Mechanical Support Strategies for High-Risk Procedures in the Invasive Cardiac Catheterization Laboratory: A State-of-the-Art Review
Abstract
:1. Introduction
2. Intra-Aortic Balloon Pump
3. Impella (Abiomed, Danvers, MA, USA)
4. TandemHeart (Cardiac Assist Inc, Pittsburgh, PA, USA)
5. VA-ECMO
6. High-Risk Percutaneous Coronary Interventions
7. Ventricular Tachycardia Ablation
8. Transcatheter Aortic Valve Replacement
9. Transcatheter Edge-to-Edge Repair Procedures
10. Catheter-Directed Therapies for Pulmonary Embolism
11. Summary, Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability Statement
Conflicts of Interest
References
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Sanborn, T.A.; White, H.D.; Talley, J.D.; Christopher, E.B.; Jacobs, A.K.; Slater, J.N.; Col, J.; et al. Early Revascularization in Acute Myocardial Infarction Complicated by Cardiogenic Shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.P.; Spertus, J.A.; Curtis, J.P.; Desai, N.; Masoudi, F.A.; Bach, R.G.; McNeely, C.; Al-Badarin, F.; House, J.A.; Kulkarni, H.; et al. The Evolving Landscape of Impella Use in the United States Among Patients Undergoing Percutaneous Coronary Intervention With Mechanical Circulatory Support. Circulation 2020, 141, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Dhruva, S.S.; Ross, J.S.; Mortazavi, B.J.; Hurley, N.C.; Krumholz, H.M.; Curtis, J.P.; Berkowitz, A.; Masoudi, F.A.; Messenger, J.C.; Parzynski, C.S.; et al. Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump With In-Hospital Mortality and Major Bleeding Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock. J. Am. Med. Assoc. 2020, 323, 734–745. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.J.; Hausleiter, J.; Abdel-Wahab, M.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Hambrecht, R.; et al. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation 2019, 139, 395–403. [Google Scholar] [CrossRef]
- Perera, D.; Stables, R.; Thomas, M.; Booth, J.; Pitt, M.; Blackman, D.; de Belder, A.; Redwood, S.; for the BCIS-1 Investigators. Elective Intra-aortic Balloon Counterpulsation During High-Risk Percutaneous Coronary Intervention: A Randomized Controlled Trial. J. Am. Med. Assoc. 2010, 304, 867–874. [Google Scholar] [CrossRef]
- Moulopoulos, S.D.; Topaz, S.; Kolff, W.J. Diastolic balloon pumping (with carbon dioxide) in the aorta—A mechanical assistance to the failing circulation. Am. Heart J. 1962, 63, 669–675. [Google Scholar] [CrossRef]
- Parissis, H.; Graham, V.; Lampridis, S.; Lau, M.; Hooks, G.; Mhandu, P.C. IABP: History-evolution-pathophysiology-indications: What we need to know. J. Cardiothorac. Surg. 2016, 11, 122. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiol. Pol. 2016, 74, 1037–1147. [Google Scholar] [CrossRef]
- Akodad, M.; Delmas, C.; Bonello, L.; Duflos, C.; Roubille, F. Intra-aortic balloon pump: Is. the technique really outdated? ESC Heart Fail. 2020, 7, 1025–1030. [Google Scholar] [CrossRef]
- Nishida, H.; Song, T.; Onsager, D.; Nguyen, A.; Grinstein, J.; Chung, B.; Smith, B.; Kalantari, S.; Sarswat, N.; Kim, G.; et al. Significant vascular complications in percutaneous axillary intra-aortic balloon pump. Ann. Vasc. Surg. 2022, 83, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Karuppiah, S.; Remskar, M.; Prielipp, R. Management of patients with the Intravascular Ventricular Assist System (iVAS) for non-cardiac surgery. Ann. Card. Anaesth. 2022, 25, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Uriel, N.; Jeevanandam, V.; Imamura, T.; Onsager, D.; Song, T.; Ota, T.; Juricek, C.; Combs, P.; Lammy, T.; Patel-Raman, S.; et al. Clinical Outcomes and Quality of Life With an Ambulatory Counterpulsation Pump in Advanced Heart Failure Patients: Results of the Multicenter Feasibility Trial. Circ. Heart Fail. 2020, 13, e006666. [Google Scholar] [CrossRef] [PubMed]
- Meyns, B.; Dens, J.; Sergeant, P.; Herijgers, P.; Daenen, W.; Flameng, W. Initial experiences with the Impella device in patients with cardiogenic shock—Impella support for cardiogenic shock. Thorac. Cardiovasc. Surg. 2003, 51, 312–317. [Google Scholar]
