You are currently viewing a new version of our website. To view the old version click .
Journal of Clinical Medicine
  • Review
  • Open Access

25 October 2023

The Link between Periodontal Disease and Asthma: How Do These Two Diseases Affect Each Other?

,
,
and
1
Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2
The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
3
Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue State of the Art of Oral Health in Japan and Other Aging Countries

Abstract

A growing body of evidence suggests that the effects of poor oral hygiene extend beyond the oral cavity and are associated with a variety of systemic diseases, including asthma. Asthma, which results in symptoms of cough, wheezing, and dyspnoea, and is characterized by airflow limitation with variability and (partial or complete) reversibility, is amongst the most prevalent respiratory diseases with approximately 262 million patients worldwide, and its prevalence and disease burden is on the increase. While asthma can occur at a young age, it can also develop later in life and affects a variety of age groups. Both of these diseases have a chronic course, and various researchers have suggested a link between the two. In this article, we aim to provide a literature review focusing on the association between the two diseases. The results demonstrate that medications (primarily, inhaler medicine), hypoxia induced by asthma, and the breathing behaviour of patients potentially trigger periodontal disease. In contrast, oral periodontopathogenic microorganisms and the inflammatory mediators produced by them may be involved in the onset and/or exacerbation of asthma. Common contributing factors, such as smoking, gastro-oesophageal reflux, and type-2 inflammation, should also be considered when evaluating the relationship between the two diseases.

1. Introduction

Poor oral hygiene is common in many countries worldwide and can trigger not only oral diseases, but also systemic diseases, leading to a significant health burden [1]. Among these, periodontal disease is frequent, and numerous studies have been conducted on their association with systemic diseases. Periodontal disease consists of gingivitis and its advanced form, periodontitis. It is a chronic inflammatory disease caused by the bacterial infection of the periodontium and leads to the dissolution of the surrounding structure, including the gums around the teeth and the bone that supports the teeth. If the border between the teeth and gums (gingival sulcus) is not cleaned properly, a large number of bacteria can grow there, causing inflammation of the gingival margins [2]. Periodontitis affects about 50% of the population worldwide [3], and severe periodontitis is found in 9.8% of the global adult population [4]. Severe periodontitis ultimately causes masticatory dysfunction and nutritional compromise, aesthetic impairment, altered-speech, low self-esteem, and a poorer overall quality of life (QOL) [5].
Asthma is characterized by a chronic inflammation of the airways that causes respiratory tract hyperresponsiveness to various stimuli, resulting in the narrowing of the airways [6]. According to the World Health Organization, asthma affected an estimated 262 million people in 2019 and caused 455,000 deaths [7]. The frequency of comorbidities is increased in older adult patients with asthma [8]. These comorbidities can worsen respiratory symptoms, decrease QOL, and worsen asthma control [6]. In Japan, approximately 90% of deaths due to asthma occur in adults aged 65 years or older [9].
In recent years, considerable attention has been paid to the interaction between oral and systemic diseases, including asthma. Questionnaire surveys indicate an association between oral diseases, such as periodontal disease and malocclusion, and asthma [10,11]. It is important in healthcare to understand the relationship between oral diseases and systemic diseases and whether interventions for oral disease can improve asthma prognosis and extend healthy life expectancy rates, especially in an ageing society [12,13]. Nevertheless, conflicting reports of these associations exist, and the underlying biological mechanisms are not yet fully understood. This review aims to provide suggestions on the possible interactions between periodontal diseases and asthma, the impact of therapeutic agents, and the directions for future research.

