Updates in Endoscopic Bariatric and Metabolic Therapies
Abstract
:1. Introduction
2. Restrictive EBMTs
2.1. Intra-Gastric Balloons (IGBs)
2.2. Endoscopic Sleeve Gastroplasty (ESG)
2.3. Primary Obesity Surgery Endoluminal (POSE)
2.4. Endoscopic Gastric Plication (E-ESG)
3. Gastric Aspiratoin
Aspiration Therapy
4. Malabsorptive/Metabolic EBMTs
4.1. Duodenal Mucosal Resurfacing (DMR)
4.2. Endoluminal Bypass Liners
4.3. Endoscopic Anastomosis Devices
5. Overall Effects of EBMTs for Non-Alcoholic Fatty Liver Disease
6. Comparison of Weight Loss with Different Types of EBMTs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stahl, J.M.; Malhotra, S. Obesity Surgery Indications and Contraindications; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Dietz, W.H. The response of the US Centers for Disease Control and Prevention to the obesity epidemic. Annu. Rev. Public Health 2015, 36, 575–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, Z.J.; Bleich, S.N.; Long, M.W.; Gortmaker, S.L. Association of body mass index with health care expenditures in the United States by age and sex. PLoS ONE 2021, 16, e0247307. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Zhou, X.; Zhang, Y.; Mo, F.; Yang, J.; Yu, M.; Ji, F. Effects of Bariatric Endoscopy on Non-Alcoholic Fatty Liver Disease: A Comprehensive Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 931519. [Google Scholar] [CrossRef] [PubMed]
- Jirapinyo, P.; McCarty, T.R.; Dolan, R.D.; Shah, R.; Thompson, C.C. Effect of endoscopic bariatric and metabolic therapies on nonalcoholic fatty liver disease: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 20, 511–524.e1. [Google Scholar] [CrossRef]
- Shah, R.; Davitkov, P.; Dayyeh, B.K.A.; Saumoy, M.; Murad, M.H. AGA technical review on intragastric balloons in the management of obesity. Gastroenterology 2021, 160, 1811–1830. [Google Scholar] [CrossRef]
- Abu Dayyeh, B.K.; Kumar, N.; Edmundowicz, S.A.; Jonnalagadda, S.; Larsen, M.; Sullivan, S.; Thompson, C.C.; Banerjee, S. ASGE Bariatric Endoscopy Task Force systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting endoscopic bariatric therapies. Gastrointest. Endosc. 2015, 82, 425–438.e5. [Google Scholar] [CrossRef]
- O’Brien, P.E.; Hindle, A.; Brennan, L.; Skinner, S.; Burton, P.; Smith, A.; Crosthwaite, G.; Brown, W. Long-term outcomes after bariatric surgery: A systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obes. Surg. 2019, 29, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Popov, V.B.; Ou, A.; Schulman, A.R.; Thompson, C.C. The impact of intragastric balloons on obesity-related co-morbidities: A systematic review and meta-analysis. Am. J. Gastroenterol. 2017, 112, 429–439. [Google Scholar] [CrossRef]
- Trang, J.; Lee, S.S.; Miller, A.; Pico, C.C.; Postoev, A.; Ibikunle, I.; Ibikunle, C.A. Incidence of nausea and vomiting after intragastric balloon placement in bariatric patients—A systematic review and meta-analysis. Int. J. Surg. 2018, 57, 22–29. [Google Scholar] [CrossRef]
- Kotinda, A.P.S.T.; De Moura, D.T.H.; Ribeiro, I.B.; Singh, S.; Neto, A.M.D.P.; Proença, I.M.; Flor, M.M.; De Souza, K.L.; Bernardo, W.M.; De Moura, E.G.H. Efficacy of intragastric balloons for weight loss in overweight and obese adults: A systematic review and meta-analysis of randomized controlled trials. Obes. Surg. 2020, 30, 2743–2753. [Google Scholar] [CrossRef]
- Bapaye, J.; Chandan, S.; Khan, S.R.; Mohan, B.P.; Ramai, D.; Dhindsa, B.S.; Shah, A.R.; Saghir, S.M.; Bilal, M.; Facciorusso, A. Safety and efficacy of adjustable intragastric balloons for treatment of obesity-a systematic review and meta-analysis. Gastrointest. Endosc. 2022, 95, AB18. [Google Scholar] [CrossRef]
- Abu Dayyeh, B.K.; Maselli, D.B.; Rapaka, B.; Lavin, T.; Noar, M.; Hussan, H.; Chapman, C.G.; Popov, V.; Jirapinyo, P.; Acosta, A.; et al. Adjustable intragastric balloon for treatment of obesity: A multicentre, open-label, randomised clinical trial. Lancet 2021, 398, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Bazerbachi, F.; Vargas, E.J.; Rizk, M.; Maselli, D.B.; Mounajjed, T.; Venkatesh, S.K.; Watt, K.D.; Port, J.D.; Basu, R.; Acosta, A.; et al. Intragastric balloon placement induces significant metabolic and histologic improvement in patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 2021, 19, 146–154.e4. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-M.; Low, H.C.; Lim, L.G.; Dan, Y.Y.; Aung, M.O.; Cheng, C.L.; Wee, A.; Lim, S.G.; Ho, K.Y. Intragastric balloon significantly improves nonalcoholic fatty liver disease activity score in obese patients with nonalcoholic steatohepatitis: A pilot study. Gastrointest. Endosc. 2012, 76, 756–760. [Google Scholar] [CrossRef]
