The Prognostic Significance of Early Glycemic Profile in Acute Ischemic Stroke Depends on Stroke Subtype
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Patients
3.2. Univariate Association of Glucose Profile Categories with Poor Outcome
3.3. Multivariable Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, F.; Moretti, A.; Villa, R.F. Hyperglycemia in Acute Ischemic Stroke: Physiopathological and Therapeutic Complexity. Neural Regen. Res. 2022, 17, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Piironen, K.; Putaala, J.; Rosso, C.; Samson, Y. Glucose and Acute Stroke. Stroke 2012, 43, 898–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bene, A.; Palumbo, V.; Lamassa, M.; Saia, V.; Piccardi, B.; Inzitari, D. Progressive Lacunar Stroke: Review of Mechanisms, Prognostic Features, and Putative Treatments. Int. J. Stroke 2012, 7, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Rudilosso, S.; Rodríguez-Vázquez, A.; Urra, X.; Arboix, A. The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. Int. J. Mol. Sci. 2022, 23, 1497. [Google Scholar] [CrossRef] [PubMed]
- Regenhardt, R.W.; Das, A.S.; Lo, E.H.; Caplan, L.R. Advances in Understanding the Pathophysiology of Lacunar Stroke: A Review. JAMA Neurol. 2018, 75, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Kittur, F.S.; Li, P.A.; Hung, C.-Y. Rethinking the Necessity of Low Glucose Intervention for Cerebral Ischemia/Reperfusion Injury. Neural Regen. Res. 2022, 17, 1397–1403. [Google Scholar] [CrossRef]
- Robbins, N.M.; Swanson, R.A. Opposing Effects of Glucose on Stroke and Reperfusion Injury: Acidosis, Oxidative Stress, and Energy Metabolism. Stroke 2014, 45, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Bruno, A.; Biller, J.; Adams, H.P.; Clarke, W.R.; Woolson, R.F.; Williams, L.S.; Hansen, M.D. Acute Blood Glucose Level and Outcome from Ischemic Stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators. Neurology 1999, 52, 280–284. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, S.; Wu, B.; Liu, M. Hyperglycaemia in Acute Lacunar Stroke: A Chinese Hospital-Based Study. Diabetes Vasc. Dis. Res. 2013, 10, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Miedema, I.; Luijckx, G.-J.; Brouns, R.; De Keyser, J.; Uyttenboogaart, M. Admission Hyperglycemia and Outcome after Intravenous Thrombolysis: Is There a Difference among the Stroke-Subtypes? BMC Neurol. 2016, 16, 104. [Google Scholar] [CrossRef] [Green Version]
- Uyttenboogaart, M.; Koch, M.W.; Stewart, R.E.; Vroomen, P.C.; Luijckx, G.-J.; De Keyser, J. Moderate Hyperglycaemia Is Associated with Favourable Outcome in Acute Lacunar Stroke. Brain 2007, 130, 1626–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, C.S.; Hildreth, A.J.; Alberti, G.K.M.M.; O’Connell, J.E. Poststroke Hyperglycemia. Stroke 2004, 35, 122–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, D.; Zhong, P.; Ye, X.; Wu, D. Persistent Hyperglycemia Is a Useful Glycemic Pattern to Predict Stroke Mortality: A Systematic Review and Meta-Analysis. BMC Neurol. 2021, 21, 487. [Google Scholar] [CrossRef] [PubMed]
- Yong, M.; Kaste, M. Dynamic of Hyperglycemia as a Predictor of Stroke Outcome in the ECASS-II Trial. Stroke 2008, 39, 2749–2755. [Google Scholar] [CrossRef] [Green Version]
- Krinsley, J.S.; Meyfroidt, G.; van den Berghe, G.; Egi, M.; Bellomo, R. The Impact of Premorbid Diabetic Status on the Relationship between the Three Domains of Glycemic Control and Mortality in Critically Ill Patients. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 151–160. [Google Scholar] [CrossRef]