2. Asthma and Periodontal Disease

2.1. Periodontal Disease and Its Impact on Asthma

Some cross-sectional studies suggest an association between asthma and periodontal disease. Gingival bleeding was correlated with asthma in late adolescents by questionnaire surveys in Japan [11]. A self-reported allergic disease diagnosis, including asthma, showed a positive correlation with poor oral health, including periodontal disease in adolescents, in the Korean national database survey [14]. In this study, the adjusted odds ratio (OR) for asthma was 1.48 in the poor oral health group compared to the group with good oral health. Another Korean, nationwide, population-based survey revealed that participants with a current asthma condition were five-times more likely to have periodontal disease (adjusted OR, 5.36) than those without it [15]. Wee et al. also reported a higher prevalence of asthma in the poor oral hygiene group than in the good/normal groups. Subjective poor oral hygiene was significantly associated with asthma, with an adjusted OR of 1.19 [16]. Brasil-Oliveira et al. assessed the oral health-related QOL (OHRQoL) among individuals with severe asthma. Periodontitis was more common in patients with severe asthma than those with mild-to-moderate asthma and those without, and negatively impacted on their OHRQoL [17].
Case-control studies have also described a significant association between periodontal disease and asthma. McDerra et al. conducted a comparison of gingivitis and plaque scores between children with asthma aged 4–16 years on inhaler therapy and children without asthma matched for age, sex, race, and socioeconomic status. They reported that asthmatic children had more severe gingivitis and plaque deposits [18]. Gomes-Filho et al. reported that adult patients with periodontitis were 4.82-times more likely to have severe asthma than those without [19]. Soledade-Marques et al. compared the prevalence of periodontitis between severe asthma and control groups and found that individuals with periodontitis had about a threefold increased risk of severe asthma than those without periodontitis [20]. Lopes et al. also showed a positive association between periodontitis and severe asthma with an OR of 4.00, and presented a higher level of Prevotella intermedia, a periodontitis-related oral pathogen, in the severe asthma group compared to the control group [21]. Patients with asthma in Jordan were three-times more likely to have periodontitis than the controls, and the extent and severity of periodontal disease were significantly higher in patients with asthma. The risk of periodontitis and clinical attachment loss (CAL) ≥ 3 mm were higher in patients on oral corticosteroid treatment compared to inhaled corticosteroids (ICSs) [22]. In a study in India, periodontal indices, including the plaque index (PI), calculus index, gingival index (GI), and papillary bleeding index measurements, were higher in the asthma group than the control group. Moreover, all of these parameters were higher in patients with moderate-to-severe asthma than in those with mild asthma [23]. Similar results were obtained by another group [24,25].
In the population-based retrospective cohort study in Taiwan, patients with asthma were at a 1.18-fold elevated risk of developing periodontal diseases. The risk is much higher for those with emergency medical needs, hospitalisation, and those undergoing ICS treatment [26]. An association between asthma and periodontal disease was also suggested in a population-based prospective cohort study conducted in seven northern European centres. The authors demonstrated that the presence of asthma and asthma severity assessed by the number of symptoms were associated with frequent gingival bleeding [27].
Table 1 summarizes the supportive observational studies on the association between periodontal disease and asthma. Since the adjusted confounders vary among studies and prospective investigations are limited, further research is needed to determine the causal relationship between the two.
Table 1. Observational studies that support the detrimental association between periodontal disease and asthma.
The association was also demonstrated in several meta-analyses. Moraschini and colleague performed a meta-analysis of 21 studies examining the relationship between asthma and periodontal disease and found that patients with asthma showed poorer oral health (as assessed by gingival bleeding, PI, and GI parameters) compared with healthy individuals [28]. The meta-analysis conducted by Ferreira et al. showed higher mean values for the calculus index, papillary bleeding index, and CAL in the asthma group, although the differences for GI and PI were not statistically significant [29]. Gomes-Filho et al. showed an association between periodontitis and asthma in a meta-analysis of three studies, with an adjusted OR of 3.54 [30]. Wu and colleagues demonstrated a significant correlation between pulmonary and periodontal diseases, with a pooled adjusted OR of 3.03 for asthma. The study showed that CAL, PI, and GI were lower in patients with asthma, indicating poorer periodontal health [31].