- Raess, D.H.; Weber, D.M. Impella 2.5. J. Cardiovasc. Transl. Res. 2009, 2, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.B.; Goldstein, J.; Milano, C.; Morris, L.D.; Kormos, R.L.; Bhama, J.; Kapur, N.K.; Bansal, A.; Garcia, J.; Baker, J.N.; et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J. Heart Lung Transplant. 2015, 34, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Remmelink, M.; Sjauw, K.D.; Henriques, J.P.; de Winter, R.J.; Koch, K.T.; van der Schaaf, R.J.; Vis, M.M.; Tijssen, J.G.; Piek, J.J.; Baan, J. Effects of left ventricular unloading by Impella recover LP2.5 on coronary hemodynamics. Catheter. Cardiovasc. Interv. 2007, 70, 532–537. [Google Scholar] [CrossRef]
- Sjauw, K.D.; Konorza, T.; Erbel, R.; Danna, P.L.; Viecca, M.; Minden, H.-H.; Butter, C.; Engstrøm, T.; Hassager, C.; Machado, F.P.; et al. Supported High-Risk Percutaneous Coronary Intervention With the Impella 2.5 Device: The Europella Registry. J. Am. Coll. Cardiol. 2009, 54, 2430–2434. [Google Scholar] [CrossRef]
- Zein, R.; Patel, C.; Mercado-Alamo, A.; Schreiber, T.; Kaki, A. A Review of the Impella Devices. Interv. Cardiol. 2022, 17, e05. [Google Scholar] [CrossRef]
- Ali, J.M.; Abu-Omar, Y. Complications associated with mechanical circulatory support. Ann. Transl. Med. 2020, 8, 835. [Google Scholar] [CrossRef]
- Dhruva, S.S.; Mortazavi, B.J.; Desai, N.R. Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump for Cardiogenic Shock—Reply. J. Am. Med. Assoc. 2020, 324, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Kar, B.; Adkins, L.E.; Civitello, A.B.; Loyalka, P.; Palanichamy, N.; Gemmato, C.J.; Myers, T.J.; Gregoric, I.D.; Delgado, R.M. Clinical experience with the TandemHeart percutaneous ventricular assist device. Tex. Heart Inst. J. 2006, 33, 111–115. [Google Scholar] [PubMed]
- Salter, B.S.; Gross, C.R.; Weiner, M.M.; Dukkipati, S.R.; Serrao, G.W.; Moss, N.; Anyanwu, A.C.; Burkhoff, D.; Lala, A. Temporary mechanical circulatory support devices: Practical considerations for all stakeholders. Nat. Rev. Cardiol. 2023, 20, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Sick, P.; Boudriot, E.; Diederich, K.-W.; Hambrecht, R.; Niebauer, J.; Schuler, G. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur. Heart J. 2005, 26, 1276–1283. [Google Scholar] [CrossRef]
- Cheng, J.M.; den Uil, C.A.; Hoeks, S.E.; van der Ent, M.; Jewbali, L.S.; van Domburg, R.T.; Serruys, P.W. Percutaneous left ventricular assist devices vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: A meta-analysis of controlled trials. Eur. Heart J. 2009, 30, 2102–2108. [Google Scholar] [CrossRef]
- Cheng, R.; Hachamovitch, R.; Kittleson, M.; Patel, J.; Arabia, F.; Moriguchi, J.; Esmailian, F.; Azarbal, B. Complications of Extracorporeal Membrane Oxygenation for Treatment of Cardiogenic Shock and Cardiac Arrest: A Meta-Analysis of 1,866 Adult Patients. Ann. Thorac. Surg. 2014, 97, 610–616. [Google Scholar] [CrossRef]
- Foley, P.J.; Morris, R.J.; Woo, E.Y.; Acker, M.A.; Wang, G.J.; Fairman, R.M.; Jackson, B.M. Limb ischemia during femoral cannulation for cardiopulmonary support. J. Vasc. Surg. 2010, 52, 850–853. [Google Scholar] [CrossRef]
- Stulak, J.M.; Dearani, J.A.; Burkhart, H.M.; Barnes, R.D.; Scott, P.D.; Schears, G.J. ECMO Cannulation Controversies and Complications. Semin. Cardiothorac. Vasc. Anesthesia 2009, 13, 176–182. [Google Scholar] [CrossRef]
- Yannopoulos, D.; Bartos, J.; Raveendran, G.; Walser, E.; Connett, J.; Murray, T.A.; Collins, G.; Zhang, L.; Kalra, R.; Kosmopoulos, M.; et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): A phase 2, single centre, open-label, randomised controlled trial. Lancet 2020, 396, 1807–1816. [Google Scholar] [CrossRef]
- Belohlavek, J.; Smalcova, J.; Rob, D.; Franek, O.; Smid, O.; Pokorna, M.; Horák, J.; Mrazek, V.; Kovarnik, T.; Zemanek, D.; et al. Effect of Intra-arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. J. Am. Med. Assoc. 2022, 327, 737–747. [Google Scholar] [CrossRef]
