390/jcm12051943
Chicago/Turabian StyleDiebo, Bassel G., Sarah G. Stroud, Neil V. Shah, James Messina, James M. Hong, Daniel Alsoof, Kashif Ansari, Renaud Lafage, Peter G. Passias, Virginie Lafage, and et al. 2023. "Can We Predict Imbalance in Patients? Analysis of the CDC National Health and Nutrition Examination Survey" Journal of Clinical Medicine 12, no. 5: 1943. https://doi.org/10.3390/jcm12051943
APA StyleDiebo, B. G., Stroud, S. G., Shah, N. V., Messina, J., Hong, J. M., Alsoof, D., Ansari, K., Lafage, R., Passias, P. G., Lafage, V., Schwab, F. J., Paulino, C. B., Aaron, R., & Daniels, A. H. (2023). Can We Predict Imbalance in Patients? Analysis of the CDC National Health and Nutrition Examination Survey. Journal of Clinical Medicine, 12(5), 1943. https://doi.org/10.3390/jcm12051943