Predict the Effects of Dolutegravir (DTG) Plus Lamivudine (3TC) on Immunological Responses in People Living with HIV (PLWHIV)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Main Objectives
2.3. Definition of the Presence or Not of Immune Response
2.4. Variables Included in the Model
2.5. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cahn, P.; Madero, J.S.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.C.; Rockstroh, J.K.; Girard, P.M.; Sievers, J.; et al. Durable Efficacy of Dolutegravir Plus Lamivudine in Antiretroviral Treatment-Naive Adults With HIV-1 Infection: 96-Week Results From the GEMINI-1 and GEMINI-2 Randomized Clinical Trials. J. Acquir. Immune Defic. Syndr. 2020, 83, 310–318. [Google Scholar] [CrossRef]
- Wohl, D.A.; Yazdanpanah, Y.; Baumgarten, A.; Clarke, A.; Thompson, M.A.; Brinson, C.; Hagins, D.; Ramgopal, M.N.; Antinori, A.; Wei, X.; et al. Bictegravir combined with emtricitabine and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection: Week 96 results from a randomized, double-blind, multicentre, phase 3, non-inferiority trial. Lancet HIV 2019, 6, e355–e363. [Google Scholar] [CrossRef] [PubMed]
- Aboud, M.; Orkin, C.; Podzamczer, D.; Bogner, J.R.; Baker, D.; Khuong-Josses, M.A.; Parks, D.; Angelis, K.; Kahl, L.P.; Blair, E.A.; et al. Efficacy and safety of dolutegravir-rilpivirine for maintenance of virological suppression in adults with HIV-1: 100-week data from the randomized, open-label, phase 3 SWORD-1, and SWORD-2 studies. Lancet HIV 2019, 6, e576–e587. [Google Scholar] [CrossRef]
- Llibre, J.M.; Brites, C.; Cheng, C.Y.; Osiyemi, O.; Galera, C.; Hocqueloux, L.; Maggiolo, F.; Degen, O.; Taylor, S.; Blair, E.; et al. Efficacy and Safety of Switching to the 2-Drug Regimen Dolutegravir/Lamivudine Versus Continuing a 3- or 4-Drug Regimen for Maintaining Virologic Suppression in Adults Living with HIV-1: Week 48 Results From the Phase 3, Non-inferiority SALSA Randomized Trial. Clin. Infect. Dis. 2022, ciac130. [Google Scholar] [CrossRef]
- Troya, J.; Dueñas, C.; Irazola, I.; de Los Santos, I.; de la Fuente, S.; Gil, D.; Hernández, C.; Galindo, M.J.; Gómez, J.; Delgado, E.; et al. Dolutegravir plus rilpivirine: Benefits beyond viral suppression: DORIPEX retrospective study. Medicine 2022, 101, e29252. [Google Scholar] [CrossRef] [PubMed]
- Gaardbo, J.C.; Hartling, H.J.; Gerstoft, J.; Nielsen, S.D. Incomplete immune recovery in HIV infection: Mechanisms, relevance for clinical care, and possible solutions. Clin. Dev. Immunol. 2012, 2012, 670957. [Google Scholar] [CrossRef]