2.2. Effectiveness of Periodontal Interventions

It is important to assess whether oral care interventions improve asthma symptoms and other outcomes to determine if there is a link between the two.
Whether an intervention for oral disease can improve asthma-related outcomes is still under debate. Shen et al. demonstrated that adult patients with asthma undergoing periodontal treatment had a lower incidence of hospitalisation due to respiratory events than those without periodontal disease by the propensity score-matching method using the nationwide database [32]. They also showed a lower all-cause mortality rate in the periodontal treatment group. These results, along with the importance of intervening in periodontal disease, suggest that there may be unrecognized periodontal disease in patients with asthma. Enomoto et al. investigated the effect of withholding dental care visits due to behavioural restrictions caused by coronavirus disease 2019 on the control of systemic diseases. The results of their study revealed that patients who discontinued dental treatment experienced significantly more asthma exacerbations than those who continued (27.8% vs. 11.5%) [33].
Pambudi et al. investigated the effect of periodontal treatment for respiratory quality in asthmatic children by a randomized, parallel group trial. They showed a reduced rate of Gram-negative bacilli colonization in the dental plaque after periodontal treatment, and its association with improved asthma QOL, airway reversibility, and decreased number of blood eosinophil [34]. Nelwan et al. investigated the impact of scaling and root planning on the level of serum immunoglobulin (Ig) E and IgG4 in children with gingivitis and a house-dust-mite allergy. Most children had concurrent asthma. The results of this study suggest that 6-month comprehensive dental scaling combined with root planning may help to reduce IgE levels in this population [35].
There are a limited number of studies examining the effect of oral care on asthma outcomes in prospective trials, and the number of participants is low (Table 2). Further studies are warranted to draw adequate conclusions.
Table 2. Investigations exploring the impacts of periodontal treatment on asthma-related outcomes.