- Goyal, H.; Kopel, J.; Perisetti, A.; Mann, R.; Ali, A.; Tharian, B.; Saligram, S.; Inamdar, S. Endobariatric procedures for obesity: Clinical indications and available options. Ther. Adv. Gastrointest. Endosc. 2021, 14, 2631774520984627. [Google Scholar] [CrossRef] [PubMed]
- Dastis, S.N.; François, E.; Devière, J.; Hittelet, A.; Mehdi, A.I.; Barea, M.; Dumonceau, J.M. Intragastric balloon for weight loss: Results in 100 individuals followed for at least 2.5 years. Endoscopy 2009, 41, 575–580. [Google Scholar] [CrossRef]
- Pytraczyk, S. Long-Term Maintenance of Weight Loss Following Removal of Intragastric Balloon (IGB). Am. J. Gastroenterol. 2018, 113, S439. [Google Scholar] [CrossRef]
- El Haddad, A.; Rammal, M.O.; Soweid, A.; Sharara, A.I.; Daniel, F.; Rahal, M.A.; Shaib, Y. Intragastric balloon treatment of obesity: Long-term results and patient satisfaction. Turk. J. Gastroenterol. 2019, 30, 461. [Google Scholar] [CrossRef] [PubMed]
- Barola, S.; Chen, Y.I.; Ngamruengphong, S.; Kalloo, A.N.; Khashab, M.A.; Kumbhari, V. Technical aspects of endoscopic sleeve gastroplasty. VideoGIE 2017, 2, 48. [Google Scholar] [CrossRef] [PubMed]
- De Moura, D.T.H.; de Moura, E.G.H.; Thompson, C.C. Endoscopic sleeve gastroplasty: From whence we came and where we are going. World J. Gastrointest. Endosc. 2019, 11, 322. [Google Scholar] [CrossRef]
- Abu Dayyeh, B.K.; Acosta, A.; Camilleri, M.; Mundi, M.S.; Rajan, E.; Topazian, M.D.; Gostout, C.J. Endoscopic sleeve gastroplasty alters gastric physiology and induces loss of body weight in obese individuals. Clin. Gastroenterol. Hepatol. 2017, 15, 37–43.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedjoudje, A.; Dayyeh, B.K.A.; Cheskin, L.J.; Adam, A.; Neto, M.G.; Badurdeen, D.; Morales, J.G.; Sartoretto, A.; Nava, G.L.; Vargas, E.; et al. Efficacy and safety of endoscopic sleeve gastroplasty: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2020, 18, 1043–1053.e4. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ma, B.; Gong, S.; Zhang, X.; Li, W. Efficacy and safety of endoscopic sleeve gastroplasty for obesity patients: A meta-analysis. Surg. Endosc. 2020, 34, 1253–1260. [Google Scholar] [CrossRef]
- Abu Dayyeh, B.K.; Bazerbachi, F.; Vargas, E.J.; Sharaiha, R.Z.; Thompson, C.C.; Thaemert, B.C.; Teixeira, A.F.; Chapman, C.G.; Kumbhari, V.; Ujiki, M.B.; et al. Endoscopic sleeve gastroplasty for treatment of class 1 and 2 obesity (MERIT): A prospective, multicentre, randomised trial. Lancet 2022, 400, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Hajifathalian, K.; Mehta, A.; Ang, B.; Skaf, D.; Shah, S.L.; Saumoy, M.; Dawod, Q.; Dawod, E.; Shukla, A.; Aronne, L.; et al. Improvement in insulin resistance and estimated hepatic steatosis and fibrosis after endoscopic sleeve gastroplasty. Gastrointest. Endosc. 2021, 93, 1110–1118. [Google Scholar] [CrossRef]
- Jagtap, N.; Kalapala, R.; Katakwar, A.; Sharma, M.; Aslam, M.; Gupta, R.; Rao, P.N.; Goud, R.; Tandan, M.; Kanakagiri, H.; et al. Endoscopic sleeve gastroplasty—Minimally invasive treatment for non-alcoholic fatty liver disease and obesity. Indian J. Gastroenterol. 2021, 40, 572–579. [Google Scholar] [CrossRef]
- Lavín-Alconero, L.; Fernández-Lanas, T.; Iruzubieta-Coz, P.; Arias-Loste, M.T.; Rodriguez-Duque, J.C.; Rivas, C.; Cagigal, M.L.; Montalbán, C.; Useros, A.L.; Álvarez-Cancelo, A.; et al. Efficacy and safety of endoscopic sleeve gastroplasty versus laparoscopic sleeve gastrectomy in obese subjects with Non-Alcoholic SteatoHepatitis (NASH): Study protocol for a randomized controlled trial (TESLA-NASH study). Trials 2021, 22, 756. [Google Scholar] [CrossRef]
- Multicenter, Randomized, Controlled and Double-blind Study of Efficacy and Safety of Endoscopic Gastric Tubulization in Patients With Non-alcoholic Steatohepatitis (NASH-APOLLO). (NASH-APOLLO). Available online: https://clinicaltrials.gov/ct2/show/NCT03426111 (accessed on 15 September 2022).