- Massanella, M.; Negredo, E.; Clotet, B.; Blanco, J. Immunodiscordant responses to HAART--mechanisms and consequences. Expert Rev. Clin. Immunol. 2013, 9, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Villar, S.; Sainz, T.; Lee, S.A.; Hunt, P.W.; Sinclair, E.; Shacklett, B.L.; Ferre, A.L.; Hayes, T.L.; Somsouk, M.; Hsue, P.Y.; et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014, 10, e1004078. [Google Scholar] [CrossRef] [PubMed]
- Lewden, C.; Chene, G.; Morlat, P.; Raffi, F.; Dupon, M.; Dellamonica, P.; Pellegrin, J.L.; Katlama, C.; Dabis, F.; Leport, C. HIV-infected adults with a CD4 cell count greater than 500 cells/mm3 on long-term combination antiretroviral therapy reach same mortality rates as the general population. J. Acquir. Immune Defic. Syndr. 2007, 46, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Aksak-Wąs, B.J.; Kowalska, J.D.; Ząbek, P.; Serwin, K.; Rafalska-Kosior, M.; Gołąb, J.; Chober, D.; Skonieczna-Żydecka, K.; Hackiewicz, M.; Parczewski, M. Immune restoration affects 10-year survival in people living with HIV/AIDS. HIV Med. 2022. early view. [Google Scholar] [CrossRef] [PubMed]
- May, M.; Gompels, M.; Delpech, V.; Porter, K.; Post, F.; Johnson, M.; Dunn, D.; Palfreeman, A.; Gilson, R.; Gazzard, B.; et al. Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK Collaborative HIV Cohort (UK CHIC) Study. BMJ 2011, 343, d6016. [Google Scholar] [CrossRef] [PubMed]
- Okulicz, J.F.; Le, T.D.; Agan, B.K.; Camargo, J.F.; Landrum, M.L.; Wright, E.; Dolan, M.J.; Ganesan, A.; Ferguson, T.M.; Smith, D.M.; et al. Influence of the timing of antiretroviral therapy on the potential for normalization of immune status in human immunodeficiency virus 1-infected individuals. JAMA Intern. Med. 2015, 175, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, G.R.; Furrer, H.; Ledergerber, B.; Perrin, L.; Opravil, M.; Vernazza, P.; Cavassini, M.; Bernasconi, E.; Rickenbach, M.; Hirschel, B.; et al. Characteristics, determinants, and clinical relevance of CD4 T cell recovery to <500 cells/microL in HIV type 1-infected individuals receiving potent antiretroviral therapy. Clin. Infect. Dis. 2005, 41, 361–372. [Google Scholar] [CrossRef]
- Greub, G.; Ledergerber, B.; Battegay, M.; Grob, P.; Perrin, L.; Furrer, H.; Burgisser, P.; Erb, P.; Boggian, K.; Piffaretti, J.C.; et al. Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: The Swiss HIV Cohort Study. Lancet 2000, 356, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Burgos, J.; Moreno-Fornés, S.; Reyes-Urueña, J.; Bruguera, A.; Martín-Iguacel, R.; Raventos, B.; Llibre, J.M.; Imaz, A.; Peraire, J.; Orti, A.J.; et al. Mortality and immunovirological outcomes in patients with advanced HIV disease on their first antiretroviral treatment: Differential impact of antiretroviral regimens. J. Antimicrob. Chemother. 2022, 78, dkac361. [Google Scholar] [CrossRef] [PubMed]