2.3. Discrepancies in the Data

Although many studies suggest a link between asthma and poor oral hygiene, some controversy remains. The data from the Third National Health and Nutrition Examination Survey (NHANES) III (1988–1994) in the United States, including 1596 adolescents who had an asthma diagnosis, were analysed for various periodontal measures, including bleeding on probing, subgingival calculus, supragingival calculus, a probing depth greater than or equal to 3 mm, and a loss of periodontal attachment greater than or equal to 2 mm, none of which were associated with asthma severity or with the use of anti-asthmatic drugs [36]. Using the NHANES database, Shah et al. examined the association between asthma and periodontitis in the adult population. They showed that patients with asthma were significantly less likely to have severe periodontitis [37]. Chatzopoulos and colleagues found that asthma was significantly associated with the decreased risk of radiographically confirmed bone loss, which reflected the severity of periodontal disease, with an OR of 0.695 using the dental record database in the United States, although the data on individuals’ medications were lacking [38]. Lemmetyinen et al. conducted a population-based matched cohort study and did not find significant associations between dental diseases (including tooth decay, chronic apical periodontitis, sialadenitis, and diseases of the periodontal tissue) and asthma in the adult population using the national hospital discharge registry in Finland [39]. Hozawa and colleagues found that periodontal disease was associated with a decreased risk of asthma exacerbations using the Japanese claims database [40]. They speculated that patients with asthma who received sufficient doses of ICS may have achieved better disease control and had fewer exacerbations, while their oral hygiene may have been compromised by the high amount of ICS.
Ho et al. point out that allergic rhinitis (AR), which is often comorbid with asthma, may be a confounding factor. They investigated the association between the five major oral diseases (dental caries, periodontitis, pulpitis, gingivitis, and stomatitis/aphthae) and the presence of AR and asthma using a national database in Taiwan. The incidence of all five oral diseases was higher in the AR group than in the non-AR group after an adjustment for confounders and asthma. Similar findings were observed in the asthma group when not adjusted for AR. However, when adjusted for AR, they found no association between asthma and oral disease [41].
A recent meta-analysis found no significant association between periodontal disease and asthma [42].
Under the ‘hygiene hypothesis,’ some researchers have suggested that periodontal disease may have a suppressive impact on the susceptibility to allergic disease [43]. Within this framework, it is presumed that the microbial colonization in the body would trigger a systemic reaction to prevent the development of allergic disease. Cross-sectional studies revealed that the elevated serum concentrations of IgG antibodies against periodontal pathogens Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans were significantly associated with a lower prevalence of asthma and/or wheezing [44,45]. In a study of obese or overweight patients with asthma, the OR for having an asthma diagnosis in participants with severe periodontitis was 0.44 for those with none/mild periodontitis. For participants with severe periodontitis, the OR for receiving asthma medications was 0.20 for those with no/mild periodontitis [46]. Friedrich and colleagues investigated the relation between periodontitis and respiratory allergies in a prospective cohort study, and found an inverse association between periodontitis and hay fever and house-dust-mite allergies. They also uncovered a weak inverse relation between periodontitis and asthma [47]. Similarly, they also reported a strong inverse association between periodontal disease and respiratory allergies (hay fever, house-dust-mite allergy, and asthma) in patients with type-1 diabetes [48]. A study in Australia found that the prevalence of asthma was lower in patients with periodontal disease than in the general population (1.5% vs. 5.6%), although the frequency of allergies (29.2% vs. 22.9%) and pulmonary disorders (8.5% vs. 4.3%) was higher in the periodontal group [49]. When periodontitis was induced in asthmatic mice, inflammatory cells, such as eosinophils, lymphocytes, and macrophages, in bronchoalveolar lavage fluid decreased. In addition, levels of interleukin (IL)-4 and tumour necrosis factor-α were reduced, as was the production of airway mucus [50]. Meanwhile, a recent Mendelian randomization analysis found no causal effect of periodontal disease on the development of asthma, although asthma might be protective against periodontal disease [51]. The relationship between asthma and periodontal disease is complex and influenced by many factors, including used inhaled medications, comorbidities, and socioeconomic status. The association needs to be confirmed by the research that adequately controls for these factors (Table 3).
Table 3. Studies that do not support an association between periodontal disease and asthma or suggest a protective association.

4. Conclusions and Future Perspective

Numerous studies have indicated a link between oral disease and asthma, as summarized in Figure 2, although some have yielded conflicting results. Various factors are involved in this controversy, including the background of the patients studied, differences in medications, how the outcomes are measured, the availability of appropriate inhalation techniques (including gargling and mouth washing), and the proper statistical treatment of confounding factors, such as smoking, economic status, and tooth brushing behaviour. Most studies to date are retrospective, and interventional studies, e.g., those investigating whether the treatment of oral disease reduces disease development or improves disease control in asthma, are limited. The biological mechanisms that underlie the relationship have also not been fully elucidated.
Figure 2. Possible factors linking periodontal disease and asthma. GORD, gastro-oesophageal reflux disease; ICS, inhaled corticosteroid; Ig, immunoglobulin.
Impact of periodontal disease on the QOL in patients with asthma is also an area for further study. Although there are reports investigating the oral-related quality of life in patients with asthma complicated by periodontal disease [17], there are few reports examining the overall QOL using the respiratory disease-related QOL assessment (e.g., St George’s Respiratory Questionnaire) or asthma-related QOL assessment (Asthma Quality of Life Questionnaire, Asthma Bother Profile, Asthma Impact Survey, etc.) [197]. The association between periodontal disease and asthma should be examined from various viewpoints, including the development of disease, frequency of exacerbations, decline in pulmonary function, and deterioration of QOL.
Changes in therapeutic agents should also be considered. It is hard to compare studies from the time when beta-2 agonists were the mainstay of treatment with those from the time when the guidelines recommended ICS as the principal therapeutic agent. The impact of recently introduced ICS and beta-2 agonists, in addition to biologics medication, needs to be examined. Most clinical studies on the association between inhaled medications and oral hygiene focus on children to middle-aged individuals [102]; therefore, it is necessary to examine this topic in the older adult population as well. The relationship between the two diseases is more complex in the older population, as they are more likely than younger people to be affected by ageing and smoking in the development of periodontal diseases, both of which can be confounding factors. Moreover, a recent study reported that maternal periodontal disease had protective effects on the development of asthma in the offspring in rats [198], and such a transgenerational impact should also be evaluated. Future research to resolve these issues is warranted.