- Fayad, L.; Adam, A.; Schweitzer, M.; Cheskin, L.J.; Ajayi, T.; Dunlap, M.; Badurdeen, D.S.; Hill, C.; Paranji, N.; Lalezari, S.; et al. Endoscopic sleeve gastroplasty versus laparoscopic sleeve gastrectomy: A case-matched study. Gastrointest. Endosc. 2019, 89, 782–788. [Google Scholar] [CrossRef]
- Novikov, A.A.; Afaneh, C.; Saumoy, M.; Parra, V.; Shukla, A.; Dakin, G.F.; Pomp, A.; Dawod, E.; Shah, S.; Aronne, L.J.; et al. Endoscopic sleeve gastroplasty, laparoscopic sleeve gastrectomy, and laparoscopic band for weight loss: How do they compare? J. Gastrointest. Surg. 2018, 22, 267–273. [Google Scholar] [CrossRef]
- Gu, L.; Lin, K.; Du, N.; Ng, D.M.; Lou, D.; Chen, P. Differences in the effects of laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass on gut hormones: Systematic and meta-analysis. Surg. Obes. Relat. Dis. 2021, 17, 444–455. [Google Scholar] [CrossRef]
- Peterli, R.; Steinert, R.E.; Woelnerhanssen, B.; Peters, T.; Christoffel-Courtin, C.; Gass, M.; Kern, B.; von Fluee, M.; Beglinger, C. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: A randomized, prospective trial. Obes. Surg. 2012, 22, 740–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharaiha, R.Z.; Kumbhari, V. Are We Moving in the Right Direction by Altering Gastric Motility for Weight Loss? Clin. Gastroenterol. Hepatol. 2020, 18, 48–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqahtani, A.; Al-Darwish, A.; Mahmoud, A.E.; Alqahtani, Y.A.; Elahmedi, M. Short-term outcomes of endoscopic sleeve gastroplasty in 1000 consecutive patients. Gastrointest. Endosc. 2019, 89, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Nava, G.; Negi, A.; Bautista-Castaño, I.; Rubio, M.A.; Asokkumar, R. Gut and metabolic hormones changes after endoscopic sleeve gastroplasty (ESG) vs. laparoscopic sleeve gastrectomy (LSG). Obes. Surg. 2020, 30, 2642–2651. [Google Scholar] [CrossRef]
- Fayad, L.; Oberbach, A.; Schweitzer, M.; Askin, F.; Voltaggio, L.; Larman, T.; Enderle, M.; Hahn, H.; Khashab, M.A.; Kalloo, A.N.; et al. Gastric mucosal devitalization (GMD): Translation to a novel endoscopic metabolic therapy. Endosc. Int. Open 2019, 7, E1640–E1645. [Google Scholar] [CrossRef]
- Oberbach, A.; Schlichting, N.; Kullnick, Y.; Heinrich, M.; Lehmann, S.; Retschlag, U.; Friedrich, M.; Fayad, L.; Dietrich, A.; Khashab, M.A.; et al. Gastric mucosal devitalization improves blood pressure, renin and cardiovascular lipid deposition in a rat model of obesity. Endosc. Int. Open 2019, 7, E1605–E1615. [Google Scholar] [CrossRef] [PubMed]
- Badurdeen, D.; Hoff, A.C.; Hedjoudje, A.; Adam, A.; Itani, M.I.; Farha, J.; Abbarh, S.; Kalloo, A.N.; Khashab, M.A.; Singh, V.K.; et al. Endoscopic sleeve gastroplasty plus liraglutide versus endoscopic sleeve gastroplasty alone for weight loss. Gastrointest. Endosc. 2021, 93, 1316–1324.e1. [Google Scholar] [CrossRef] [PubMed]
- De Moura, D.T.H.; Badurdeen, D.S.; Ribeiro, I.B.; da Silva Dantas, E.F.M.; Thompson, C.C.; Kumbhari, V. Perspectives toward minimizing the adverse events of endoscopic sleeve gastroplasty. Gastrointest. Endosc. 2020, 92, 1115–1121. [Google Scholar] [CrossRef]