- Borzì, V.; Fontanella, A. The Clinical Impact of Hypoglycemia in Hospitalized Patients. Ital. J. Med. 2015, 9, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, B.; Ortega-Casarrubios, M.d.L.Á.; Díez-Tejedor, E. Letter by Fuentes et al. Regarding Article, “J-Shaped Association between Serum Glucose and Functional Outcome in Acute Ischemic Stroke”. Stroke 2011, 42, e362. [Google Scholar] [CrossRef] [Green Version]
- Bamford, J.; Sandercock, P.; Dennis, M.; Warlow, C.; Burn, J. Classification and Natural History of Clinically Identifiable Subtypes of Cerebral Infarction. Lancet 1991, 337, 1521–1526. [Google Scholar] [CrossRef]
- Adams, H.P.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E. Classification of Subtype of Acute Ischemic Stroke. Definitions for Use in a Multicenter Clinical Trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, B.; Ntaios, G.; Putaala, J.; Thomas, B.; Turc, G.; Díez-Tejedor, E. European Stroke Organisation (ESO) Guidelines on Glycaemia Management in Acute Stroke. Eur. Stroke J. 2018, 3, 5–21. [Google Scholar] [CrossRef]
- Seaquist, E.R.; Anderson, J.; Childs, B.; Cryer, P.; Dagogo-Jack, S.; Fish, L.; Heller, S.R.; Rodriguez, H.; Rosenzweig, J.; Vigersky, R.; et al. Hypoglycemia and Diabetes: A Report of a Workgroup of the American Diabetes Association and the Endocrine Society. J. Clin. Endocrinol. Metab. 2013, 98, 1845–1859. [Google Scholar] [CrossRef]
- American Diabetes Association Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes 2018. Diabetes Care 2018, 41, S13–S27. [CrossRef] [Green Version]
- Lipska, K.J.; De Rekeneire, N.; Van Ness, P.H.; Johnson, K.C.; Kanaya, A.; Koster, A.; Strotmeyer, E.S.; Goodpaster, B.H.; Harris, T.; Gill, T.M.; et al. Identifying Dysglycemic States in Older Adults: Implications of the Emerging Use of Hemoglobin A1c. J. Clin. Endocrinol. Metab. 2010, 95, 5289–5295. [Google Scholar] [CrossRef]
- Kernan, W.N. Screening for Diabetes after Stroke and Transient Ischemic Attack. Cerebrovasc. Dis. 2013, 36, 290–291. [Google Scholar] [CrossRef]
- van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.; van Gijn, J. Interobserver Agreement for the Assessment of Handicap in Stroke Patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Lyden, P. Using the National Institutes of Health Stroke Scale: A Cautionary Tale. Stroke 2017, 48, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Seners, P.; Baron, J.-C. Revisiting ‘Progressive Stroke’: Incidence, Predictors, Pathophysiology, and Management of Unexplained Early Neurological Deterioration Following Acute Ischemic Stroke. J. Neurol. 2018, 265, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Lindley, R.I.; Wardlaw, J.M.; Whiteley, W.N.; Cohen, G.; Blackwell, L.; Murray, G.D.; Sandercock, P.A.G.; Trial Steering Committee; Baigent, C.; Chadwick, D.; et al. Alteplase for Acute Ischemic Stroke: Outcomes by Clinically Important Subgroups in the Third International Stroke Trial. Stroke 2015, 46, 746–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrell, F.E., Jr. rms: Regression Modeling Strategies (R package version 6.3-0). 2022. Available online: https//CRAN.R-project.org/package=rms (accessed on 20 February 2022).
- Marik, P.E.; Bellomo, R. Stress Hyperglycemia: An Essential Survival Response! Crit. Care 2013, 17, 305. [Google Scholar] [CrossRef] [Green Version]
- Klingbeil, K.D.; Koch, S.; Dave, K.R. Potential Link between Post-Acute Ischemic Stroke Exposure to Hypoglycemia and Hemorrhagic Transformation. Int. J. Stroke 2020, 15, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Liebeskind, D.S. Collateral Circulation. Stroke 2003, 34, 2279–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-T.; Liebeskind, D.S.; Jahan, R.; Menon, B.K.; Goyal, M.; Nogueira, R.G.; Pereira, V.M.; Gralla, J.; Saver, J.L. Impact of Hyperglycemia According to the Collateral Status on Outcomes in Mechanical Thrombectomy. Stroke 2018, 49, 2706–2714. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Serra, R.; Martínez-Alonso, E.; Alcázar, A.; Chioua, M.; Marco-Contelles, J.; Martínez-Murillo, R.; Ramos, M.; Guinea, G.V.; González-Nieto, D. Postischemic Neuroprotection of Aminoethoxydiphenyl Borate Associates Shortening of Peri-Infarct Depolarizations. Int. J. Mol. Sci. 2022, 23, 7449. [Google Scholar] [CrossRef] [PubMed]
