Could Temperamental Features Modulate Participation in Clinical Trials?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reiman, E.M.; Langbaum, J.B.S.; Fleisher, A.S.; Caselli, R.J.; Chen, K.; Ayutyanont, N.; Quiroz, Y.T.; Kosik, K.S.; Lopera, F.; Tariot, P.N. Alzheimer’s Prevention Initiative: A Plan to Accelerate the Evaluation of Presymptomatic Treatments. J. Alzheimer’s Dis. 2011, 26 (Suppl. 3), 321–329. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild Cognitive Impairment as a Diagnostic Entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild Cognitive Impairment: Clinical Characterization and Outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild Cognitive Impairment: A Concept in Evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice Guideline Update Summary: Mild Cognitive Impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Croisile, B.; Auriacombe, S.; Etcharry-Bouyx, F.; Vercelletto, M. [The new 2011 recommendations of the National Institute on Aging and the Alzheimer’s Association on diagnostic guidelines for Alzheimer’s disease: Preclinal stages, mild cognitive impairment, and dementia]. Rev. Neurol. 2012, 168, 471–482. [Google Scholar] [CrossRef]
- 2022 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2022, 18, 700–789. [CrossRef]
- Ward, D.D.; Wallace, L.M.K.; Rockwood, K. Frailty and Risk of Dementia in Mild Cognitive Impairment Subtypes. Ann. Neurol. 2021, 89, 1221–1225. [Google Scholar] [CrossRef]
- Gillis, C.; Mirzaei, F.; Potashman, M.; Ikram, M.A.; Maserejian, N. The Incidence of Mild Cognitive Impairment: A Systematic Review and Data Synthesis. Alzheimer’s Dement. 2019, 11, 248–256. [Google Scholar] [CrossRef]
- Wisse, L.E.M.; Butala, N.; Das, S.R.; Davatzikos, C.; Dickerson, B.C.; Vaishnavi, S.N.; Yushkevich, P.A.; Wolk, D.A. Suspected Non-AD Pathology in Mild Cognitive Impairment. Neurobiol. Aging 2015, 36, 3152–3162. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.; Bäckman, L.; Winblad, B.; Fratiglioni, L. Mild Cognitive Impairment in the General Population: Occurrence and Progression to Alzheimer Disease. Am. J. Geriatr. Psychiatry 2008, 16, 603–611. [Google Scholar] [CrossRef]
- Sperling, R.; Johnson, K. Biomarkers of Alzheimer Disease: Current and Future Applications to Diagnostic Criteria. Continuum 2013, 19, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Frisoni, G.B.; Bocchetta, M.; Chételat, G.; Rabinovici, G.D.; de Leon, M.J.; Kaye, J.; Reiman, E.M.; Scheltens, P.; Barkhof, F.; Black, S.E.; et al. Imaging Markers for Alzheimer Disease: Which vs How. Neurology 2013, 81, 487–500. [Google Scholar] [CrossRef]
- Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chetelat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; et al. A Conceptual Framework for Research on Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Alzheimer’s Dement. 2014, 10, 844–852. [Google Scholar] [CrossRef] [Green Version]
- van Harten, A.C.; Mielke, M.M.; Swenson-Dravis, D.M.; Hagen, C.E.; Edwards, K.K.; Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Petersen, R.C. Subjective Cognitive Decline and Risk of MCI: The Mayo Clinic Study of Aging. Neurology 2018, 91, e300–e312. [Google Scholar] [CrossRef]