- Suverein, M.M.; Delnoij, T.S.; Lorusso, R.; Brandon Bravo Bruinsma, G.J.; Otterspoor, L.; Elzo Kraemer, C.V.; Vlaar, A.P.; van der Heijden, J.J.; Scholten, E.; den Uil, C.; et al. Early Extracorporeal CPR for Refractory Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2023, 388, 299–309. [Google Scholar] [CrossRef]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2018, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Dangas, G.; Mehran, R.; Feldman, D.; Stoyioglou, A.; Pichard, A.D.; Kent, K.M.; Satler, L.F.; Fahy, M.; Lansky, A.J.; Stone, G.W.; et al. Postprocedure creatine kinase-MB elevation and baseline left ventricular dysfunction predict one-year mortality after percutaneous coronary intervention. Am. J. Cardiol. 2002, 89, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J. Peri-procedural myocardial injury: 2005 update. Eur. Heart J. 2005, 26, 2493–2519. [Google Scholar] [CrossRef]
- O’Neill, W.W.; Kleiman, N.S.; Moses, J.; Henriques, J.P.; Dixon, S.; Massaro, J.; Palacios, I.; Maini, B.; Mulukutla, S.; Džavík, V.; et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: The PROTECT II study. Circulation 2012, 126, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, W.W.; Anderson, M.; Burkhoff, D.; Grines, C.L.; Kapur, N.K.; Lansky, A.J.; Mannino, S.; McCabe, J.M.; Alaswad, K.; Daggubati, R.; et al. Improved outcomes in patients with severely depressed LVEF undergoing percutaneous coronary intervention with contemporary practices. Am. Heart J. 2022, 248, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Wollmuth, J. Ejection Fraction Improvement Following Contemporary High-Risk Percutaneous Coronary Intervention: RESTORE EF Study Results. J. Soft Comput. Artif. Intell. 2022, 1, 100350. [Google Scholar] [CrossRef]
- Becher, T.; Eder, F.; Baumann, S.; Loßnitzer, D.; Pollmann, B.; Behnes, M.; Borggrefe, M.; Akin, I. Unprotected versus protected high-risk percutaneous coronary intervention with the Impella 2.5 in patients with multivessel disease and severely reduced left ventricular function. Medicine 2018, 97, e12665. [Google Scholar] [CrossRef]
- Leon, S.A.; Rosen, J.L.; Ahmad, D.; Austin, M.A.; Vishnevsky, A.; Rajapreyar, I.N.; Ruggiero, N.J.; Rame, J.E.; Entwistle, J.W.; Massey, H.T.; et al. Microaxial circulatory support for percutaneous coronary intervention: A systematic review and meta-analysis. Artif. Organs 2023, 47, 934–942. [Google Scholar] [CrossRef]
- Impella®-Supported PCI in High-Risk Patients With Complex Coronary Artery Disease and Reduced Left Ventricular Function (PROTECT IV). Available online: https://clinicaltrialsgov/study/NCT04763200 (accessed on 12 December 2023).
- van den Brink, F.S.; Meijers, T.A.; Hofma, S.H.; van Boven, A.J.; Nap, A.; Vonk, A.; Symersky, P.; Sjauw, K.D.; Knaapen, P. Prophylactic veno-arterial extracorporeal membrane oxygenation in patients undergoing high-risk percutaneous coronary intervention. Neth. Heart J. 2020, 28, 139–144. [Google Scholar] [CrossRef]
- van den Buijs, D.M.; Wilgenhof, A.; Knaapen, P.; Zivelonghi, C.; Meijers, T.; Vermeersch, P.; Arslan, F.; Verouden, N.; Nap, A.; Sjauw, K.; et al. Prophylactic Impella CP versus VA-ECMO in Patients Undergoing Complex High-Risk Indicated PCI. J. Interv. Cardiol. 2022, 2022, 8167011. [Google Scholar] [CrossRef]
- Perera, D. Controlled Trial of High-risk Coronary Intervention With Percutaneous Left Ventricular Unloading (CHIP-BCIS3); King’s College London: London, UK, 2023. [Google Scholar]
- den Uil, C.; Daemen, J.; Lenzen, M.J.; Maugenest, A.-M.; Joziasse, L.; van Geuns, R.J.; Van Mieghem, N.M. Pulsatile iVAC 2L circulatory support in high-risk percutaneous coronary intervention. EuroIntervention 2017, 12, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Lyu, S.; Liu, H.; Song, X.; Yuan, F.; Xu, F.; Zhang, M.; Zhang, M.; Wang, W.; Zhang, D.; et al. Timing of initiation of intra-aortic balloon pump in patients with acute myocardial infarction complicated by cardiogenic shock: A meta-analysis. Clin. Cardiol. 2019, 42, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- van Nunen, L.X.; van ’t Veer, M.; Zimmermann, F.M.; Wijnbergen, I.; Brueren, G.R.G.; Tonino, P.A.L.; Aarnoudse, W.A.; Pijls, N.H.J. Intra-aortic balloon pump counterpulsation in extensive myocardial infarction with persistent ischemia: The SEMPER FI pilot study. Catheter. Cardiovasc. Interv. 