A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin
Abstract
1. Introduction
2. Materials and Methods
2.1. Disease Cohorts
2.2. Biomarker Assessments
2.3. Statistical Analysis
3. Results
3.1. Basic Demographics
3.2. Neutrophilic Activity, Quantified by the Neoepitope-Specific CPa9-HNE Assay, Is Significantly Increased in COPD and IPF Participants
3.3. The Neoepitope CPa9-HNE Had Superior Diagnostic Power to Identify Disease and Healthy Participants Compared to Non-Neoepitope Measurements in the Serum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gershon, A.S.; Warner, L.; Cascagnette, P.; Victor, J.C.; To, T. Lifetime risk of developing chronic obstructive pulmonary disease: A longitudinal population study. Lancet 2011, 378, 991–996. [Google Scholar] [CrossRef]
- Brandsma, C.; Berge, M.V.D.; Hackett, T.; Brusselle, G.; Timens, W. Recent advances in chronic obstructive pulmonary disease pathogenesis: From disease mechanisms to precision medicine. J. Pathol. 2020, 250, 624–635. [Google Scholar] [CrossRef]
- Pavord, I.D.; Jones, P.W.; Burgel, P.-R.; Rabe, K.F. Exacerbations of COPD. Int. J. Chron. Obstruct Pulmon. Dis. 2016, 11, 21. [Google Scholar] [PubMed]
- Aramburu, A.; Arostegui, I.; Moraza, J.; Barrio, I.; Aburto, M.; García-Loizaga, A.; Uranga, A.; Zabala, T.; Quintana, J.M.; Esteban, C. COPD classification models and mortality prediction capacity. SSRN Electron. J. 2019, 14, 605–613. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, D.N.; Ashley, S.L.; Moore, B.B. Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2016, 311, L590–L601. [Google Scholar] [CrossRef] [PubMed]
- Brett, L.; Harold, R.C.; Talmadge, E.K.J. Clinical course and prediction of survival in ideopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2011, 183, 431–440. [Google Scholar]
- Wolters, P.J.; Blackwell, T.S.; Eickelberg, O.; E Loyd, J.; Kaminski, N.; Jenkins, G.; Maher, T.M.; Molina-Molina, M.; Noble, P.W.; Raghu, G.; et al. Time for a change: Is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? Lancet Respir. Med. 2018, 6, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, A.; Beard, L.J.; Thong, Y.H. Early decay of human neutrophil chemotactic responsiveness following isolation from peripheral blood. Clin. Exp. Immunol. 1980, 39, 532–537. [Google Scholar]
- Oh, H.; Siano, B.; Diamond, S. Neutrophil isolation protocol. J. Vis. Exp. 2008, 17, 745. [Google Scholar]
- Monceaux, V.; Chiche-Lapierre, C.; Chaput, C.; Witko-Sarsat, V.; Prevost, M.-C.; Taylor, C.T.; Ungeheuer, M.-N.; Sansonetti, P.J.; Marteyn, B.S. Anoxia and glucose supplementation preserve neutrophil viability and function. Blood 2016, 128, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, J.; Gonzalez, A.L. The Effects of Extracellular Matrix Proteins on Neutrophil-Endothelial Interaction—A Roadway to Multiple Therapeutic Opportunities. Yale J. Biol. Med. 2012, 85, 167–185. [Google Scholar] [PubMed]
- Li, T.; Zhang, Z.; Li, X.; Dong, G.; Zhang, M.; Xu, Z.; Yang, J. Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediat. Inflamm. 2020, 2020, 9254087. [Google Scholar] [CrossRef] [PubMed]
- Yipp, B.G.; Kubes, P. NETosis: How vital is it? Blood 2013, 122, 2784–2794. [Google Scholar] [CrossRef] [PubMed]
- Stříž, I.; Trebichavský, I. Calprotectin—A pleiotropic molecule in acute and chronic inflammation. Physiol. Res. 2004, 53, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, J.H.; Sinkeviciute, D.; Manon-Jensen, T.; Domislović, V.; McCall, K.; Thudium, C.S.; Brinar, M.; Önnerfjord, P.; Goodyear, C.S.; Krznarić, Z.; et al. A specific calprotectin neo-epitope [CPa9-HNE] in serum from inflammatory bowel disease patients is associated with neutrophil activity and endoscopic severity. J. Crohn’s Colitis 2022, 16, 1447–1460. [Google Scholar] [CrossRef] [PubMed]