- Buckley, R.F.; Maruff, P.; Ames, D.; Bourgeat, P.; Martins, R.N.; Masters, C.L.; Rainey-Smith, S.; Lautenschlager, N.; Rowe, C.C.; Savage, G.; et al. Subjective Memory Decline Predicts Greater Rates of Clinical Progression in Preclinical Alzheimer’s Disease. Alzheimer’s Dement. 2016, 12, 796–804. [Google Scholar] [CrossRef]
- Caselli, R.J.; Chen, K.; Locke, D.E.C.; Lee, W.; Roontiva, A.; Bandy, D.; Fleisher, A.S.; Reiman, E.M. Subjective Cognitive Decline: Self and Informant Comparisons. Alzheimer’s Dement. 2014, 10, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Chary, E.; Amieva, H.; Pérès, K.; Orgogozo, J.-M.; Dartigues, J.-F.; Jacqmin-Gadda, H. Short- versus Long-Term Prediction of Dementia among Subjects with Low and High Educational Levels. Alzheimer’s Dement. 2013, 9, 562–571. [Google Scholar] [CrossRef]
- Perrotin, A.; La Joie, R.; de La Sayette, V.; Barré, L.; Mézenge, F.; Mutlu, J.; Guilloteau, D.; Egret, S.; Eustache, F.; Chételat, G. Subjective Cognitive Decline in Cognitively Normal Elders from the Community or from a Memory Clinic: Differential Affective and Imaging Correlates. Alzheimer’s Dement. 2017, 13, 550–560. [Google Scholar] [CrossRef] [Green Version]
- Mielke, M.M.; Wiste, H.J.; Weigand, S.D.; Knopman, D.S.; Lowe, V.J.; Roberts, R.O.; Geda, Y.E.; Swenson-Dravis, D.M.; Boeve, B.F.; Senjem, M.L.; et al. Indicators of Amyloid Burden in a Population-Based Study of Cognitively Normal Elderly. Neurology 2012, 79, 1570–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Huang, W.; Su, L.; Xing, Y.; Jessen, F.; Sun, Y.; Shu, N.; Han, Y. Neuroimaging Advances Regarding Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Mol. Neurodegener. 2020, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Koppara, A.; Wolfsgruber, S.; Kleineidam, L.; Schmidtke, K.; Frölich, L.; Kurz, A.; Schulz, S.; Hampel, H.; Heuser, I.; Peters, O.; et al. The Latent Dementia Phenotype δ Is Associated with Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease and Predicts Conversion to Dementia in Subjects with Mild Cognitive Impairment. J. Alzheimer’s Dis. 2015, 49, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.L.; Lambe, S.; Chaisson, C.; Palmisano, J.; Horvath, K.J.; Karlawish, J. Clinical Research Participation among Aging Adults Enrolled in an Alzheimer’s Disease Center Research Registry. J. Alzheimer’s Dis. 2011, 23, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Calamia, M.; Bernstein, J.P.K.; Keller, J.N. I’d Do Anything for Research, But I Won’t Do That: Interest in Pharmacological Interventions in Older Adults Enrolled in a Longitudinal Aging Study. PLoS ONE 2016, 11, e0159664. [Google Scholar] [CrossRef] [Green Version]
- Nuño, M.M.; Gillen, D.L.; Dosanjh, K.K.; Brook, J.; Elashoff, D.; Ringman, J.M.; Grill, J.D. Attitudes toward Clinical Trials across the Alzheimer’s Disease Spectrum. Alzheimer’s Res. Ther. 2017, 9, 81. [Google Scholar] [CrossRef]