- Sullivan, S.; Swain, J.M.; Woodman, G.; Antonetti, M.; De La Cruz-Muñoz, N.; Jonnalagadda, S.S.; Ujiki, M.; Ikramuddin, S.; Ponce, J.; Ryou, M.; et al. Randomized sham-controlled trial evaluating efficacy and safety of endoscopic gastric plication for primary obesity: The ESSENTIAL trial. Obesity 2017, 25, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.; Turró, R.; Greve, J.W.; Bakker, C.M.; Buchwald, J.N.; Espinós, J.C. MILEPOST multicenter randomized controlled trial: 12-month weight loss and satiety outcomes after pose SM vs. medical therapy. Obes. Surg. 2017, 27, 310–322. [Google Scholar] [CrossRef]
- Singh, S.; Bazarbashi, A.N.; Khan, A.; Chowdhry, M.; Bilal, M.; de Moura, D.T.H.; Jirapinyo, P.; Thakkar, S.; Thompson, C.C. Primary obesity surgery endoluminal (POSE) for the treatment of obesity: A systematic review and meta-analysis. Surg. Endosc. 2022, 36, 252–366. [Google Scholar] [CrossRef] [PubMed]
- Jirapinyo, P.; Thompson, C.C. Gastric plications for weight loss: Distal primary obesity surgery endoluminal through a belt-and-suspenders approach. VideoGIE 2018, 3, 296–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huberty, V.; Machytka, E.; Boškoski, I.; Barea, M.; Costamagna, G.; Deviere, J. Endoscopic gastric reduction with an endoluminal suturing device: A multicenter prospective trial with 1-year follow-up. Endoscopy 2018, 50, 1156–1162. [Google Scholar] [CrossRef]
- Huberty, V.; Boskoski, I.; Bove, V.; Van Ouytsel, P.; Costamagna, G.; Barthet, M.A.; Devière, J. Endoscopic sutured gastroplasty in addition to lifestyle modification: Short-term efficacy in a controlled randomised trial. Gut 2021, 70, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Nyström, M.; Machytka, E.; Norén, E.; Testoni, P.A.; Janssen, I.; Homedes, J.T.; Perez, J.C.E.; Arau, R.T. Aspiration therapy as a tool to treat obesity: 1-to 4-year results in a 201-patient multi-center post-market European registry study. Obes. Surg. 2018, 28, 1860–1868. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.C.; Abu Dayyeh, B.K.; Kushnir, V.; Kushner, R.F.; Schorr, A.B.; Aronne, L.J.; Amaro, A.; Jaffe, D.L.; Schulman, A.R.; Early, D.; et al. Aspiration therapy for the treatment of obesity: 2–4 year results of the PATHWAY multicenter randomized controlled trial. Surg. Obes. Relat. Dis. 2018, 14, S4–S5. [Google Scholar] [CrossRef]
- Thompson, C.C.; Abu Dayyeh, B.K.; Kushnir, V.; Kushner, R.F.; Jirapinyo, P.; Schorr, A.B.; Aronne, L.J.; Amaro, A.; Jaffe, D.L.; Schulman, A.R.; et al. Aspiration therapy for the treatment of obesity: 4-year results of a multicenter randomized controlled trial. Surg. Obes. Relat. Dis. 2019, 15, 1348–1354. [Google Scholar] [CrossRef]
- Thompson, C.C.; Abu Dayyeh, B.K.; Kushner, R.; Sullivan, S.; Schorr, A.B.; Amaro, A.; Apovian, C.M.; Fullum, T.; Zarrinpar, A.; Jensen, M.D.; et al. Percutaneous gastrostomy device for the treatment of class II and class III obesity: Results of a randomized controlled trial. Am. J. Gastroenterol. 2017, 112, 447. [Google Scholar] [CrossRef] [Green Version]
- Jirapinyo, P.; de Moura, D.T.; Horton, L.C.; Thompson, C.C. Effect of aspiration therapy on obesity-related comorbidities: Systematic review and meta-analysis. Clin. Endosc. 2020, 53, 686–697. [Google Scholar] [CrossRef]