Author Contributions

Conceptualization, validation, investigation, data curation, and writing—original draft preparation: H.T. and A.M.; writing—review and editing: H.T., A.M., M.A. and T.N.; supervision: M.A. and T.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Jin, L.J.; Lamster, I.B.; Greenspan, J.S.; Pitts, N.B.; Scully, C.; Warnakulasuriya, S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis. 2016, 22, 609–619. [Google Scholar] [CrossRef]
  2. Gaeckle, N.T.; Pragman, A.A.; Pendleton, K.M.; Baldomero, A.K.; Criner, G.J. The Oral-Lung Axis: The Impact of Oral Health on Lung Health. Respir. Care 2020, 65, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
  3. Eke, P.I.; Borgnakke, W.S.; Genco, R.J. Recent epidemiologic trends in periodontitis in the USA. Periodontol. 2000 2020, 82, 257–267. [Google Scholar] [CrossRef] [PubMed]
  4. GBD 2017 Oral Disorders Collaborators; Bernabe, E.; Marcenes, W.; Hernandez, C.R.; Bailey, J.; Abreu, L.G.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z.; et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373. [Google Scholar] [CrossRef] [PubMed]
  5. Romandini, M.; Baima, G.; Antonoglou, G.; Bueno, J.; Figuero, E.; Sanz, M. Periodontitis, Edentulism, and Risk of Mortality: A Systematic Review with Meta-analyses. J. Dent. Res. 2021, 100, 37–49. [Google Scholar] [CrossRef]
  6. 2022 GINA Report, Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/gina-reports/ (accessed on 16 March 2023).
  7. World Health Organization Fact sheets Asthma. Available online: https://www.who.int/en/news-room/fact-sheets/detail/asthma (accessed on 16 March 2023).
  8. Gibson, P.G.; McDonald, V.M.; Marks, G.B. Asthma in older adults. Lancet 2010, 376, 803–813. [Google Scholar] [CrossRef]
  9. Nakamura, Y.; Tamaoki, J.; Nagase, H.; Yamaguchi, M.; Horiguchi, T.; Hozawa, S.; Ichinose, M.; Iwanaga, T.; Kondo, R.; Nagata, M.; et al. Japanese guidelines for adult asthma 2020. Allergol. Int. 2020, 69, 519–548. [Google Scholar] [CrossRef]
  10. Abe, M.; Mitani, A.; Yao, A.; Zong, L.; Hoshi, K.; Yanagimoto, S. Awareness of Malocclusion Is Closely Associated with Allergic Rhinitis, Asthma, and Arrhythmia in Late Adolescents. Healthcare 2020, 8, 209. [Google Scholar] [CrossRef]
  11. Abe, M.; Mitani, A.; Yao, A.; Takeshima, H.; Zong, L.; Hoshi, K.; Yanagimoto, S. Close Associations of Gum Bleeding with Systemic Diseases in Late Adolescence. Int. J. Environ. Res. Public Health 2020, 17, 4290. [Google Scholar] [CrossRef]
  12. Aida, J.; Takeuchi, K.; Furuta, M.; Ito, K.; Kabasawa, Y.; Tsakos, G. Burden of Oral Diseases and Access to Oral Care in an Ageing Society. Int. Dent. J. 2022, 72, S5–S11. [Google Scholar] [CrossRef]
  13. van der Putten, G.J.; de Baat, C.; De Visschere, L.; Schols, J. Poor oral health, a potential new geriatric syndrome. Gerodontology 2014, 31 (Suppl. S1), 17–24. [Google Scholar] [CrossRef]