- Armon, G.; Toker, S. The Role of Personality in Predicting Repeat Participation in Periodic Health Screening. J. Pers. 2013, 81, 452–464. [Google Scholar] [CrossRef]
- Iwasa, H.; Masui, Y.; Gondo, Y.; Yoshida, Y.; Inagaki, H.; Kawaai, C.; Kim, H.; Yoshida, H.; Suzuki, T. Personality and Participation in Mass Health Checkups among Japanese Community-Dwelling Elderly. J. Psychosom. Res. 2009, 66, 155–159. [Google Scholar] [CrossRef]
- Consedine, N.S.; Magai, C.; Krivoshekova, Y.S.; Ryzewicz, L.; Neugut, A.I. Fear, Anxiety, Worry, and Breast Cancer Screening Behavior: A Critical Review. Cancer Epidemiol. Biomark. Prev. 2004, 13, 501–510. [Google Scholar] [CrossRef]
- Bobridge, A.; Bampton, P.; Cole, S.; Lewis, H.; Young, G. The Psychological Impact of Participating in Colorectal Cancer Screening by Faecal Immuno-Chemical Testing—the Australian Experience. Br. J. Cancer 2014, 111, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, V.; Fallowfield, L.; Langridge, C.; Barrett, J.; Ryan, A.; Jacobs, I.; Kilkerr, J.; Menon, U.; Farewell, V. Psychosocial Factors Associated With Withdrawal From the United Kingdom Collaborative Trial of Ovarian Cancer Screening After 1 Episode of Repeat Screening. Int. J. Gynecol. Cancer 2015, 25, 1519–1525. [Google Scholar] [CrossRef] [Green Version]
- Rat, C.; Hild, S.; Gaultier, A.; Khammari, A.; Bonnaud-Antignac, A.; Quereux, G.; Dreno, B.; Nguyen, J.M. Anxiety, Locus of Control and Sociodemographic Factors Associated with Adherence to an Annual Clinical Skin Monitoring: A Cross-Sectional Survey among 1000 High-Risk French Patients Involved in a Pilot-Targeted Screening Programme for Melanoma. BMJ Open 2017, 7, e016071. [Google Scholar] [CrossRef] [Green Version]
- Drabick, D.A.G.; Rabinowitz, J. Temperament. In The SAGE Encyclopedia of Abnormal and Clinical Psychology; SAGE Publications: Thousand Oaks, CA, USA, 2017; pp. 3482–3483. [Google Scholar]
- Akiskal, H.S. The Emergence of the Bipolar Spectrum: Validation along Clinical-Epidemiologic and Familial-Genetic Lines. Psychopharmacol. Bull. 2007, 40, 99–115. [Google Scholar]
- Akiskal, H.S.; Placidi, G.F.; Maremmani, I.; Signoretta, S.; Liguori, A.; Gervasi, R.; Mallya, G.; Puzantian, V.R. TEMPS-I: Delineating the Most Discriminant Traits of the Cyclothymic, Depressive, Hyperthymic and Irritable Temperaments in a Nonpatient Population. J. Affect. Disord. 1998, 51, 7–19. [Google Scholar] [CrossRef]
- Akiskal, H.S.; Mallya, G. Criteria for the “Soft” Bipolar Spectrum: Treatment Implications. Psychopharmacol. Bull. 1987, 23, 68–73. [Google Scholar]
- Perugi, G.; Toni, C.; Travierso, M.C.; Akiskal, H.S. The Role of Cyclothymia in Atypical Depression: Toward a Data-Based Reconceptualization of the Borderline-Bipolar II Connection. J. Affect. Disord. 2003, 73, 87–98. [Google Scholar] [CrossRef]
- Placidi, G.F.; Signoretta, S.; Liguori, A.; Gervasi, R.; Maremmani, I.; Akiskal, H.S. The Semi-Structured Affective Temperament Interview (TEMPS-I). Reliability and Psychometric Properties in 1010 14-26-Year Old Students. J. Affect. Disord. 1998, 47, 1–10. [Google Scholar] [CrossRef]