- Engsig, F.N.; Gerstoft, J.; Kronborg, G.; Larsen, C.S.; Pedersen, G.; Røge, B.; Jensen, J.; Nielsen, L.N.; Obel, N. Long-term mortality in HIV patients virally suppressed for more than three years with incomplete CD4 recovery: A cohort study. BMC Infect. Dis. 2010, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Mussini, C.; Lorenzini, P.; Cozzi-Lepri, A.; Lapadula, G.; Marchetti, G.; Nicastri, E.; Cingolani, A.; Lichtner, M.; Antinori, A.; Gori, A.; et al. CD4/CD8 ratio normalisation and non-AIDS-related events in individuals with HIV who achieve viral load suppression with antiretroviral therapy: An observational cohort study. Lancet HIV 2015, 2, e98–e106. [Google Scholar] [CrossRef]
- INSIGHT START Study Group; Lundgren, J.D.; Babiker, A.G.; Gordin, F.; Emery, S.; Grund, B.; Sharma, S.; Avihingsanon, A.; Cooper, D.A.; Fätkenheuer, G.; et al. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N. Engl. J. Med. 2015, 373, 795–807. [Google Scholar] [CrossRef]
- Taramasso, L.; Falletta, A.; Ricci, E.; Orofino, G.; Squillace, N.; Menzaghi, B.; De Socio, G.V.; Molteni, C.; Pellicanò, G.F.; Gulminetti, R.; et al. Trajectories of CD4+/CD8+ T-Cells Ratio 96 Weeks after Switching to Dolutegravir-Based Two-Drug Regimens: Results from a Multicenter Prospective Cohort Study. Viruses 2022, 14, 2315. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Rodríguez, M.; Muñoz-Muela, E.; Serna-Gallego, A.; Milanés-Guisado, Y.; Praena-Fernández, J.M.; Álvarez-Ríos, A.I.; Herrera-Hidalgo, L.; Domínguez, M.; Lozano, C.; Romero-Vazquez, G.; et al. Immunological and inflammatory changes after simplifying to dual therapy in virologically suppressed HIV-infected patients through week 96 in a randomized trial. Clin. Microbiol. Infect. 2022, 28, e9–e1151. [Google Scholar] [CrossRef]
- Han, W.M.; Ubolyam, S.; Apornpong, T.; Kerr, S.J.; Hansasuta, P.; Gatechompol, S.; Maekanantawat, W.; Ruxrungtham, K.; Phanuphak, P.; Ananworanich, J.; et al. Characteristics of suboptimal immune response after initiating antiretroviral therapy among people living with HIV with a pre-treatment CD4 T cell count <200 cells/mm3 in Thailand. J. Virus Erad. 2020, 6, 100005. [Google Scholar] [CrossRef]
- Mohamad Isa, I.I.; Abu Bakar, S.; Ab Rahman, A.K. Ethnicity as a predictor of immune reconstitution among Malaysian HIV-positive patients treated with highly active antiretroviral therapy. J Med. Virol. 2020, 92, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Zhu, K.; Xu, Q.; Ma, Y.; Li, P.; Jia, H.; Jiang, Q.; Wang, Y.; Wu, Z.; Wang, D.; Guo, H.; et al. Suboptimal immune recovery and associated factors among people living with HIV/AIDS on second-line antiretroviral therapy in central China: A retrospective cohort study. J. Med. Virol. 2022, 94, 4975–4982. [Google Scholar] [CrossRef] [PubMed]