- Van Baar, A.C.; Holleman, F.; Crenier, L.; Haidry, R.; Magee, C.; Hopkins, D.; Grunert, L.R.; Neto, M.G.; Vignolo, P.; Hayee, B.H.; et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes mellitus: One year results from the first international, open-label, prospective, multicentre study. Gut 2020, 69, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Meiring, S.; Meessen, E.C.E.; van Baar, A.C.G.; Holleman, F.; Nieuwdorp, M.; Damink, S.W.O.; Schaap, F.G.; Vaz, F.M.; Groen, A.K.; Soeters, M.R.; et al. Duodenal mucosal resurfacing with a GLP-1 receptor agonist increases postprandial unconjugated bile acids in patients with insulin-dependent type 2 diabetes. Am. J. Physiol.-Endocrinol. Metab. 2022, 322, E132–E140. [Google Scholar] [CrossRef] [PubMed]
- Ruban, A.; Ashrafian, H.; Teare, J.P. The EndoBarrier: Duodenal-jejunal bypass liner for diabetes and weight loss. Gastroenterol. Res. Pract. 2018, 2018, 7823182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohde, U.; Hedbäck, N.; Gluud, L.L.; Vilsbøll, T.; Knop, F.K. Effect of the EndoBarrier G astrointestinal L iner on obesity and type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 2016, 18, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Ryder, R.E.; Yadagiri, M.; Burbridge, W.; Irwin, S.P.; Gandhi, H.; Bashir, T.; Allden, R.A.; Wyres, M.; Cull, M.; Bleasdale, J.P.; et al. EndoBarrier treatment for longstanding type 2 diabetes and obesity: Outcomes one year after EndoBarrier in 90 consecutively treated patients. Pract. Diabetes 2022, 39, 13–16a. [Google Scholar] [CrossRef]
- Gollisch, K.S.C.; Lindhorst, A.; Raddatz, D. EndoBarrier gastrointestinal liner in type 2 diabetic patients improves liver fibrosis as assessed by liver elastography. Exp. Clin. Endocrinol. Diabetes 2017, 125, 116–121. [Google Scholar] [CrossRef]
- Hoffmeister, A.; Hollenbach, M.; Prettin, C.; Gundling, F.; Schepp, W.; Seufert, J.; Stein, J.; Aberle, J.; Feisthammel, J.; Petroff, D. Weight-loss endoscopy trial (wet): A multi-center, randomized, controlled trial comparing weight loss in endoscopically implanted duodenal-jejunal bypass liners vs. intragastric balloons vs. a sham procedure. Endoscopy 2022, 54 (Suppl. S1), OP113. [Google Scholar]
- Gersin, K.S.; Rothstein, R.I.; Rosenthal, R.J.; Stefanidis, D.; Deal, S.E.; Kuwada, T.S.; Laycock, W.; Adrales, G.; Vassiliou, M.; Szomstein, S.; et al. Open-label, sham-controlled trial of an endoscopic duodenojejunal bypass liner for preoperative weight loss in bariatric surgery candidates. Gastrointest. Endosc. 2010, 71, 976–982. [Google Scholar] [CrossRef]
- Machytka, E.; Bužga, M.; Zonca, P.; Lautz, D.B.; Ryou, M.; Simonson, D.C.; Thompson, C.C. Partial jejunal diversion using an incisionless magnetic anastomosis system: 1-year interim results in patients with obesity and diabetes. Gastrointest. Endosc. 2017, 86, 904–912. [Google Scholar] [CrossRef]
- Fayad, L.; Cheskin, L.J.; Adam, A.; Badurdeen, D.S.; Hill, C.; Agnihotri, A.; Dunlap, M.; Simsek, C.; Khashab, M.A.; Kalloo, A.N.; et al. Endoscopic sleeve gastroplasty versus intragastric balloon insertion: Efficacy, durability, and safety. Endoscopy 2019, 51, 532–539. [Google Scholar] [CrossRef]
- Kozłowska-Petriczko, K.; Pawlak, K.M.; Wojciechowska, K.; Reiter, A.; Błaszczyk, Ł.; Szełemej, J.; Petriczko, J.; Wiechowska-Kozłowska, A. The Efficacy Comparison of Endoscopic Bariatric Therapies: 6-Month Versus 12-Month Intragastric Balloon Versus Endoscopic Sleeve Gastroplasty. Obes. Surg. 2022, 1–8. [Google Scholar] [CrossRef]