- Bahniwal, M.; Little, J.P.; Klegeris, A. High Glucose Enhances Neurotoxicity and Inflammatory Cytokine Secretion by Stimulated Human Astrocytes. Curr. Alzheimer Res. 2017, 14, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Ginsberg, M.D.; Busto, R.; Li, L. Hyperglycemia Triggers Massive Neutrophil Deposition in Brain Following Transient Ischemia in Rats. Neurosci. Lett. 2000, 278, 1–4. [Google Scholar] [CrossRef]
- Smith, L.; Chakraborty, D.; Bhattacharya, P.; Sarmah, D.; Koch, S.; Dave, K.R. Exposure to Hypoglycemia and Risk of Stroke. Ann. N. Y. Acad. Sci. 2018, 1431, 25–34. [Google Scholar] [CrossRef]
- Cerecedo-Lopez, C.D.; Cantu-Aldana, A.; Patel, N.J.; Aziz-Sultan, M.A.; Frerichs, K.U.; Du, R. Insulin in the Management of Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. World Neurosurg. 2020, 136, e514–e534. [Google Scholar] [CrossRef]
- Bruno, A.; Kent, T.A.; Coull, B.M.; Shankar, R.R.; Saha, C.; Becker, K.J.; Kissela, B.M.; Williams, L.S. Treatment of Hyperglycemia in Ischemic Stroke (THIS): A Randomized Pilot Trial. Stroke 2008, 39, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Johnston, K.C.; Hall, C.E.; Kissela, B.M.; Bleck, T.P.; Conaway, M.R. GRASP Investigators Glucose Regulation in Acute Stroke Patients (GRASP) Trial: A Randomized Pilot Trial. Stroke 2009, 40, 3804–3809. [Google Scholar] [CrossRef] [Green Version]
- Johnston, K.C.; Bruno, A.; Pauls, Q.; Hall, C.E.; Barrett, K.M.; Barsan, W.; Fansler, A.; Van de Bruinhorst, K.; Janis, S.; Durkalski-Mauldin, V.L.; et al. Intensive vs. Standard Treatment of Hyperglycemia and Functional Outcome in Patients with Acute Ischemic Stroke: The SHINE Randomized Clinical Trial. JAMA 2019, 322, 326–335. [Google Scholar] [CrossRef]
- McCormick, M.; Hadley, D.; McLean, J.R.; Macfarlane, J.A.; Condon, B.; Muir, K.W. Randomized, Controlled Trial of Insulin for Acute Poststroke Hyperglycemia. Ann. Neurol. 2010, 67, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.S.; Hildreth, A.J.; Sandercock, P.A.; O’Connell, J.E.; Johnston, D.E.; Cartlidge, N.E.F.; Bamford, J.M.; James, O.F.; Alberti, K.G.M.M. GIST Trialists Collaboration Glucose-Potassium-Insulin Infusions in the Management of Post-Stroke Hyperglycaemia: The UK Glucose Insulin in Stroke Trial (GIST-UK). Lancet Neurol. 2007, 6, 397–406. [Google Scholar] [CrossRef]
- Zhu, C.Z.; Auer, R.N. Optimal Blood Glucose Levels While Using Insulin to Minimize the Size of Infarction in Focal Cerebral Ischemia. J. Neurosurg. 2004, 101, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, B.; Castillo, J.; San José, B.; Leira, R.; Serena, J.; Vivancos, J.; Dávalos, A.; Nuñez, A.G.; Egido, J.; Díez-Tejedor, E.; et al. The Prognostic Value of Capillary Glucose Levels in Acute Stroke: The GLycemia in Acute Stroke (GLIAS) Study. Stroke 2009, 40, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Ntaios, G.; Egli, M.; Faouzi, M.; Michel, P. J-Shaped Association between Serum Glucose and Functional Outcome in Acute Ischemic Stroke. Stroke 2010, 41, 2366–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nukui, S.; Akiyama, H.; Soga, K.; Takao, N.; Tsuchihashi, Y.; Iijima, N.; Hasegawa, Y. Risk of Hyperglycemia and Hypoglycemia in Patients with Acute Ischemic Stroke Based on Continuous Glucose Monitoring. J. Stroke Cerebrovasc. Dis. 2019, 28, 104346. [Google Scholar] [CrossRef]