- Vassallo, M.; Durant, J.; Fabre, R.; Ticchioni, M.; Lotte, L.; Sindt, A.; Puchois, A.; De Monte, A.; Cezar, R.; Corbeau, P.; et al. Switching to a Dual-Drug Regimen in HIV-Infected Patients Could Be Associated With Macrophage Activation? Front. Med. 2021, 8, 712880. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 1032) | Female (n = 221) | Male (n = 811) | p-Value | Non-AIDS (n = 634) ^ | AIDS (n = 118) | p-Value | |
---|---|---|---|---|---|---|---|
Demographics | |||||||
Age, median (IQR) | 10.0 [4.0, 22.0] | 11.0 [5.0, 23.0] | 10.0 [4.0, 20.0] | <0.07 | 9.0 [4.0, 20.0] | 11.0 [4.0, 22.0] | <0255 |
Time of HIV diagnosis, median (IQR) | 37.0 [27.0, 47.0] | 38.0 [29.0, 49.0] | 36.0 [26.0, 46.0] | 0.126 | 34.0 [24.0, 45.0] | 45.5 [32.0, 53.8] | <0.001 |
Male, n (%) | 811 (78.6) | - | - | <0.001 | 512 (80.8) | 89 (75.4) | 0.229 |
Spanish nationality, n (%) | 764 (76.9) | 156 (73.2) | 608 (77.8) | 0.186 | 405 (66.9) | 97 (82.2) | 0.001 |
Comorbidities, n (%) | |||||||
Arterial hypertension | 119 (11.5) | 26 (11.8) | 93 (11.5) | 0.997 | 83 (13.1) | 34 (28.8) | <0.001 |
Diabetes | 50 (4.8) | 9 (4.1) | 41 (5.1) | 0.67 | 35 (5.5) | 15 (12.7) | 0.007 |
Dyslipidemia | 211 (20.4) | 48 (21.7) | 163 (20.1) | 0.663 | 168 (26.5) | 41 (34.7) | 0.085 |
Heart Disease | 29 (2.8) | 4 (1.8) | 25 (3.1) | 0.432 | 19 (3.0) | 9 (7.6) | 0.030 |
Cerebrovascular disease | 9 (0.9) | 2 (0.9) | 7 (0.9) | 1.000 | 4 (0.6) | 5 (4.2) | 0.004 |
Peripheral vascular disease | 11 (1.1) | 2 (0.9) | 9 (1.1) | 1.000 | 8 (1.3) | 3 (2.5) | 0.518 |
Kidney failure | 40 (3.9) | 6 (2.7) | 34 (4.2) | 0.417 | 28 (4.4) | 12 (10.2) | 0.020 |
Osteoporosis/osteopenia | 31 (3.0) | 13 (5.9) | 18 (2.2) | 0.009 | 24 (3.8) | 7 (5.9) | 0.409 |
Chronic pulmonary disease | 48 (4.7) | 14 (6.3) | 34 (4.2) | 0.246 | 36 (5.7) | 11 (9.3) | 0.196 |
Psychiatric disorders | 78 (7.6) | 23 (10.4) | 55 (6.8) | 0.096 | 60 (9.5) | 17 (14.4) | 0.144 |
Cancer | 14 (1.4) | 5 (2.3) | 9 (1.1) | 0.325 | 10 (1.6) | 4 (3.4) | 0.334 |
Chronic liver disease | 106 (10.3) | 30 (13.6) | 76 (9.4) | 0.089 | 71 (11.2) | 35 (29.7) | <0.001 |
Number of comorbidities, n (%) | |||||||
One | 617 (59.8) | 126 (57.0) | 491 (60.5) | 0.439 | 315 (49.7) | 26 (22.0) | <0.001 |
Two | 220 (21.3) | 45 (20.4) | 175 (21.6) | 181 (28.5) | 37 (31.4) | ||
Three | 105 (10.2) | 24 (10.9) | 81 (10.0) | 79 (12.5) | 25 (21.2) | ||
Four | 54 (5.2) | 17 (7.7) | 37 (4.6) | 35 (5.5) | 18 (15.3) | ||