2020, 95, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Irvine, J.; Dorian, P.; Baker, B.; O’Brien, B.J.; Roberts, R.; Gent, M.; Newman, D.; Connolly, S.J.; for the CIDS Investigators. Quality of life in the Canadian Implantable Defibrillator Study (CIDS). Am. Heart J. 2002, 144, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Schron, E.B.; Exner, D.V.; Yao, Q.; Jenkins, L.S.; Steinberg, J.S.; Cook, J.R.; Kutalek, S.P.; Friedman, P.L.; Bubien, R.S.; Page, R.L.; et al. Quality of life in the antiarrhythmics versus implantable defibrillators trial: Impact of therapy and influence of adverse symptoms and defibrillator shocks. Circulation 2002, 105, 589–594. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Santangeli, P.; Muser, D.; Zado, E.S.; Magnani, S.; Khetpal, S.; Hutchinson, M.D.; Supple, G.; Frankel, D.S.; Garcia, F.C.; Bala, R.; et al. Acute hemodynamic decompensation during catheter ablation of scar-related ventricular tachycardia: Incidence, predictors, and impact on mortality. Circ. Arrhythm. Electrophysiol. 2015, 8, 68–75. [Google Scholar] [CrossRef]
- Turagam, M.K.; Vuddanda, V.; Koerber, S.; Garg, J.; Yarlagadda, B.; Dar, T.; Aryana, A.; Di Biase, L.; Natale, A.; Lakkireddy, D. Percutaneous ventricular assist device in ventricular tachycardia ablation: A systematic review and meta-analysis. J. Interv. Card. Electrophysiol. 2019, 55, 197–205. [Google Scholar] [CrossRef]
- Mariani, S.; Napp, L.C.; Kraaier, K.; Li, T.; Bounader, K.; Hanke, J.S.; Dogan, G.; Schmitto, J.D.; Lorusso, R. Prophylactic mechanical circulatory support for protected ventricular tachycardia ablation: A meta-analysis of the literature. Artif. Organs 2021, 45, 987–997. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Vallabhajosyula, S.; Vaidya, V.R.; Patlolla, S.H.; Desai, V.; Mulpuru, S.K.; Noseworthy, P.A.; Kapa, S.; Egbe, A.C.; Gersh, B.J.; et al. Venoarterial Extracorporeal Membrane Oxygenation Support for Ventricular Tachycardia Ablation: A Systematic Review. ASAIO J. 2020, 66, 980–985. [Google Scholar] [CrossRef]
- Eveborn, G.W.; Schirmer, H.; Heggelund, G.; Lunde, P.; Rasmussen, K. The evolving epidemiology of valvular aortic stenosis. The Tromsø Study. Heart 2013, 99, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Czarny, M.J.; Resar, J.R. Diagnosis and Management of Valvular Aortic Stenosis. Clin. Med. Insights: Cardiol. 2014, 8 (Suppl. S1), 15–24. [Google Scholar] [CrossRef] [PubMed]
- Iung, B.; Baron, G.; Butchart, E.G.; Delahaye, F.; Gohlke-Bärwolf, C.; Levang, O.W.; Tornos, P.; Vanoverschelde, J.-L.; Vermeer, F.; Boersma, E.; et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 2003, 24, 1231–1243. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef]
- Svensson, L.G.; Blackstone, E.H.; Rajeswaran, J.; Brozzi, N.; Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; et al. Comprehensive analysis of mortality among patients undergoing TAVR: Results of the PARTNER trial. J. Am. Coll. Cardiol. 2014, 64, 158–168. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Nishimura, R.A.; Grover, F.L.; Brindis, R.G.; Carroll, J.D.; Edwards, F.H.; Peterson, E.D.; Rumsfeld, J.S.; Shahian, D.M.; Thourani, V.H.; et al. Annual Outcomes with Transcatheter Valve Therapy: From the STS/ACC TVT Registry. Ann. Thorac. Surg. 2016, 101, 789–800. [Google Scholar] [CrossRef]
- Orvin, K.; Perl, L.; Landes, U.; Dvir, D.; Webb, J.G.; Stelzmüller, M.; Wisser, W.; Nazif, T.M.; George, I.; Miura, M.; et al. Percutaneous mechanical circulatory support from the collaborative multicenter Mechanical Unusual Support in TAVI (MUST) Registry. Catheter. Cardiovasc. Interv. 2021, 98, E862–E869. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Patlolla, S.H.; Sandhyavenu, H.; Vallabhajosyula, S.; Barsness, G.W.; Dunlay, S.M.; Greason, K.L.; HolmesJr, D.R.; Eleid, M.F. Periprocedural Cardiopulmonary Bypass or Venoarterial Extracorporeal Membrane Oxygenation During Transcatheter Aortic Valve Replacement: A Systematic Review. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Almalla, M.; Kersten, A.; Altiok, E.; Marx, N.; Schröder, J.W. Hemodynamic support with Impella ventricular assist device in patients undergoing TAVI: A single center experience. Catheter. Cardiovasc. Interv. 