- Rinkel, L.A.; Nguyen, T.T.M.; Guglielmi, V.; Groot, A.E.; Posthuma, L.; Roos, Y.B.W.E.M.; Majoie, C.B.L.M.; Lycklama, À.; Nijeholt, G.J.; Emmer, B.J.; et al. High Admission Glucose Is Associated With Poor Outcome After Endovascular Treatment for Ischemic Stroke. Stroke 2020, 51, 3215–3223. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, C.; Jung, K.-H.; Kwon, H.-M.; Heo, S.H.; Kim, B.J.; Kim, Y.D.; Kim, J.-M.; Lee, S.-H. Range of Glucose as a Glycemic Variability and 3–Month Outcome in Diabetic Patients with Acute Ischemic Stroke. PLoS ONE 2017, 12, e0183894. [Google Scholar] [CrossRef] [Green Version]
- Abdelhafiz, A.H.; Rodríguez-Mañas, L.; Morley, J.E.; Sinclair, A.J. Hypoglycemia in Older People—A Less Well Recognized Risk Factor for Frailty. Aging Dis. 2015, 6, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Cannistraro, R.J.; Badi, M.; Eidelman, B.H.; Dickson, D.W.; Middlebrooks, E.H.; Meschia, J.F. CNS Small Vessel Disease: A Clinical Review. Neurology 2019, 92, 1146–1156. [Google Scholar] [CrossRef]
- Arboix, A.; Massons, J.; García-Eroles, L.; Targa, C.; Comes, E.; Parra, O. Clinical Predictors of Lacunar Syndrome Not Due to Lacunar Infarction. BMC Neurol. 2010, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norrving, B. Long-Term Prognosis after Lacunar Infarction. Lancet Neurol. 2003, 2, 238–245. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Non-Lacunar (n = 3177) | Lacunar (n = 834) | p Value |
---|---|---|---|
Demographic and clinical data | |||
Age, years | 80 (71–86) | 76 (67–84) | <0.001 |
Male sex | 1426 (45.8) | 471 (56.5) | <0.001 |
Prestroke disability | 987 (31.1) | 223 (26.7) | 0.015 |
Diabetes | 901 (28.4) | 260 (31.2) | 0.111 |
Admission NIHSS score | 8 (3–17) | 3 (2–5) | <0.001 |
Reperfusion therapy | 595 (18.7) | 83 (10.0) | < 0.001 |
Glucose measurements | |||
Admission RSG, mmol/L | 6.7 (5.7–8.4) | 6.2 (5.4–7.7) | <0.001 |
FSG, mmol/L | 5.2 (4.5–6.4) | 4.9 (4.3–5.6) | <0.001 |
Early glycemic profile, mmol/L | −1.4 (−0.5–−2.6) | −1.4 (−0.6–−2.4) | 0.697 |
Early glycemic profile categories | <0.001 | ||
Hypoglycemia | 227 (7.2) | 85 (10.2) | |
Persistent normoglycemia | 1901 (59.8) | 545 (65.4) | |
Decreasing hyperglycemia | 654 (20.6) | 128 (15.3) | |
Persistent hyperglycemia | 318 (10.0) | 65 (7.8) | |
Delayed hyperglycemia | 77 (2.4) | 11 (1.3) | |
Outcome | |||
Early neurological deterioration | 201 (6.3) | 19 (2.3) | <0.001 |
NIHSS > 24 at Stroke Unit discharge | 92 (2.9) | 1 (0.1) | 0.001 |
1-month mortality | 427 (14.9) | 14 (1.7) | <0.001 |
Composite poor outcome | 644 (20.3) | 32 (3.8) | <0.001 |
Hypoglycemia | Persistent Normoglycemia | Decreasing Hyperglycemia | Persistent Hyperglycemia | Delayed Hyperglycemia | p-Value | |
---|---|---|---|---|---|---|
Non-lacunar | 39/227 (17.2) | 309/1901 (16.3) | 153/654 (23.4) | 105/318 (33.0) | 38/77 (49.4) | <0.001 |
Lacunar | 6/85 (7.1) | 19/545 (3.5) | 6/128 (4.7) | 1/65 (1.5) | 0/11 (0.0) | 0.380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forti, P.; Maioli, F. The Prognostic Significance of Early Glycemic Profile in Acute Ischemic Stroke Depends on Stroke Subtype. J. Clin. Med. 2023, 12, 1794. https://doi.org/10.3390/jcm12051794
Forti P, Maioli F. The Prognostic Significance of Early Glycemic Profile in Acute Ischemic Stroke Depends on Stroke Subtype. Journal of Clinical Medicine. 2023; 12(5):1794. https://doi.org/10.3390/jcm12051794
Chicago/Turabian StyleForti, Paola, and Fabiola Maioli. 2023. "The Prognostic Significance of Early Glycemic Profile in Acute Ischemic Stroke Depends on Stroke Subtype" Journal of Clinical Medicine 12, no. 5: 1794. https://doi.org/10.3390/jcm12051794
APA StyleForti, P., & Maioli, F. (2023). The Prognostic Significance of Early Glycemic Profile in Acute Ischemic Stroke Depends on Stroke Subtype. Journal of Clinical Medicine, 12(5), 1794. https://doi.org/10.3390/jcm12051794