Five | 29 (2.8) | 8 (3.6) | 21 (2.6) | 19 (3.0) | 10 (8.5) | ||
Six | 4 (0.4) | 0 (0.0) | 4 (0.5) | 4 (0.6) | 0 (0.0) | ||
HIV infection | |||||||
Transmission pathways, n (%) | |||||||
Sexual intercourse | 684 (67.8) | 118 (53.6) | 566 (71.7) | <0.001 | 426 (69.4) | 64 (54.7) | <0.001 |
Intravenous drug injectors | 191 (18.9) | 61 (27.7) | 130 (16.5) | 84 (13.7) | 35 (29.9) | ||
Immune status, median (IQR) | |||||||
Baseline CD4+ (cells/mm3) | 753.0 [549.0, 977.0] | 763.0 [590.5, 985.0] | 744.0 [543.0, 975.8] | 0.358 | 786.5 [596.5, 1005.8] | 604.0 [404.5, 933.0] | <0.001 |
24 weeks CD4+ (cells/mm3) | 770.5 [592.8, 980.0] | 785.0 [601.0, 986.5] | 766.0 [592.0, 970.8] | 0.482 | 808.0 [630.5, 1000.5] | 644.0 [449.0, 875.5] | <0.001 |
48 weeks CD4+ (cells/mm3) | 782.0 [574.0, 1004.0] | 779.0 [606.0, 978.0] | 784.5 [567.0, 1012.5] | 0.996 | 801.0 [591.5, 1029.5] | 628.0 [424.2, 866.0] | <0.001 |
96 weeks CD4+ (cells/mm3) | 823.0 [613.2, 1048.0] | 802.0 [652.0, 1037.0] | 839.0 [604.5, 1051.0] | 0.854 | 851.0 [678.0, 1125.0] | 649.0 [440.5, 856.2] | <0.001 |
Baseline CD8+ (cells/mm3) | 867.5 [630.0, 1179.5] | 805.0 [589.5, 1084.5] | 878.0 [653.0, 1196.5] | 0.048 | 875.0 [637.5, 1199.5] | 827.0 [609.0, 1100.0] | 0.141 |
24 weeks CD8+ (cells/mm3) | 897.0 [656.0, 1220.0] | 792.0 [603.0, 1188.5] | 913.0 [674.0, 1247.0] | 0.020 | 899.5 [656.8, 1241.0] | 871.0 [635.0, 1134.0] | 0.517 |
48 weeks CD8+ (cells/mm3) | 908.0 [638.5, 1229.8] | 817.0 [533.0, 1119.0] | 922.0 [661.5, 1248.5] | 0.020 | 900.0 [635.5, 1220.5] | 959.5 [603.2, 1224.8] | 0.651 |
96 weeks CD8+ (cells/mm3) | 906.0 [628.5, 1241.5] | 922.0 [625.0, 1222.5] | 906.0 [634.5, 1268.5] | 0.903 | 956.0 [672.0, 1246.0] | 862.0 [484.5, 1152.5] | 0.094 |
Baseline CD4+/CD8+ (cells/mm3) | 0.9 [0.6, 1.2] | 0.9 [0.7, 1.4] | 0.9 [0.6, 1.2] | 0.033 | 0.9 [0.7, 1.3] | 0.8 [0.5, 1.1] | 0.003 |
24 weeks CD4+/CD8+ (cells/mm3) | 0.9 [0.6, 1.2] | 1.0 [0.7, 1.3] | 0.8 [0.6, 1.2] | 0.011 | 0.9 [0.7, 1.2] | 0.7 [0.5, 1.1] | 0.001 |
48 weeks CD4+/CD8+ (cells/mm3) | 0.9 [0.6, 1.2] | 1.0 [0.7, 1.4] | 0.9 [0.6, 1.2] | 0.034 | 0.9 [0.7, 1.3] | 0.7 [0.5, 1.0] | <0.001 |
96 weeks CD4+/CD8+ (cells/mm3) | 0.9 [0.7, 1.3] | 0.9 [0.7, 1.3] | 0.9 [0.7, 1.3] | 0.770 | 0.9 [0.7, 1.4] | 0.8 [0.7, 1.2] | 0.198 |
HIV diagnosis n (%) | |||||||
Previous treatments, n (%) ^^ | |||||||
ABC/3TC | 384 (37.2) | 77 (34.8) | 307 (37.9) | 0.458 | 319 (50.3) | 64 (54.2) | 0.495 |
FTC/TDF | 459 (44.5) | 96 (43.4) | 363 (44.8) | 0.784 | 367 (57.9) | 90 (76.3) | <0.001 |
FTC/TAF | 149 (14.4) | 22 (10.0) | 127 (15.7) | 0.042 | 131 (20.7) | 18 (15.3) | 0.220 |
PI | 271 (26.3) | 79 (35.7) | 192 (23.7) | <0.001 | 202 (31.9) | 66 (55.9) | <0.001 |