2020, 95, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Carabello, B.A. The Current Therapy for Mitral Regurgitation. J. Am. Coll. Cardiol. 2008, 52, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Feldman, T.; Kar, S.; Elmariah, S.; Smart, S.C.; Trento, A.; Siegel, R.J.; Apruzzese, P.; Fail, P.; Rinaldi, M.J.; Smalling, R.W.; et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of EVEREST II. J. Am. Coll. Cardiol. 2015, 66, 2844–2854. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; Yasuda, S.; Matsumoto, T.; Amaki, M.; Mizuno, S.; Tobaru, T.; Jujo, K.; Ootomo, T.; Yamaguchi, J.; Fukuda, K.; et al. AVJ-514 Trial—Baseline Characteristics and 30-Day Outcomes Following MitraClip((R)) Treatment in a Japanese Cohort. Circ. J. 2017, 81, 1116–1122. [Google Scholar] [CrossRef]
- Maisano, F.; Franzen, O.; Baldus, S.; Schäfer, U.; Hausleiter, J.; Butter, C.; Ussia, G.P.; Sievert, H.; Richardt, G.; Widder, J.D.; et al. Percutaneous Mitral Valve Interventions in the Real World: Early and 1-Year Results From the ACCESS-EU, A Prospective, Multicenter, Nonrandomized Post-Approval Study of the MitraClip Therapy in Europe. J. Am. Coll. Cardiol. 2013, 62, 1052–1061. [Google Scholar] [CrossRef]
- Matsumoto, T.; Kubo, S.; Izumo, M.; Mizuno, S.; Shirai, S.; MitraClip Japan PMS Investigators. MitraClip Treatment of Moderate-to-Severe and Severe Mitral Regurgitation in High Surgical Risk Patients—Real-World 1-Year Outcomes from Japan. Circ. J. 2022, 86, 402–411. [Google Scholar] [CrossRef]
- Srinivasan, A.; Brown, J.; Ahmed, H.; Daniel, M. PASCAL repair system for patients with mitral regurgitation: A systematic review. Int. J. Cardiol. 2023, 376, 108–114. [Google Scholar] [CrossRef]
- Ashraf, S.; Ando, T.; Blank, N.; Munir, A.; Schreiber, T. MitraClip to Treat Severe Ischemic Mitral Regurgitation During Impella CP Support in a 70-Year-Old Woman. Tex. Heart Inst. J. 2020, 47, 306–310. [Google Scholar] [CrossRef]
- Foerst, J.; Cardenas, A.; Swank, G. Safety of MitraClip Implant in the Unstable Patient: Feasibility of Concomitant Left Ventricular Support Device. JACC Cardiovasc. Interv. 2016, 9, e71–e72. [Google Scholar] [CrossRef] [PubMed]
- Mizote, I.; Schirmer, J.; Schäfer, U. A case of successful Mitraclip implantation in a patient having a large coaptation gap under extracorporeal membrane oxygenation (ECMO). Catheter. Cardiovasc. Interv. 2018, 91, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Muraca, I.; Pennesi, M.; Carrabba, N.; Scudiero, F.; Migliorini, A.; Marchionni, N.; Stefàno, P.; Valenti, R. Percutaneous left ventricular advanced support for ‘protected’ complex high-risk transcatheter mitral valve repair: A case series. Eur. Heart J.—Case Rep. 2020, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nersesian, G.; Lewin, D.; Schoenrath, F.; Solowjowa, N.; Kukucka, M.; Falk, V.; Klein, C.; Potapov, E.; Unbehaun, A. Percutaneous mitral valve repair assisted by a catheter-based circulatory support device in a heart transplant patient. J. Card. Surg. 2021, 36, 3905–3909. [Google Scholar] [CrossRef] [PubMed]
- Schmiady, M.O.; Winnik, S.; Bettex, D.; Aser, R. MitraClip((R)) procedure as bridge to left ventricular assist device: Enable extracorporeal membrane oxygenation weaning and reduce perioperative risk. Perfusion 2023, 38, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Seizer, P.; Schibilsky, D.; Sauter, R.; Schreieck, J.; Lausberg, H.; Walker, T.; Gawaz, M.; Langer, H.F.; Schlensak, C. Percutaneous Mitral Valve Edge-to-Edge Repair Assisted by Hemodynamic Support Devices: A Case Series of Bailout Procedures. Circ. Heart Fail. 2017, 10, e004051. [Google Scholar] [CrossRef]
- Simard, T.; Vemulapalli, S.; Jung, R.G.; Vekstein, A.; Stebbins, A.; Holmes, D.R.; Czarnecki, A.; Hibbert, B.; Alkhouli, M. Transcatheter Edge-to-Edge Mitral Valve Repair in Patients With Severe Mitral Regurgitation and Cardiogenic Shock. J. Am. Coll. Cardiol. 2022, 80, 2072–2084. [Google Scholar] [CrossRef]
- Sobajima, M.; Fukuda, N.; Ueno, H.; Kinugawa, K. A case report of advanced heart failure refractory to pharmacological therapy who was successfully recovered by combinatory usage of cardiac resynchronizing therapy, Impella and MitraClip. Eur. Heart J. Case Rep. 2020, 4, 1–5. [Google Scholar] [CrossRef]