- Jung, S.H.; Yoon, J.H.; Choi, H.S.; Nam, S.-J.; Kim, K.O.; Kim, D.H.; Kim, J.-W.; Sohn, W.; Hyun, Y.S.; Park, C.H.; et al. Comparative efficacy of bariatric endoscopic procedures in the treatment of morbid obesity: A systematic review and network meta-analysis. Endoscopy 2020, 52, 940–954. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Study Design | EBMT Type (n) | Outcome and Assessment Timeframe | Weight Loss Achieved | Changes in Metabolic Parameters |
---|---|---|---|---|---|
Dayyeh (2021) [13] | RCT | a-IGB vs. control (n = 288) | Weight loss at 32 weeks | TBWL: 15.0% (13.9–16.1) in a-IGB group vs. 3.3% (2.0–4.6) in control group | Δ HbA1c:–0.73% (95% CI –1.49 to 0.02; p = 0.055) Total cholesterol:–6.8 mg/dL (–11.1 to –2.6; p = 0.0018) SBP:–6.1 mm Hg (–9.8 to –2.3; p = 0.0016) DBP: –3.7 mm Hg (–6.4 to –1.0; p = 0.0078) Significant decrease in ALT and AST |
Popov (2017) [9] | Meta-Analysis | IGB (n = 5688) | Changes in metabolic parameters (time period unspecified) | EBWL: 28% (23.5 to 32) Δ BMI: −4.8 kg/m2 (−6.3 to −3.3) | FPG: −12.7 mg/dL (−21.5, −4) Δ HbA1c: −1.1% (−1.6 to −0.6) TG: −19 mg/dL (−4 to 3.5) Waist circumference: −4.1 cm (−6.9 to −1.4) DBP: −2.9 mmHG (−4.1 to −1.8) AST: −3 U/L (−5.6 to −0.1) ALT: −9 U/L (−12 to −5.2) |
Kotinda (2020) [11] | Meta-Analysis | IGB (n = 1523) | Weight loss at 3–8 months | Δ TBWL between IGB and sham groups: 4.40% (1.37–7.43) Δ EBWL between IGB and sham groups: 17.98% (95%CI 8.37–27.58) | NA |
Bapaye (2022) [12] | Meta-Analysis | a-IGB (n = 866) | Weight loss | >10% TBWL and >25% EBWL in 82.89% patients (80.82–85.52%) | NA |
Dayyeh (2015) [7] | Meta-Analysis | IGB (n = 1683) | Weight loss at 12 months | EBWL at 12 months: 25.44% (21.47–29.41%) TBWL at 12 months: 11.27% (8.17–14.36%) | NA |
Bazerbachi (2014) [14] | Open label, prospective study | IGB (n = 21) | Changes in liver histology parameters, weight and metabolic parameters at 6 months | TBWL: 11.7% ± 7.7% | Δ HbA1c (1.3% ± 0.5%) (p = 0.02) Δ waist circumference: 14.4 ± 2.2 cm (p = 0.001) Median Δ NAS: 3 points(range 1–4) MRE detected fibrosis: improvement by 1.5 stages (50% patients) |
Lee (2012) [15] | RCT | IGB vs. sham (n = 18) | Change in liver histology after 6 months | Δ BMI: −1.52 IGB group vs. −0.8 sham group (p = 0.0008) | NAS score: 2 [0.75] in IGB group vs. 4 [2.25] in sham group; (p = 0.03) |
Author (Year) | Study Design | EBMT Type (n) | Outcome and Assessment Timeframe | Weight Loss Achieved | Changes in Metabolic Parameters |
---|---|---|---|---|---|
Hedjoudje (2020) [23] | Meta-Analysis | ESG (n = 1772) | Weight loss at 6, 12 and 18–24 months. | TBWL: 6 months: 15.1% (14.3–16.0) 12 months: 16.5% (15.2–17.8) 18–24 months: 17.2% (14.6 −19.7) EBWL at 6 months: 57.7% (52.0–63.4) | NA |
Li (2020) [24] | Meta-Analysis | ESG (n = 1542) | Weight loss 1, 3, 6 and 12 months. | TBWL: 1 month:8.78% 3 months: 11.85% 6 months:14.47% 12 months: 16.09% EBWL: 1 month: 31.16% 3 months: 43.61% 6 months:53.14% 12 months: 59.08% | NA |
Dayyeh (2022) [25] | RCT | ESG vs. control (n = 209) | Weight loss and changes in metabolic comorbidities by 52 weeks. | EBWL: 49.2% ESG vs. 3.2% control group (p < 0.0001) TBWL: 13.6% for ESG group vs. 0.8% for control (p < 0.0001) | Improvement in DM, HTN, HLD, metabolic syndrome (numbers not provided) |
Hajifthalian (2021) [26] | Prospective Cohort | ESG (n = 118) | change in IR and estimated hepatic steatosis and fibrosis 2 yrs after ESG. | TBWL at 2 yrs: 15.5% (13.3–17.8%). EBWL at 2 yrs: 45.5%(38.1–52.8%) | 2 yrs: HOMA-IR: −1.7 per year HbA1c: −0.4% HSI: −4 points/year NFS: −0.3 points/year ALT: −5 U/L/year AST −3 U/L/year Leptin: −3.8 ng/mL/year |