INSTI | 475 (46.0) | 82 (37.1) | 393 (48.5) | 0.003 | 407 (64.2) | 67 (56.8) | 0.153 |
NNRTI | 340 (32.9) | 82 (37.1) | 258 (31.8) | 0.161 | 270 (42.6) | 67 (56.8) | 0.006 |
Reasons for switching, n (%) | |||||||
Simplification | 168 (16.3) | 45 (20.4) | 123 (15.2) | 0.080 | 119 (18.8) | 48 (40.7) | <0.001 |
Toxicity | 61 (5.9) | 22 (10.0) | 39 (4.8) | 0.007 | 48 (7.6) | 13 (11.0) | 0.282 |
Transition therapy to injectable drugs | 587 (56.9) | 105 (47.5) | 482 (59.4) | 0.002 | 493 (77.8) | 93 (78.8) | 0.895 |
Drug interaction | 9 (0.9) | 1 (0.5) | 8 (1.0) | 0.727 | 9 (1.4) | 0 (0.0) | 0.400 |
Simplicity | 33 (3.2) | 5 (2.3) | 28 (3.5) | 0.499 | 24 (3.8) | 8 (6.8) | 0.218 |
Cost | 26 (2.5) | 5 (2.3) | 21 (2.6) | 0.974 | 13 (2.1) | 13 (11.0) | <0.001 |
Coinfections, n (%) | |||||||
HBV diagnosis | 192 (27.9) | 36 (27.1) | 156 (28.1) | 0.904 | 139 (24.3) | 51 (44.0) | <0.001 |
HBsAg positive | 10 (5.3) | 1 (2.8) | 9 (5.9) | 0.738 | 4 (2.9) | 6 (11.8) | 0.043 |
HCV positive ELISA | 160 (23.0) | 41 (30.4) | 119 (21.2) | 0.032 | 111 (19.2) | 49 (42.2) | <0.001 |
HCV positive PCR | 52 (34.7) | 16 (42.1) | 36 (32.1) | 0.359 | 26 (25.5) | 26 (54.2) | 0.001 |
Viral load < 50 copies/mL, n (%) | |||||||
Baseline | 943 (96.0) | 206 (95.4) | 737 (96.2) | 0.716 | 576 (95.8) | 107 (96.4) | 0.991 |
24 weeks | 889 (96.6) | 196 (97.5) | 693 (96.4) | 0.574 | 532 (96.7) | 100 (95.2) | 0.638 |
48 weeks | 743 (97.5) | 162 (96.4) | 581 (97.8) | 0.463 | 393 (97.3) | 81 (94.2) | 0.258 |
96 weeks | 417 (98.3) | 98 (97.0) | 319 (98.8) | 0.456 | 126 (97.7) | 38 (95.0) | 0.735 |
Variable | OR | IC 95% | p-Value |
---|---|---|---|
Model 1. To achieve CD4 ≥ 500 cells/mm3 at 24 weeks in PLWHIV to be treated DTG + 3TC and with basal CD4 values < 500 cells/mm3 [N = 146] | |||
5–9 years of HIV diagnosis | 0.907 | 0.223–3.684 | 0.184 |
Ten or more years of HIV diagnosis | 0.391 | 0.120–1.275 | 0.156 |
Age: > 50 years old | 0.371 | 0.141–0.977 | 0.045 |
NNRTI | 0.349 | 0.127–0.959 | 0.041 |
AIDS | 0.299 | 0.097–0.918 | 0.035 |
Baseline CD4+ ≥ 30% | 3.295 | 0.856–12.675 | 0.083 |
Model 2. To achieve CD4 ≥ 30% at 24 weeks in PLWHIV to be treated DTG + 3TC and with basal %CD4 < 30% [N = 209] | |||
AIDS | 0.244 | 0.055–1.094 | 0.065 |
FTC/TDF | 0.490 | 0.232–1.035 | 0.062 |
Baseline CD4+ ≥ 500 cells/mm3 | 2.433 | 0.985–6.006 | 0.054 |
Baseline CD4/CD8 ≥ 0.9 | 3.656 | 1.309–10.214 | 0.013 |
Model 3. To achieve CD8 ≤ 1000 cells/mm3 at 24 weeks in PLWHIV to be treated DTG + 3TC and with basal CD8 > 1100 cells/mm3 [N = 226] | |||
INSTI | 2.013 | 0.950–4.265 | 0.068 |
Comorbidity | 0.487 | 0.251–0.944 | 0.033 |
Baseline CD4/CD8 ratio ≥ 0.9 | 1.955 | 0.900–4.247 | 0.090 |