  14. Wee, J.H.; Park, M.W.; Min, C.; Park, I.S.; Park, B.; Choi, H.G. Poor oral health is associated with asthma, allergic rhinitis, and atopic dermatitis in Korean adolescents: A cross-sectional study. Medicine 2020, 99, e21534. [Google Scholar] [CrossRef]
  15. Lee, S.W.; Lim, H.J.; Lee, E. Association Between Asthma and Periodontitis: Results From the Korean National Health and Nutrition Examination Survey. J. Periodontol. 2017, 88, 575–581. [Google Scholar] [CrossRef] [PubMed]
  16. Wee, J.H.; Yoo, D.M.; Byun, S.H.; Lee, H.J.; Park, B.; Park, M.W.; Choi, H.G. Subjective oral health status in an adult Korean population with asthma or allergic rhinitis. Medicine 2020, 99, e22967. [Google Scholar] [CrossRef] [PubMed]
  17. Brasil-Oliveira, R.; Cruz, A.A.; Souza-Machado, A.; Pinheiro, G.P.; Inacio, D.D.S.; Sarmento, V.A.; Lins-Kusterer, L. Oral health-related quality of life in individuals with severe asthma. J. Bras. Pneumol. 2020, 47, e20200117. [Google Scholar] [CrossRef] [PubMed]
  18. McDerra, E.J.; Pollard, M.A.; Curzon, M.E. The dental status of asthmatic British school children. Pediatr. Dent. 1998, 20, 281–287. [Google Scholar] [PubMed]
  19. Gomes-Filho, I.S.; Soledade-Marques, K.R.; Seixas da Cruz, S.; de Santana Passos-Soares, J.; Trindade, S.C.; Souza-Machado, A.; Fischer Rubira-Bullen, I.R.; de Moraes Marcilio Cerqueira, E.; Barreto, M.L.; Costa de Santana, T.; et al. Does periodontal infection have an effect on severe asthma in adults? J. Periodontol. 2014, 85, e179–e187. [Google Scholar] [CrossRef]
  20. Soledade-Marques, K.R.; Gomes-Filho, I.S.; da Cruz, S.S.; Passos-Soares, J.S.; Trindade, S.C.; Cerqueira, E.M.M.; Coelho, J.M.F.; Barreto, M.L.; Costa, M.; Vianna, M.I.P.; et al. Association between periodontitis and severe asthma in adults: A case-control study. Oral Dis. 2018, 24, 442–448. [Google Scholar] [CrossRef]
  21. Lopes, M.P.; Cruz, A.A.; Xavier, M.T.; Stocker, A.; Carvalho-Filho, P.; Miranda, P.M.; Meyer, R.J.; Soledade, K.R.; Gomes-Filho, I.S.; Trindade, S.C. Prevotella intermedia and periodontitis are associated with severe asthma. J. Periodontol. 2020, 91, 46–54. [Google Scholar] [CrossRef]
  22. Khassawneh, B.; Alhabashneh, R.; Ibrahim, F. The association between bronchial asthma and periodontitis: A case-control study in Jordan. J. Asthma 2019, 56, 404–410. [Google Scholar] [CrossRef]
  23. Bhardwaj, V.K.; Fotedar, S.; Sharma, D.; Jhingta, P.; Negi, N.; Thakur, A.S.; Vashisth, S. Association between asthma and chronic periodontitis -A Case–Control Study in Shimla-Himachal Pradesh. J. Indian Assoc. Public Health Dent. 2017, 15, 319–322. [Google Scholar] [CrossRef]
  24. Mehta, A.; Sequeira, P.S.; Sahoo, R.C.; Kaur, G. Is bronchial asthma a risk factor for gingival diseases? A control study. N. Y. State Dent. J. 2009, 75, 44–46. [Google Scholar] [PubMed]
  25. Moeintaghavi, A.; Akbari, A.; Rezaeetalab, F. Association between periodontitis and periodontal indices in newly diagnosed bronchial asthma. J. Adv. Periodontol. Implant. Dent. 2022, 14, 97–103. [Google Scholar] [CrossRef] [PubMed]