- Stephan, J.R.; Nolan, E.M. Calcium-induced tetramerization and zinc chelation shield human calprotectin from degradation by host and bacterial extracellular proteases. Chem. Sci. 2015, 7, 1962–1975. [Google Scholar] [CrossRef]
- Nacken, W.; Kerkhoff, C. The hetero-oligomeric complex of the S100A8/S100A9 protein is extremely protease resistant. FEBS Lett. 2007, 581, 5127–5130. [Google Scholar] [CrossRef]
- Hood, M.I.; Skaar, E.P. Nutritional immunity: Transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 2012, 10, 525–537. [Google Scholar] [CrossRef]
- Monteith, A.J.; Skaar, E.P. The impact of metal availability on immune function during infection. Trends Endocrinol. Metab. 2021, 32, 916–928. [Google Scholar] [CrossRef]
- Ryckman, C.; Vandal, K.; Rouleau, P.; Talbot, M.; Tessier, P.A. Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 2003, 170, 3233–3242. [Google Scholar] [CrossRef]
- Cesaro, A.; Anceriz, N.; Plante, A.; Pagé, N.; Tardif, M.R.; Tessier, P.A. An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis. PLoS ONE 2012, 7, e45478. [Google Scholar] [CrossRef]
- Simard, J.C.; Cesaro, A.; Chapeton-Montes, J.; Tardif, M.; Antoine, F.; Girard, D.; Tessier, P.A. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB1. PLoS ONE 2013, 8, e72138. [Google Scholar] [CrossRef]
- Gao, H.; Hou, J.; Meng, H.; Zhang, X.; Zheng, Y.; Peng, L. Proinflammatory effects and mechanisms of calprotectin on human gingival fibroblasts. J. Periodontal Res. 2017, 52, 975–983. [Google Scholar] [CrossRef]
- Marinković, G.; Grauen Larsen, H.; Yndigegn, T.; Szabo, I.A.; Mares, R.G.; De Camp, L.; Weiland, M.; Tomas, L.; Goncalves, I.; Nilsson, J.; et al. Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. Eur. Heart J. 2019, 40, 2713–2723. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Song, Y.; Li, Z.; Zhao, L.; Zhang, Y.; Geng, L. S100A8/A9 induces apoptosis and inhibits metastasis of CasKi human cervical cancer cells. Pathol. Oncol. Res. 2010, 16, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Zali, H.; Rezaei-Tavirani, M.; Kariminia, A.; Yousefi, R.; Shokrgozar, M.A. Evaluation of growth inhibitory and apoptosis inducing activity of human calprotectin on the human gastric cell line (AGS). Iran. Biomed. J. 2008, 12, 7–14. [Google Scholar] [PubMed]
- Shabani, F.; Mahdavi, M.; Imani, M.; Hosseinpour-Feizi, M.A.; Gheibi, N. Calprotectin (S100A8/S100A9)-induced cytotoxicity and apoptosis in human gastric cancer AGS cells: Alteration in expression levels of Bax, Bcl-2, and ERK2. Hum. Exp. Toxicol. 2020, 39, 1031–1045. [Google Scholar] [CrossRef] [PubMed]
- Yui, S.; Nakatani, Y.; Hunter, M.J.; Chazin, W.J.; Yamazaki, M. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity. Mediat. Inflamm. 2002, 11, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Shibata, F.; Ito, A.; Ohkuma, Y.; Mitsui, K.-I. Mitogenic Activity of S100A9 (MRP-14). Biol. Pharm. Bull. 2005, 28, 2312–2314. [Google Scholar] [CrossRef][Green Version]