Model 4. To achieve CD4/CD8 ≥ 0.9 at 24 weeks in PLWHIV to be treated DTG + 3TC and with basal CD4/CD8 < 0.9 [N = 272] | |||
NNRTI | 2.119 | 0.906–4.955 | 0.083 |
Baseline CD4 ≥ 30% | 0.336 | 0.111–1.019 | 0.054 |
Baseline CD8 ≤ 1000 cells/mm3 | 0.326 | 0.129–0.823 | 0.018 |
Model 5. To achieve CD4 < 500 cells/mm3 at 24 weeks in PLWHIV to be treated DTG + 3TC with basal CD4 values ≥ 500 cells/mm3 [N = 489] | |||
Age: > 50 years old | 2.688 | 0.995–7.266 | 0.051 |
Baseline CD4 ≥ 30% | 0.411 | 0.157–1.077 | 0.070 |
Baseline CD8 ≤ 1000 cells/mm3 | 4.212 | 1.305–13.591 | 0.016 |
Model 6. To achieve CD4 < 30% at 24 weeks in PLWHIV to be treated DTG + 3TC and with basal ≥ %CD4 30% [N = 361] | |||
AIDS | 2.300 | 0.993–5.327 | 0.052 |
Baseline CD4 ≥ 500 cells/mm3 | 0.198 | 0.060–0.653 | 0.040 |
Baseline CD4/CD8 ≥ 0.9 | 0.209 | 0.104–0.418 | <0.001 |
Model 7. To achieve CD8 > 1000 cells/mm3 at 24 weeks in PLWHIV to be treated DTG + 3TC and with basal CD8 ≤ 1100 cells/mm3 [N = 358] | |||
Backbone ABC/3TC | 0.309 | 0.563–1.023 | 0.059 |
Baseline CD4 ≥ 30% | 1.902 | 0.881–4.107 | 0.090 |
Baseline CD4/CD8 ≥ 0.9 | 0.309 | 0.152–0.628 | 0.001 |
Model 8. To achieve CD4/CD8 < 0.9 at 24 weeks in PLWHIV to be treated DTG + 3TC and with basal CD4/CD8 < 0.9 [N = 272] | |||
AIDS | 0.331 | 0.096–1.137 | 0.079 |
Baseline CD4 ≥ 30% | 2.594 | 1.267–5.310 | 0.009 |
Baseline CD8 ≤ 1000 cells/mm3 | 2.071 | 1.009–4.252 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troya, J.; Pedrero-Tomé, R.; Buzón, L.; Dueñas, C.; on behalf of the SPADE Study Group. Predict the Effects of Dolutegravir (DTG) Plus Lamivudine (3TC) on Immunological Responses in People Living with HIV (PLWHIV). J. Clin. Med. 2023, 12, 1176. https://doi.org/10.3390/jcm12031176
Troya J, Pedrero-Tomé R, Buzón L, Dueñas C, on behalf of the SPADE Study Group. Predict the Effects of Dolutegravir (DTG) Plus Lamivudine (3TC) on Immunological Responses in People Living with HIV (PLWHIV). Journal of Clinical Medicine. 2023; 12(3):1176. https://doi.org/10.3390/jcm12031176
Chicago/Turabian StyleTroya, Jesús, Roberto Pedrero-Tomé, Luis Buzón, Carlos Dueñas, and on behalf of the SPADE Study Group. 2023. "Predict the Effects of Dolutegravir (DTG) Plus Lamivudine (3TC) on Immunological Responses in People Living with HIV (PLWHIV)" Journal of Clinical Medicine 12, no. 3: 1176. https://doi.org/10.3390/jcm12031176
APA StyleTroya, J., Pedrero-Tomé, R., Buzón, L., Dueñas, C., & on behalf of the SPADE Study Group. (2023). Predict the Effects of Dolutegravir (DTG) Plus Lamivudine (3TC) on Immunological Responses in People Living with HIV (PLWHIV). Journal of Clinical Medicine, 12(3), 1176. https://doi.org/10.3390/jcm12031176