  26. Shen, T.C.; Chang, P.Y.; Lin, C.L.; Wei, C.C.; Tu, C.Y.; Hsia, T.C.; Shih, C.M.; Hsu, W.H.; Sung, F.C.; Kao, C.H. Risk of Periodontal Disease in Patients With Asthma: A Nationwide Population-Based Retrospective Cohort Study. J. Periodontol. 2017, 88, 723–730. [Google Scholar] [CrossRef] [PubMed]
  27. Gomez Real, F.; Perez Barrionuevo, L.; Franklin, K.; Lindberg, E.; Bertelsen, R.J.; Benediktsdottir, B.; Forsberg, B.; Gislason, T.; Jogi, R.; Johannessen, A.; et al. The Association of Gum Bleeding with Respiratory Health in a Population Based Study from Northern Europe. PLoS ONE 2016, 11, e0147518. [Google Scholar] [CrossRef] [PubMed]
  28. Moraschini, V.; Calasans-Maia, J.A.; Calasans-Maia, M.D. Association between asthma and periodontal disease: A systematic review and meta-analysis. J. Periodontol. 2018, 89, 440–455. [Google Scholar] [CrossRef]
  29. Ferreira, M.K.M.; Ferreira, R.O.; Castro, M.M.L.; Magno, M.B.; Almeida, A.; Fagundes, N.C.F.; Maia, L.C.; Lima, R.R. Is there an association between asthma and periodontal disease among adults? Systematic review and meta-analysis. Life Sci. 2019, 223, 74–87. [Google Scholar] [CrossRef]
  30. Gomes-Filho, I.S.; Cruz, S.S.D.; Trindade, S.C.; Passos-Soares, J.S.; Carvalho-Filho, P.C.; Figueiredo, A.; Lyrio, A.O.; Hintz, A.M.; Pereira, M.G.; Scannapieco, F. Periodontitis and respiratory diseases: A systematic review with meta-analysis. Oral Dis. 2020, 26, 439–446. [Google Scholar] [CrossRef]
  31. Wu, Z.; Xiao, C.; Chen, F.; Wang, Y.; Guo, Z. Pulmonary disease and periodontal health: A meta-analysis. Sleep Breath. 2022, 26, 1857–1868. [Google Scholar] [CrossRef]
  32. Shen, T.C.; Chang, P.Y.; Lin, C.L.; Wei, C.C.; Tu, C.Y.; Hsia, T.C.; Shih, C.M.; Hsu, W.H.; Sung, F.C.; Kao, C.H. Impact of periodontal treatment on hospitalization for adverse respiratory events in asthmatic adults: A propensity-matched cohort study. Eur. J. Intern. Med. 2017, 46, 56–60. [Google Scholar] [CrossRef]
  33. Enomoto, A.; Lee, A.D.; Shimoide, T.; Takada, Y.; Kakiuchi, Y.; Tabuchi, T. Is discontinuation of dental treatment related to exacerbation of systemic medical diseases in Japan? Br. Dent. J. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
  34. Pambudi, W.; Fabiola, I.; Indrawati, R.; Utomo, H.; Endaryanto, A.; Harsono, A. Changes in bacterial profiles after periodontal treatment associated with respiratory quality of asthmatic children. Paediatr. Indones. 2008, 48, 327–337. [Google Scholar] [CrossRef][Green Version]
  35. Nelwan, S.C.; Nugraha, R.A.; Endaryanto, A.; Dewi, F.; Nuraini, P.; Tedjosasongko, U.; Utomo, D.H. Effect of scaling and root planing on level of immunoglobulin E and immunoglobulin G(4) in children with gingivitis and house-dust mite allergy: A pilot randomised controlled trial. Singap. Dent. J. 2019, 39, 21–31. [Google Scholar] [CrossRef] [PubMed]