- Rovai, L.; Maremmani, A.G.I.; Rugani, F.; Bacciardi, S.; Pacini, M.; Dell’Osso, L.; Akiskal, H.S.; Maremmani, I. Do Akiskal & Mallya’s Affective Temperaments Belong to the Domain of Pathology or to That of Normality? Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2065–2079. [Google Scholar]
- Perugi, G.; Cesari, D.; Vannucchi, G.; Maccariello, G.; Barbuti, M.; De Bartolomeis, A.; Fagiolini, A.; Maina, G. The Impact of Affective Temperaments on Clinical and Functional Outcome of Bipolar I Patients That Initiated or Changed Pharmacological Treatment for Mania. Psychiatry Res. 2018, 261, 473–480. [Google Scholar] [CrossRef]
- Rovai, L.; Maremmani, A.G.I.; Bacciardi, S.; Gazzarrini, D.; Pallucchini, A.; Spera, V.; Perugi, G.; Maremmani, I. Opposed Effects of Hyperthymic and Cyclothymic Temperament in Substance Use Disorder (Heroin- or Alcohol-Dependent Patients). J. Affect. Disord. 2017, 218, 339–345. [Google Scholar] [CrossRef]
- Rovai, L.; Maremmani, A.G.I.; Leonardi, A.; Bacciardi, S.; Rugani, F.; Dell’Osso, L.; Akiskal, H.S.; Maremmani, I. TEMPS-A[P] Temperament Profile Related to Professional Choice. Differences between Applicants to Become a Cadet Officer in the Italian Air Force or Navy. J. Affect. Disord. 2013, 145, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Maremmani, I.; Dell’Osso, L.; Rovai, L.; Pacini, M.; Arduino, G.; Montagnari, A.; Abbenante, D.; Maremmani, A.G.I.; Giulio, P.; Akiskal, K.; et al. TEMPS-A[p] Temperament Profile Related to Professional Choice: A Study in 1548 Applicants to Become a Cadet Officer in the Italian Air Force. J. Affect. Disord. 2010, 124, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Maremmani, I.; Maremmani, A.G.I.; Leonardi, A.; Rovai, L.; Bacciardi, S.; Rugani, F.; Dell’Osso, L.; Akiskal, K.; Akiskal, S.H. Temperamental Traits and Results of Psychoaptitude Tests in Applicants to Become a Cadet Officer in the Italian Navy. J. Affect. Disord. 2013, 150, 634–638. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text Revision (DSM-5-TR); American Psychiatric Publishing: Washington, DC, USA, 2022. [Google Scholar]
- Preti, A.; Vellante, M.; Zucca, G.; Tondo, L.; Akiskal, K.; Akiskal, H. The Italian Version of the Validated Short TEMPS-A: The Temperament Evaluation of Memphis, Pisa, Paris and San Diego. J. Affect. Disord. 2010, 120, 207–212. [Google Scholar] [CrossRef]
- Fico, G.; Luciano, M.; Sampogna, G.; Zinno, F.; Steardo, L.J.; Perugi, G.; Pompili, M.; Tortorella, A.; Volpe, U.; Fiorillo, A.; et al. Validation of the Brief TEMPS-M Temperament Questionnaire in a Clinical Italian Sample of Bipolar and Cyclothymic Patients. J. Affect. Disord. 2020, 260, 458–462. [Google Scholar] [CrossRef]
- Gallassi, R.; Bisulli, A.; Oppi, F.; Poda, R.; Di Felice, C. Subjective Cognitive Complaints, Neuropsychological Performance, Affective and Behavioural Symptoms in Non-Demented Patients. Int. J. Geriatr. Psychiatry 2008, 23, 95–101. [Google Scholar] [CrossRef]
- Reid, L.M.; Maclullich, A.M.J. Subjective Memory Complaints and Cognitive Impairment in Older People. Dement. Geriatr. Cogn. Disord. 2006, 22, 471–485. [Google Scholar] [CrossRef]