Jagtap (2021) [27] | Prospective Cohort | ESG (n = 26) | Impact of ESG on hepatic parameters, metabolic parameters at 6 and 12 months. | TBWL: 18.07% at 12 months | ALT (mean ± SD) from baseline: 59.54 ± 17.02 IU/L to 49.50 ± 11.72 IU/L and 48.42 ± 13.22 IU/L at 6 and 12 months (p = 0.001). Mean (SD) NFS: 0.228 (1.00) at baseline to −0.202 (1.16) and −0.552 (1.08) at 6 and 12 months (p = 0.001). |
Fayad (2019) [30] | Retrospective Case control | ESG (n = 54) vs. LSG (n = 83) | Weight loss at 6 months. | TBWL: 17.1% ± 6.5% with ESG vs. 23.6% ± 7.6% with LSG p < 0.01 | NA |
Novikov (2018) [31] | RCT | ESG vs. LSG vs. LAGB (n = 278) | Weight loss at 3, 6, 9 and 12 months. | TBWL: LSG vs. LAGB vs. ESG: 29.28 vs. 13.30 vs. 17.57%, respectively; p < 0.001) | NA |
Author (Year) | Study Design | EBMT Type (n) | Outcome and Assessment Timeframe | Weight Loss Achieved | Changes in Metabolic Parameters |
---|---|---|---|---|---|
Sullivan (2017) [41] | RCT | POSE (n = 332) | Weight loss at 12 months, changes in metabolic conditions at 12 months. | TBWL: 4.95 ± 7.04% in active group vs. 1.38 ± 5.58% in the sham group p < 0.0001 | SBP: −4.78 mm HG DBP: 2.92 mm Hg FPG: −2.18 mmol/dL HbA1c: −0.07% Total cholesterol: −7.07% HDL: +3.15 LDL: −6.81 TG:−11.5 |
Miller (2017) [42] | RCT | POSE (n = 44) vs. control | Weight loss at 12 months | TBWL:13.0% vs. 5.0% in control group EBWL: 45.0% vs. 18.1% in control group. (p < 0.01) | NA |
Singh (2021) [43] | Meta Analysis | POSE (n = 613) | Weight loss at 3–6 months and 12–15 months. | EBWL: 3–6 mo: 42.62% (95% CI 37.56–47.68) 12–15 mo: 48.86% (95% CI 42.31–55.41) TBWL: 3–6 mo:13.45% (95% CI 8.93–17.97) 12–15 mo: 12.68% (95% CI 8.13–17.23) | NA |
Huberty (2018) [45] | RCT | E-ESG (n = 51) vs. control | Weight loss at 1 yr. | EBWL: 29% TBWL: 7.4% | NA |
Huberty (2021) [46] | RCT | E-ESG (n = 71) vs. control | EBWL >25% by 12 months, ≥15% EBWL difference between groups at 6 months | 6 months: EBWL: 38.6% vs. 13.4%, p < 0.001 12 months EBWL = 45.1% TBWL = 11.8% | NA |
Thompson (2019) [49] | RCT | Gastric Aspiration Therapy (n = 81) vs. control | Weight loss at years 1, 2, 3 and 4. | 1 yr (n = 82): TBWL = 14.2%, EBWL = 37.1% 2 yr (n = 42): TBWL = 15.3%, EBWL = 40.8% 3 yr (n = 22): TBWL = 16.6%, EBWL = 44.7% 4 yr (n = 15): TBWL = 18.7%, EBWL = 50.8% (p < 0.01 for all) | 4 y results: SBP: −10.5 ± 16.2 mmHg DBP: −2.1 ± 13.6 mmHg HDL: +7.7 ± 9.2 mg/dL LDL: 2.0 ± 23.2 mg/dL TG: −38.6 ± 74.1 mg/dL HbA1c: −0.33 ± 0.6% ALT: −11.9 ± 11.5 IU/L AST: −6.1 ± 6.6 IU/L |
Thompson (2017) [50] | RCT | Gastric Aspiration Therapy compared to controls (n = 207) | Mean EBWL at 52 weeks | Aspiration Therapy group: TBWL: 12.1 ± 9.6% EBWL: 31.5 ± 26.7% Control group: TBWL: 3.5 ± 6.0% EBWL 9.8 ± 15.5% (p < 0.001) | HbA1C:−0.36% relative to 5.7% baseline, p < 0.0001, TG: −9.9%, p = 0.02 HDL: +8.1%, p = 0.0001 SBP:−1.2%, p = 0.38 DBP: −2.6%, p = 0.06 LDL:−4.2%, p = 0.06 Total cholesterol: −2.5%, p = 0.07 |
Jirapinyo (2020) [51] | Meta-Analysis | Gastric Aspiration Therapy (n = 590) | Changes in metabolic comorbidities at 1 yr, weight loss up to 4 yrs. | 1 yr (n = 218) TBWL: 17.8% EBWL: 46.3% 2 yrs (n = 125) TBWL: 18.3% EBWL: 46.2% 3 yrs (n = 46) TBWL: 19.1% EBWL: 48.0% 4 yrs (n = 27) TBWL: 18.6% EBWL: 48.7% (p <0.0001 for all) | 1 yr: SBP: −7.8 (−10.7–−4.9) mm Hg DBP −5.1 (−7.0–3.2) mm Hg TG:−15.8 (−24.0–−7.6) mg/dL; HDL: 3.6 (0.7–6.6) mg/dL HbA1c: −1.3 (−1.8–−0.8)% AST: −2.7 (−4.1–−1.3) U/L ALT: −7.5 (−9.8–−5.2) U/L |