- Grabcanovic-Musija, F.; Obermayer, A.; Stoiber, W.; Krautgartner, W.-D.; Steinbacher, P.; Winterberg, N.; Bathke, A.C.; Klappacher, M.; Studnicka, M. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir. Res. 2015, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dicker, A.J.; Crichton, M.L.; Pumphrey, E.G.; Cassidy, A.J.; Suarez-Cuartin, G.; Sibila, O.; Furrie, E.; Fong, C.J.; Ibrahim, W.; Brady, G.; et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2017, 141, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Machahua, C.; Guler, S.A.; Horn, M.P.; Planas-Cerezales, L.; Montes-Worboys, A.; Geiser, T.K.; Molina-Molina, M.; Funke-Chambour, M. Serum calprotectin as new biomarker for disease severity in idiopathic pulmonary fibrosis: A cross-sectional study in two independent cohorts. BMJ Open Respir. Res. 2021, 8, e000827. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Kinoshita, R.; Tomonobu, N.; Gohara, Y.; Tomida, S.; Takahashi, Y.; Senoo, S.; Taniguchi, A.; Itano, J.; Yamamoto, K.-I.; et al. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J. Mol. Med. 2020, 99, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.W.; Keane, M.P. The role of immunity and inflammation in IPF pathogenesis. In Idiopathic Pulmonary Fibrosis: A Comprehensive Clinical Guide; Springer Nature: Cham, Switzerland, 2019; pp. 97–131. [Google Scholar]
- The Idiopathic Pulmonary Fibrosis Clinical Research Network; Raghu, G.; Anstrom, K.J.; King, T.E., Jr.; Lasky, J.A.; Martinez, F.J. Prednisone, Azathioprine, and N-Acetylcysteine for Pulmonary Fibrosis. N. Engl. J. Med. 2012, 366, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.U.; Kelleher, W.P. Idiopathic pulmonary fibrosis pathogenesis and novel approaches to immunomodulation: We must not be tyrannized by the PANTHER data. Am. J. Respir. Crit. Care Med. 2013, 187, 677–679. [Google Scholar] [CrossRef]
- Fagerhol, M.K.; Nielsen, H.G.; Vetlesen, A.; Sandvik, K.; Lyberg, T. Increase in plasma calprotectin during long-distance running. Scand. J. Clin. Lab. Investig. 2005, 65, 211–220. [Google Scholar] [CrossRef]
- Summers, C.; Rankin, S.M.; Condliffe, A.M.; Singh, N.; Peters, A.M.; Chilvers, E.R. Neutrophil kinetics in health and disease. Trends Immunol. 2010, 31, 318–324. [Google Scholar] [CrossRef]
- Sand, J.M.; Martinez, G.; Midjord, A.-K.; Karsdal, M.A.; Leeming, D.J.; Lange, P. Characterization of serological neo-epitope biomarkers reflecting collagen remodeling in clinically stable chronic obstructive pulmonary disease. Clin. Biochem. 2016, 49, 1144–1151. [Google Scholar] [CrossRef]
- Ritchie, A.I.; Wedzicha, J.A. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin. Chest Med. 2020, 41, 421–438. [Google Scholar] [CrossRef]
- Sun, Y.; Milne, S.; Jaw, J.E.; Yang, C.X.; Xu, F.; Li, X.; Obeidat, M.; Sin, D.D. BMI is associated with FEV1 decline in chronic obstructive pulmonary disease: A meta-analysis of clinical trials. Respir. Res. 2019, 20, 236. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Carru, C.; Pirina, P.; Fois, A.G.; Mangoni, A.A. A Systematic Review of the Prognostic Significance of the Body Mass Index in Idiopathic Pulmonary Fibrosis. J. Clin. Med. 2023, 12, 498. [Google Scholar] [CrossRef] [PubMed]
- Quach, A.; Glowik, S.; Putty, T.; Ferrante, A. Delayed Blood Processing Leads to Rapid Deterioration in the Measurement of the Neutrophil Respiratory Burst by the Dihydrorhodamine-123 Reduction Assay. Cytom. Part B Clin. Cytom. 2019, 96, 389–396. [Google Scholar] [CrossRef]
- Lorenzo, P.; Aspberg, A.; Saxne, T.; Önnerfjord, P. Quantification of cartilage oligomeric matrix protein (COMP) and a COMP neoepitope in synovial fluid of patients with different joint disorders by novel automated assays. Osteoarthr. Cartil. 2017, 25, 1436–1442. [Google Scholar] [CrossRef]