- Kahn, R.L.; Zarit, S.H.; Hilbert, N.M.; Niederehe, G. Memory Complaint and Impairment in the Aged. The Effect of Depression and Altered Brain Function. Arch. Gen. Psychiatry 1975, 32, 1569–1573. [Google Scholar] [CrossRef]
- Collins, M.W.; Abeles, N. Subjective Memory Complaints and Depression in the Able Elderly. Clin. Gerontol. 1996, 16, 29–54. [Google Scholar] [CrossRef]
- Bassett, S.S.; Folstein, M.F. Memory Complaint, Memory Performance, and Psychiatric Diagnosis: A Community Study. J. Geriatr. Psychiatry Neurol. 1993, 6, 105–111. [Google Scholar] [CrossRef]
- Jungwirth, S.; Fischer, P.; Weissgram, S.; Kirchmeyr, W.; Bauer, P.; Tragl, K.-H. Subjective Memory Complaints and Objective Memory Impairment in the Vienna-Transdanube Aging Community. J. Am. Geriatr. Soc. 2004, 52, 263–268. [Google Scholar] [CrossRef]
- Pearman, A.; Storandt, M. Predictors of Subjective Memory in Older Adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2004, 59, P4–P6. [Google Scholar] [CrossRef] [Green Version]
- Hänninen, T.; Reinikainen, K.J.; Helkala, E.L.; Koivisto, K.; Mykkänen, L.; Laakso, M.; Pyörälä, K.; Riekkinen, P.J. Subjective Memory Complaints and Personality Traits in Normal Elderly Subjects. J. Am. Geriatr. Soc. 1994, 42, 1–4. [Google Scholar] [CrossRef]
- Luciano, M.; Sampogna, G.; Mancuso, E.; Simonetti, A.; De Fazio, P.; Di Nicola, M.; Di Lorenzo, G.; Pepe, M.; Sambataro, F.; Signorelli, M.S.; et al. Trait-Related Impulsivity, Affective Temperaments and Mood Disorders: Results from a Real-World Multicentric Study. Brain Sci. 2022, 12, 1554. [Google Scholar] [CrossRef]
- Blair, R.J.R.; Bashford-Largo, J.; Zhang, R.; Lukoff, J.; Elowsky, J.S.; Leibenluft, E.; Hwang, S.; Dobbertin, M.; Blair, K.S. Temporal Discounting Impulsivity and Its Association with Conduct Disorder and Irritability. J. Child Adolesc. Psychopharmacol. 2020, 30, 542–548. [Google Scholar] [CrossRef]
- Brown, D.R.; Topcu, M. Willingness to Participate in Clinical Treatment Research among Older African Americans and Whites. Gerontologist 2003, 43, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in Cancer Clinical Trials: Race-, Sex-, and Age-Based Disparities. JAMA 2004, 291, 2720–2726. [Google Scholar] [CrossRef]
- Hall, W.D. Representation of Blacks, Women, and the Very Elderly (Aged > or = 80) in 28 Major Randomized Clinical Trials. Ethn. Dis. 1999, 9, 333–340. [Google Scholar]
- Stallings, F.L.; Ford, M.E.; Simpson, N.K.; Fouad, M.N.; Jernigan, J.C.; Trauth, J.M.; Miller, D.S. Black Participation in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control. Clin. Trials 2000, 21 (Suppl. 6), 379S–389S. [Google Scholar] [CrossRef]
- Gitanjali, B.; Raveendran, R.; Pandian, D.G.; Sujindra, S. Recruitment of Subjects for Clinical Trials after Informed Consent: Does Gender and Educational Status Make a Difference? J. Postgrad. Med. 2003, 49, 109–113. [Google Scholar]