Van Baar (2020) [52] | Prospective, open label, multicenter study | DMR (n = 46) | Effect on glucose levels at 24 weeks and 12 months | TBWL at 24 weeks: −2.5 ± 0.6 kg (p < 0.001) | 24 Weeks HbA1c: −10 ± 2 mmol/mol (−0.9% ± 0.2%) * FPG: −1.7 ± 0.5 mmol/L * HOMA-IR: −2.9 ± 1.1 * 12 months: HbA1c:−10 ± 2 mmol/mol (−0.9% ± 0.2%) * FPG: −1.8 ± 0.5 mmol/L (p < 0.001) HOMA-IR: 3.3 ± 0.9 * * p < 0.001 for all values |
Gollisch (2017) [57] | Retrospective Cohort study | EndoBarrier (n = 19) | Change in liver fibrosis by 12 months | NA | Δ Liver elastography measurements: Fibrosis score: from 10.4 kPa (IQR 6.0–14.3) at baseline to 5.3 kPa (IQR 4.3–7.7, p < 0.01) CAP score: from 343 dB/m (IQR 326–384) to 317 dB/m (IQR 269–375, p < 0.05) |
Hoffmeister (2022) [58] | RCT | DJBL(n = 11) vs. IGB(n = 15) vs. sham (n = 7) | Weight loss by 12 months | TBWL: DJBL:129.4 ± 28.3 to 107.4 ± 16.7 kg IGB:118.3 ± 22.8 to 107.4 ± 25.7 kg sham:134.6 ± 18.0 to 131.2 ± 14.3 kg | NA |
Gersin (2010) [59] | Prospective, sham controlled RCT | DJBL (n = 13 DJBL vs. 24 in sham arm) | Weight loss by 12 weeks | TBWL: −8.2 ± 1.3 kg in DJBL vs. −2.1 ± 1.1 kg in sham (p < 0.05) EBWL: 11.9 ± 1.4% DJBL vs. 2.7 ± 2.0% in sham (p < 0.05) | NA |
Machytka (2017) [60] | Pilot RCT | IMAS (n = 10) | Weight loss by 12 months | TBWL = 14.6% EBWL = 40.2% | ΔHbA1c −1.9% (diabetic patients) and −1.0% in prediabetic patients. |
Author (Year) | EBMTS Compared | Weight Loss | Adverse Events |
---|---|---|---|
Fayad (2019) [61] | IGB (n = 58) vs. ESG (n = 47) | TBWL% WITH IGB vs. ESG 1 month (6.6% [2.6%] vs. 9.9% [2.4%]; p < 0.001) 3 months (11.1% [4.4%] vs. 14.3% [4.6%]; p = 0.004) 6 months (15.0% [7.6%] vs. 19.5% [5.7%]; p = 0.01), 12 months (13.9% [9.0%] vs. 21.3% [6.6%]; p = 0.005). | IGB group = 17% vs. ESG group = 5.2% (p = 0.048). |
Jung (2020) [63] | Gastric aspiration vs. IGB vs. POSE vs. DJBL compared to controls | TBWL % Gastric Aspiration = 10.4% [7.0% to 13.7%] IGB = 5.3% [3.4% to 7.2%] POSE 4.9% [1.7% to 8.2%] DJBL 4.5% [1.4% to 7.7%] EBWL % Gastric aspiration = 27.3% [15.3% to 39.3%] IGB = 22.4% [15.4% to 29.4%] POSE = 15.3% [2.5% to 28.0%] DJBL = 13.0% [4.9% to 21.2] | Overall AEs per group not assessed |
Kozlowska-Petriczko (2022) [62] | ESG vs. IGB | TBWL% ESG vs. IGB 6 months: 19.8% vs. 15.3% (p = 0.005) 12 months: 22.5% vs. 14.7% (p < 0.001) | IGB removal due to intolerance in 10.7% patients. ESG AEs not reported. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, H.; Saeed, N.; Jovani, M. Updates in Endoscopic Bariatric and Metabolic Therapies. J. Clin. Med. 2023, 12, 1126. https://doi.org/10.3390/jcm12031126
Qureshi H, Saeed N, Jovani M. Updates in Endoscopic Bariatric and Metabolic Therapies. Journal of Clinical Medicine. 2023; 12(3):1126. https://doi.org/10.3390/jcm12031126
Chicago/Turabian StyleQureshi, Hammad, Naba Saeed, and Manol Jovani. 2023. "Updates in Endoscopic Bariatric and Metabolic Therapies" Journal of Clinical Medicine 12, no. 3: 1126. https://doi.org/10.3390/jcm12031126
APA StyleQureshi, H., Saeed, N., & Jovani, M. (2023). Updates in Endoscopic Bariatric and Metabolic Therapies. Journal of Clinical Medicine, 12(3), 1126. https://doi.org/10.3390/jcm12031126