- Staudacher, D.L.; Bode, C.; Wengenmayer, T. Severe mitral regurgitation requiring ECMO therapy treated by interventional valve reconstruction using the MitraClip. Catheter. Cardiovasc. Interv. 2013, 85, 170–175. [Google Scholar] [CrossRef]
- Tanaka, S.; Imamura, T.; Narang, N.; Fukuo, A.; Nakamura, M.; Fukuda, N.; Ueno, H.; Kinugawa, K. Case series of transcatherter edge-to-edge repair using MitraClip() system with Impella((R)) mechanical circulatory support. Eur. Heart J. Case Rep. 2022, 6, ytac370. [Google Scholar] [CrossRef]
- Tyler, J.; Narbutas, R.; Oakley, L.; Ebinger, J.; Nakamura, M. Percutaneous mitral valve repair with MitraClip XTR for acute mitral regurgitation due to papillary muscle rupture. J. Cardiol. Cases 2020, 22, 246–248. [Google Scholar] [CrossRef]
- Vandenbriele, C.; Balthazar, T.; Wilson, J.; Adriaenssens, T.; Davies, S.; Droogne, W.; Dubois, C.; Caetano, A.F.; Goetschalckx, K.; Jacobs, S.; et al. Left Impella(R)-device as bridge from cardiogenic shock with acute, severe mitral regurgitation to MitraClip(R)-procedure: A new option for critically ill patients. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Huisman, M.V.; Barco, S.; Cannegieter, S.C.; Le Gal, G.; Konstantinides, S.V.; Reitsma, P.H.; Rodger, M.; Noordegraaf, A.V.; Klok, F.A. Pulmonary embolism. Nat. Rev. Dis. Primers. 2018, 4, 18028. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.R.; de Wit, K. Pulmonary Embolism. N. Engl. J. Med. 2022, 387, 45–57. [Google Scholar] [CrossRef]
- Sista, A.K.; Miller, L.E.; Kahn, S.R.; Kline, J.A. Persistent right ventricular dysfunction, functional capacity limitation, exercise intolerance, and quality of life impairment following pulmonary embolism: Systematic review with meta-analysis. Vasc. Med. 2017, 22, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Luijten, D.; de Jong, C.M.; Klok, F.A. Post Pulmonary Embolism Syndrome. Arch. Bronconeumol. 2022, 58, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Pruszczyk, P.; Klok, F.A.; Kucher, N.; Roik, M.; Meneveau, N.; Sharp, A.S.P.; Nielsen-Kudsk, J.N.-K.; Obradović, S.; Barco, S.; Giannini, F.; et al. Percutaneous treatment options for acute pulmonary embolism: A clinical consensus statement by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function and the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention 2022, 18, e623–e638. [Google Scholar] [CrossRef]
- Harvey, J.J.; Huang, S.; Uberoi, R. Catheter-directed therapies for the treatment of high risk (massive) and intermediate risk (submassive) acute pulmonary embolism. Cochrane Database Syst. Rev. 2022, 2022, CD013083. [Google Scholar] [CrossRef]
- Keller, K.; Hobohm, L.; Ebner, M.; Kresoja, K.-P.; Münzel, T.; Konstantinides, S.V.; Lankeit, M. Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur. Heart J. 2020, 41, 522–529. [Google Scholar] [CrossRef]
- Stein, P.D.; Matta, F.; Hughes, P.G.; Hughes, M.J. Nineteen-Year Trends in Mortality of Patients Hospitalized in the United States with High-Risk Pulmonary Embolism. Am. J. Med. 2021, 134, 1260–1264. [Google Scholar] [CrossRef]
- Akbal, Ö.Y.; Keskin, B.; Tokgöz, H.C.; Hakgör, A.; Karagöz, A.; Tanyeri, S.; Kültürsay, B.; Külahçıoğlu, S.; Bayram, Z.; Efe, S.; et al. A seven-year single-center experience on AngioJet rheolytic thrombectomy in patients with pulmonary embolism at high risk and intermediate-high risk. Anatol. J. Cardiol. 2021, 25, 902–911. [Google Scholar] [CrossRef]
- De Gregorio, M.A.; Guirola, J.A.; Kuo, W.T.; Serrano, C.; Urbano, J.; Figueredo, A.L.; Sierre, S.; Quezada, C.A.; Barbero, E.; Jiménez, D. Catheter-directed aspiration thrombectomy and low-dose thrombolysis for patients with acute unstable pulmonary embolism: Prospective outcomes from a PE registry. Int. J. Cardiol. 2019, 287, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Kucher, N.; Boekstegers, P.; Müller, O.J.; Kupatt, C.; Beyer-Westendorf, J.; Heitzer, T.; Tebbe, U.; Horstkotte, J.; Müller, R.; Blessing, E.; et al. Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism. Circulation 2014, 129, 479–486. [Google Scholar] [CrossRef]