- Baquet, C.R.; Commiskey, P.; Daniel Mullins, C.; Mishra, S.I. Recruitment and Participation in Clinical Trials: Socio-Demographic, Rural/Urban, and Health Care Access Predictors. Cancer Detect. Prev. 2006, 30, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, L.C.; Hayes, S.N.; Parker, M.W.; Balls-Berry, J.E.; Halyard, M.Y.; Pinn, V.W.; Radecki Breitkopf, C. African American Women’s Perceptions and Attitudes Regarding Participation in Medical Research: The Mayo Clinic/The Links, Incorporated Partnership. J. Women’s Health 2014, 23, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanlon, J.K.; Wofford, L.; Fair, A.; Philippi, D. Predictors of Participation in Clinical Research. Nurs. Res. 2021, 70, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.; Kashdan, T.B.; Coelho, R.; Albino-Teixeira, A.; Soares-da-Silva, P. Healthy Subjects Volunteering for Phase I Studies: Influence of Curiosity, Exploratory Tendencies and Perceived Self-Efficacy. Int. J. Clin. Pharmacol. Ther. 2008, 46, 109–118. [Google Scholar] [CrossRef]
- Gouveia, R.; Cruz, V.T.; Almeida, L. Sociodemographic and Psychological Characteristics Influencing Patients’ Willingness to Participate in Clinical Trials. BMJ Open Qual. 2022, 11, e002044. [Google Scholar] [CrossRef]
MCI (n = 60) | SCD (n = 44) | |||
---|---|---|---|---|
Mean ± SD/n (%) | Mean ± SD/n (%) | r | p | |
Age (years) | 74.18 ± 4.5 | 73.61 ± 5.2 | 0.08 | 0.446 |
Sex (male) | 29 (48.3%) | 17 (38.6%) | 0.61 | 0.433 |
Education (years) | 11.45 ± 4.2 | 13.89 ± 4.1 | −0.30 | 0.002 |
Depressive temperament | 24.43 ± 21.1 | 34.9 ± 21.8 | −0.23 | 0.018 |
Cyclothymic temperament | 26.47 ± 20.5 | 26.46 ± 19.9 | −0.01 | 0.953 |
Hyperthymic temperament | 44.7 ± 19.2 | 42.53 ± 18.9 | 0.04 | 0.711 |
Irritable temperament | 9.91 ± 12.9 | 14.33 ± 13.6 | −0.18 | 0.073 |
Anxious temperament | 35.14 ± 30.4 | 33.39 ± 27.3 | 0.03 | 0.733 |
PT (n = 21) | NPT (n = 70) | RP (n = 13) | ||||
---|---|---|---|---|---|---|
Mean ± SD/n (%) | Mean ± SD/n (%) | Mean ± SD/n (%) | χ2 | p | Post Hoc | |
Age (years) | 72.38 ± 4.5 | 74.53 ± 4.8 | 73.31 ± 5.2 | 3.25 | 0.197 | - |
Sex (male) | 13 (61.9%) | 29 (41.4%) | 4 (30.8%) | 3.84 | 0.147 | - |
Education (years) | 11.81 ± 5.0 | 12.83 ± 4.0 | 11.69 ± 4.8 | 0.94 | 0.624 | - |
Diagnosis (MCI) | 10 (16.7%) | 39 (65.0%) | 11 (18.3%) | 4.85 | 0.089 | - |
Depressive temperament | 28.57 ± 20.1 | 29.29 ± 22.0 | 27.06 ± 25.4 | 0.29 | 0.863 | - |
Cyclothymic temperament | 20.92 ± 17.1 | 28.04 ± 21.3 | 26.92 ± 17.6 | 1.73 | 0.420 | - |
Hyperthymic temperament | 47.28 ± 13.3 | 41.96 ± 19.2 | 47.94 ± 25.2 | 1.67 | 0.434 | - |
Irritable temperament | 17.18 ± 14.4 | 11.02 ± 13.1 | 7.14 ± 10.7 | 5.81 | 0.055 | - |
Anxious temperament | 14.46 ± 8.2 | 38.88 ± 29.9 | 42.49 ± 32.7 | 14.65 | 0.001 | PT < NPT, RP |
PT (n = 10) | NPT (n = 39) | RP (n = 11) | ||||
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | χ2 | p | Post Hoc | |
Age (years) | 73.2 ± 5.4 | 74.51 ± 4.1 | 73.91 ± 5.3 | 0.32 | 0.853 | - |
Sex (male) | 5 (50.0%) | 20 (51.3%) | 4 (57.1%) | - | 0.697 | |
Education (years) | 10.3 ± 4.7 | 11.59 ± 3.9 | 12 ± 4.7 | 0.80 | 0.671 | - |
Depressive temperament | 20 ± 16.9 | 26.01 ± 21.0 | 22.89 ± 25.5 | 0.78 | 0.676 | - |
Cyclothymic temperament | 18.21 ± 16.0 | 29.43 ± 22.2 | 23.48 ± 16.0 | 1.85 | 0.396 | - |