- Jenkins, R.G.; Simpson, J.K.; Saini, G.; Bentley, J.H.; Russell, A.M.; Braybrooke, R.; Molyneaux, P.L.; McKeever, T.M.; Wells, A.U.; Flynn, A.; et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: An analysis from the prospective, multicentre PROFILE study. Lancet Respir. Med. 2015, 3, 462–472. [Google Scholar] [CrossRef]
- Rønnow, S.R.; Langholm, L.L.; Sand, J.M.B.; Thorlacius-Ussing, J.; Leeming, D.J.; Manon-Jensen, T.; Tal-Singer, R.; Miller, B.E.; Karsdal, M.A.; Vestbo, J. Specific elastin degradation products are associated with poor outcome in the ECLIPSE COPD cohort. Sci. Rep. 2019, 9, 4064. [Google Scholar] [CrossRef]
- Organ, L.A.; Duggan, A.-M.R.; Oballa, E.; Taggart, S.C.; Simpson, J.K.; Kang’ombe, A.R.; Braybrooke, R.; Molyneaux, P.L.; North, B.; Karkera, Y.; et al. Biomarkers of collagen synthesis predict progression in the PROFILE idiopathic pulmonary fibrosis cohort. Respir. Res. 2019, 20, 148. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Genovese, F.; Rasmussen, D.G.K.; Bay-Jensen, A.C.; Mortensen, J.H.; Nielsen, S.H.; Willumsen, N.; Jensen, C.; Manon-Jensen, T.; Jennings, L.; et al. Considerations for understanding protein measurements: Identification of formation, degradation and more pathological relevant epitopes. Clin. Biochem. 2021, 97, 11–24. [Google Scholar] [CrossRef] [PubMed]
Cohort 1: Demographics of Participants for the CPa9-HNE Evaluation | ||||
Healthy | COPD | IPF | p-Value | |
n | 39 | 67 | 16 | - |
Age (yrs), mean ± SD | 45 ± 16 | 71 ± 9 | 65 ± 7 | p < 0.0001 # |
Male/female sex, n (%) | 26/13 (66.7%/33.3%) | 28/39 (41.8%/58.2%) | 14/2 (87.5%/12.5%) | p = 0.0011 £ |
BMI (kg/m2), mean ± SD | - | 24.5 ± 6.2 | - | - |
Current/ex/never smoker, n | - | 11/53/3 (16.4%/79.1%/4.5%) | - | - |
GOLD A/B/C/D, n | - | 4/13/6/44 (6%/19.4%/8.9%/65.7%) | - | - |
FVC (% pred), mean ± SD | - | 66.1 ± 17.3 | 74.5 ±12.8 | p = 0.0735 $ |
FEV1 (% pred), mean ± SD | - | 39.9 ± 15.8 | 79.0 ± 8.9 | p < 0.0001 $ |
Cohort 2: Demographics of Participants for the Head-to-Head Comparison of CPa9-HNE and Calprotectin | ||||
Healthy | COPD Visit 2 | IPF | p-Value | |
n | 19 | 25 | 19 | - |
Age (yrs), mean ± SD | 36.8 ± 10.11 | 72.7 ± 8.2 | 63.9 ± 7.7 | p < 0.0001 # |
Male/female sex, n (%) | 5/12 (29.4%/70.6%) | 11/15 (42.3%/57.7%) | 16/3 (84.2%/15.8%) | p = 0.0021 £ |
BMI (kg/m2), mean ± SD | - | 24.1 ± 4.9 | - | - |
Current/ex/never smoker, n | - | 1/22/2 (4%/88%/8%) | - | - |
GOLD A/B/C/D, n (%) | - | 0/0/1/24 (0%/0%/4%/96%) | - | - |
FVC (% pred), mean ± SD | - | 45.3 ± 21.9 | - | - |
FEV1 (% pred), mean ± SD | - | 48.4 ± 15.6 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, A.H.; Mortensen, J.H.; Rønnow, S.R.; Karsdal, M.A.; Leeming, D.J.; Sand, J.M.B. A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. J. Clin. Med. 2023, 12, 7589. https://doi.org/10.3390/jcm12247589
Hansen AH, Mortensen JH, Rønnow SR, Karsdal MA, Leeming DJ, Sand JMB. A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. Journal of Clinical Medicine. 2023; 12(24):7589. https://doi.org/10.3390/jcm12247589
Chicago/Turabian StyleHansen, Annika Hummersgaard, Joachim Høg Mortensen, Sarah Rank Rønnow, Morten Asser Karsdal, Diana Julie Leeming, and Jannie Marie Bülow Sand. 2023. "A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin" Journal of Clinical Medicine 12, no. 24: 7589. https://doi.org/10.3390/jcm12247589
APA StyleHansen, A. H., Mortensen, J. H., Rønnow, S. R., Karsdal, M. A., Leeming, D. J., & Sand, J. M. B. (2023). A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. Journal of Clinical Medicine, 12(24), 7589. https://doi.org/10.3390/jcm12247589