- Piazza, G.; Hohlfelder, B.; Jaff, M.R.; Ouriel, K.; Engelhardt, T.C.; Sterling, K.M.; Jones, N.J.; Gurley, J.C.; Bhatheja, R.; Kennedy, R.J.; et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism: The SEATTLE II Study. JACC Cardiovasc. Interv. 2015, 8, 1382–1392. [Google Scholar] [CrossRef]
- Roik, M.; Pruszczyk, P.; Klok, F.A.; Barco, S.; Jermakow, M.; Dudek, D. Current use of catheter directed treatment of acute PE in Europe: Results of survey of EAPCI and ESC Working Group on Pulmonary Circulation and Right Ventricular Function. ESC Congress 2021, 42, ehab724. [Google Scholar] [CrossRef]
- Tapson, V.F.; Sterling, K.; Jones, N.; Elder, M.; Tripathy, U.; Brower, J.; Maholic, R.L.; Ross, C.B.; Natarajan, K.; Fong, P.; et al. A Randomized Trial of the Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Intermediate-Risk Pulmonary Embolism: The OPTALYSE PE Trial. JACC Cardiovasc. Interv. 2018, 11, 1401–1410. [Google Scholar] [CrossRef]
- Cimini, L.A.; Candeloro, M.; Pływaczewska, M.; Maraziti, G.; Di Nisio, M.; Pruszczyk, P.; Agnelli, G.; Becattini, C. Prognostic role of different findings at echocardiography in acute pulmonary embolism: A critical review and meta-analysis. ERJ Open Res. 2023, 9, 00641–02022. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Ageno, W.; Barco, S.; Binder, H.; Brenner, B.; Duerschmied, D.; Empen, K.; Faggiano, P.; Ficker, J.H.; Galiè, N.; et al. Dabigatran after Short Heparin Anticoagulation for Acute Intermediate-Risk Pulmonary Embolism: Rationale and Design of the Single-Arm PEITHO-2 Study. Thromb. Haemost. 2017, 117, 2425–2434. [Google Scholar] [CrossRef]
- Meinel, F.G.; Nance, J.W., Jr.; Schoepf, U.J.; Hoffmann, V.S.; Thierfelder, K.M.; Costello, P.; Goldhaber, S.Z.; Bamberg, F. Predictive Value of Computed Tomography in Acute Pulmonary Embolism: Systematic Review and Meta-analysis. Am. J. Med. 2015, 128, 747–759e2. [Google Scholar] [CrossRef]
- Becattini, C.; Vedovati, M.C.; Agnelli, G. Prognostic value of troponins in acute pulmonary embolism: A meta-analysis. Circulation 2007, 116, 427–433. [Google Scholar] [CrossRef]
- Lankeit, M.; Friesen, D.; Aschoff, J.; Dellas, C.; Hasenfuss, G.; Katus, H.; Konstantinides, S.; Giannitsis, E. Highly sensitive troponin T assay in normotensive patients with acute pulmonary embolism. Eur. Heart J. 2010, 31, 1836–1844. [Google Scholar] [CrossRef]
- Meyer, G.; Vicaut, E.; Danays, T.; Agnelli, G.; Becattini, C.; Beyer-Westendorf, J.; Bluhmki, E.; Bouvaist, H.; Brenner, B.; Couturaud, F.; et al. Fibrinolysis for Patients with Intermediate-Risk Pulmonary Embolism. N. Engl. J. Med. 2014, 370, 1402–1411. [Google Scholar] [CrossRef]
- Barco, S.; Vicaut, E.; Klok, F.A.; Lankeit, M.; Meyer, G.; Konstantinides, S.V. Improved identification of thrombolysis candidates amongst intermediate-risk pulmonary embolism patients: Implications for future trials. Eur. Respir. J. 2018, 51, 1701775. [Google Scholar] [CrossRef] [PubMed]
- Low Dose Thrombolysis, Ultrasound Assisted Thrombolysis or Heparin for Intermediate High Risk Pulmonary Embolism (STRATIFY). Available online: https://clinicaltrialsgov/ct2/show/NCT04088292 (accessed on 12 December 2023).
- Anderson, A. Low Dose Catheter Directed Thrombolysis for Acute Pulmonary Embolism (BETULA). Available online: https://clinicaltrialsgov/ct2/show/NCT03854266 (accessed on 12 December 2023).
- Klok, F.A.; Piazza, G.; Sharp, A.S.P.; Ni Ainle, F.; Jaff, M.R.; Chauhan, N.; Patel, B.; Barco, S.; Goldhaber, S.Z.; Kucher, N.; et al. Ultrasound-facilitated, catheter-directed thrombolysis vs anticoagulation alone for acute intermediate-high-risk pulmonary embolism: Rationale and design of the HI-PEITHO study. Am. Heart J. 2022, 251, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S. Ultrasound-facilitated, Catheter-directed, Thrombolysis in Intermediate-high Risk Pulmonary Embolism (HI-PEITHO). Available online: https://clinicaltrialsgov/ct2/show/NCT04790370 (accessed on 12 December 2023).
- Sista, A. Pulmonary Embolism—Thrombus Removal with Catheter-Directed Therapy (PE-TRACT). Available online: https://clinicaltrialsgov/ct2/show/NCT05591118 (accessed on 12 December 2023).