Hyperthymic temperament | 42.86 ± 11.7 | 44.37 ± 18.6 | 47.56 ± 27.0 | 0.26 | 0.880 | - |
Irritable temperament | 11.43 ± 12.1 | 10.58 ± 13.8 | 6.17 ± 10.0 | 1.53 | 0.464 | - |
Anxious temperament | 11.07 ± 7.2 | 38.77 ± 30.0 | 44.16 ± 35.5 | 8.66 | 0.013 | PT < NPT, RP |
PT (n = 11) | NPT (n = 31) | |||
---|---|---|---|---|
Mean ± SD | Mean ± SD | r | p | |
Age (years) | 71.64 ± 3.6 | 74.55 ± 5.6 | −0.25 | 0.105 |
Sex (male) | 8 (72.7%) | 9 (29.0%) | - | 0.029 |
Education (years) | 13.18 ± 5.1 | 14.39 ± 3.5 | −0.05 | 0.760 |
Depressive temperament | 36.36 ± 20.3 | 33.41 ± 22.9 | 0.04 | 0.796 |
Cyclothymic temperament | 23.38 ± 18.5 | 26.31 ± 20.4 | −0.05 | 0.752 |
Hyperthymic temperament | 51.3 ± 14.0 | 38.94 ± 19.8 | 0.29 | 0.063 |
Irritable temperament | 22.4 ± 14.7 | 11.58 ± 12.3 | 0.33 | 0.036 |
Anxious temperament | 17.53 ± 8.1 | 39.02 ± 30.4 | −0.34 | 0.029 |
A. Full Multivariate Model (AIC = 89.76, R2adj = 0.26) | B. Backward Stepwise Selected Model (AIC = 84.80, R2adj = 0.22) | |||||
---|---|---|---|---|---|---|
Variables | Estimate | OR (95% CI) | p | Estimate | OR (95% CI) | p |
(Intercept) | 11.47 | - | 0.068 | 10.21 | - | 0.037 |
Age (years) | −0.14 | 0.87 (0.75–1.01) | 0.068 | −0.15 | 0.87 (0.76–0.98) | 0.027 |
Sex (male) | 0.72 | 2.06 (0.59–7.21) | 0.258 | - | - | - |
Education (years) | −0.16 | 0.85 (0.73–0.99) | 0.041 | - | - | - |
Diagnosis (MCI) | −0.76 | 0.47 (0.13–1.73) | 0.256 | - | - | - |
Depressive temperament | 0.02 | 1.02 (0.98–1.06) | 0.403 | - | - | - |
Cyclothymic temperament | −0.03 | 0.97 (0.93–1.02) | 0.230 | - | - | - |
Hyperthymic temperament | −0.00 | 0.10 (0.96–1.04) | 0.867 | - | - | - |
Irritable temperament | 0.05 | 1.05 (1–1.10) | 0.048 | 0.05 | 1.05 (1.01–1.09) | 0.026 |
Anxious temperament | −0.08 | 0.93 (0.88–0.98) | 0.003 | −0.07 | 0.93 (0.90–0.97) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cintoli, S.; Elefante, C.; Radicchi, C.; Brancati, G.E.; Bacciardi, S.; Bonaccorsi, J.; Siciliano, G.; Maremmani, I.; Perugi, G.; Tognoni, G. Could Temperamental Features Modulate Participation in Clinical Trials? J. Clin. Med. 2023, 12, 1121. https://doi.org/10.3390/jcm12031121
Cintoli S, Elefante C, Radicchi C, Brancati GE, Bacciardi S, Bonaccorsi J, Siciliano G, Maremmani I, Perugi G, Tognoni G. Could Temperamental Features Modulate Participation in Clinical Trials? Journal of Clinical Medicine. 2023; 12(3):1121. https://doi.org/10.3390/jcm12031121
Chicago/Turabian StyleCintoli, Simona, Camilla Elefante, Claudia Radicchi, Giulio Emilio Brancati, Silvia Bacciardi, Joyce Bonaccorsi, Gabriele Siciliano, Icro Maremmani, Giulio Perugi, and Gloria Tognoni. 2023. "Could Temperamental Features Modulate Participation in Clinical Trials?" Journal of Clinical Medicine 12, no. 3: 1121. https://doi.org/10.3390/jcm12031121
APA StyleCintoli, S., Elefante, C., Radicchi, C., Brancati, G. E., Bacciardi, S., Bonaccorsi, J., Siciliano, G., Maremmani, I., Perugi, G., & Tognoni, G. (2023). Could Temperamental Features Modulate Participation in Clinical Trials? Journal of Clinical Medicine, 12(3), 1121. https://doi.org/10.3390/jcm12031121