- Anup Solsi, R.V. Early use of Impella RP in the Setting of Acute Massive Pulmonary Embolism Related Acute Right Ventricular Failure. J. Am. Coll. Cardiol. 2021, 77, 2160. [Google Scholar] [CrossRef]
- Elder, M.; Blank, N.; Kaki, A.; Alraies, M.C.; Grines, C.L.; Kajy, M.; Hasan, R.; Mohamad, T.; Schreiber, T. Mechanical circulatory support for acute right ventricular failure in the setting of pulmonary embolism. J. Interv. Cardiol. 2018, 31, 518–524. [Google Scholar] [CrossRef]
- Bhalla, A.; Attaran, R. Mechanical Circulatory Support to Treat Pulmonary Embolism: Venoarterial Extracorporeal Membrane Oxygenation and Right Ventricular Assist Devices. Tex. Heart Inst. J. 2020, 47, 202–206. [Google Scholar] [CrossRef]
- Pasrija, C.; Kronfli, A.; George, P.; Raithel, M.; Boulos, F.; Herr, D.L.; Gammie, J.S.; Pham, S.M.; Griffith, B.P.; Kon, Z.N. Utilization of Veno-Arterial Extracorporeal Membrane Oxygenation for Massive Pulmonary Embolism. Ann. Thorac. Surg. 2018, 105, 498–504. [Google Scholar] [CrossRef]
- Karami, M.; Mandigers, L.; Miranda, D.D.R.; Rietdijk, W.J.; Binnekade, J.M.; Knijn, D.C.; Lagrand, W.K.; Uil, C.A.D.; Henriques, J.P.; Vlaar, A.P. Survival of patients with acute pulmonary embolism treated with venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. J. Crit. Care 2021, 64, 245–254. [Google Scholar] [CrossRef]
- Hobohm, L.; Sagoschen, I.; Habertheuer, A.; Barco, S.; Valerio, L.; Wild, J.; Schmidt, F.P.; Gori, T.; Münzel, T.; Konstantinides, S.; et al. Clinical use and outcome of extracorporeal membrane oxygenation in patients with pulmonary embolism. Resuscitation 2022, 170, 285–292. [Google Scholar] [CrossRef]
- Lee, T.M.L.; Bianchi, P.; Kourliouros, A.; Price, L.C.; Ledot, S. Percutaneous oxygenated right ventricular assist device for pulmonary embolism: A case series. Artif. Organs 2023, 47, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Shimizu, W.; Albert, C.M. The Spectrum of Epidemiology Underlying Sudden Cardiac Death. Circ. Res. 2015, 116, 1887–1906. [Google Scholar] [CrossRef] [PubMed]
- Sapp, J.L.; Wells, G.A.; Parkash, R.; Stevenson, W.G.; Blier, L.; Sarrazin, J.-F.; Thibault, B.; Rivard, L.; Gula, L.; Leong-Sit, P.; et al. Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. N. Engl. J. Med. 2016, 375, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Bunch, T.J.; Mahapatra, S.; Madhu Reddy, Y.; Lakkireddy, D. The role of percutaneous left ventricular assist devices during ventricular tachycardia ablation. Europace 2012, 14 (Suppl. S2), ii26–ii32. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groeneveld, N.T.A.; Swier, C.E.L.; Montero-Cabezas, J.; Elzo Kraemer, C.V.; Klok, F.A.; van den Brink, F.S. Mechanical Support Strategies for High-Risk Procedures in the Invasive Cardiac Catheterization Laboratory: A State-of-the-Art Review. J. Clin. Med. 2023, 12, 7755. https://doi.org/10.3390/jcm12247755
Groeneveld NTA, Swier CEL, Montero-Cabezas J, Elzo Kraemer CV, Klok FA, van den Brink FS. Mechanical Support Strategies for High-Risk Procedures in the Invasive Cardiac Catheterization Laboratory: A State-of-the-Art Review. Journal of Clinical Medicine. 2023; 12(24):7755. https://doi.org/10.3390/jcm12247755
Chicago/Turabian StyleGroeneveld, Niels T. A., Carolien E. L. Swier, Jose Montero-Cabezas, Carlos V. Elzo Kraemer, Frederikus A. Klok, and Floris S. van den Brink. 2023. "Mechanical Support Strategies for High-Risk Procedures in the Invasive Cardiac Catheterization Laboratory: A State-of-the-Art Review" Journal of Clinical Medicine 12, no. 24: 7755. https://doi.org/10.3390/jcm12247755
APA StyleGroeneveld, N. T. A., Swier, C. E. L., Montero-Cabezas, J., Elzo Kraemer, C. V., Klok, F. A., & van den Brink, F. S. (2023). Mechanical Support Strategies for High-Risk Procedures in the Invasive Cardiac Catheterization Laboratory: A State-of-the-Art Review. Journal of Clinical Medicine, 12(24), 7755. https://doi.org/10.3390/jcm12247755