  36. Shulman, J.D.; Nunn, M.E.; Taylor, S.E.; Rivera-Hidalgo, F. The prevalence of periodontal-related changes in adolescents with asthma: Results of the Third Annual National Health and Nutrition Examination Survey. Pediatr. Dent. 2003, 25, 279–284. [Google Scholar] [PubMed]
  37. Shah, P.D.; Badner, V.M.; Moss, K.L. Association between asthma and periodontitis in the US adult population: A population-based observational epidemiological study. J. Clin. Periodontol. 2022, 49, 230–239. [Google Scholar] [CrossRef]
  38. Chatzopoulos, G.S.; Cisneros, A.; Sanchez, M.; Wolff, L.F. Association between Periodontal Disease and Systemic Inflammatory Conditions Using Electronic Health Records: A Pilot Study. Antibiotics 2021, 10, 386. [Google Scholar] [CrossRef]
  39. Lemmetyinen, R.; Karjalainen, J.; But, A.; Renkonen, R.; Pekkanen, J.; Haukka, J.; Toppila-Salmi, S. Diseases with oral manifestations among adult asthmatics in Finland: A population-based matched cohort study. BMJ Open 2021, 11, e053133. [Google Scholar] [CrossRef]
  40. Hozawa, S.; Maeda, S.; Kikuchi, A.; Koinuma, M. Exploratory research on asthma exacerbation risk factors using the Japanese claims database and machine learning: A retrospective cohort study. J. Asthma 2022, 59, 1328–1337. [Google Scholar] [CrossRef]
  41. Ho, S.W.; Lue, K.H.; Ku, M.S. Allergic rhinitis, rather than asthma, might be associated with dental caries, periodontitis, and other oral diseases in adults. PeerJ 2019, 7, e7643. [Google Scholar] [CrossRef]
  42. Molina, A.; Huck, O.; Herrera, D.; Montero, E. The association between respiratory diseases and periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2023, 50, 842–887. [Google Scholar] [CrossRef]
  43. Arbes, S.J., Jr.; Matsui, E.C. Can oral pathogens influence allergic disease? J. Allergy Clin. Immunol. 2011, 127, 1119–1127. [Google Scholar] [CrossRef]
  44. Arbes, S.J., Jr.; Sever, M.L.; Vaughn, B.; Cohen, E.A.; Zeldin, D.C. Oral pathogens and allergic disease: Results from the Third National Health and Nutrition Examination Survey. J. Allergy Clin. Immunol. 2006, 118, 1169–1175. [Google Scholar] [CrossRef] [PubMed][Green Version]
  45. Du, M.; Xu, S.; Qiu, B.; Hu, S.; Tjakkes, G.E.; Li, A.; Ge, S. Serum antibodies to periodontal pathogens are related to allergic symptoms. J. Periodontol. 2023, 94, 204–216. [Google Scholar] [CrossRef] [PubMed]
  46. Rivera, R.; Andriankaja, O.M.; Perez, C.M.; Joshipura, K. Relationship between periodontal disease and asthma among overweight/obese adults. J. Clin. Periodontol. 2016, 43, 566–571. [Google Scholar] [CrossRef] [PubMed]
  47. Friedrich, N.; Volzke, H.; Schwahn, C.; Kramer, A.; Junger, M.; Schafer, T.; John, U.; Kocher, T. Inverse association between periodontitis and respiratory allergies. Clin. Exp. Allergy 2006, 36, 495–502. [Google Scholar] [CrossRef]
  48. Friedrich, N.; Kocher, T.; Wallaschofski, H.; Schwahn, C.; Ludemann, J.; Kerner, W.; Volzke, H. Inverse association between periodontitis and respiratory allergies in patients with type 1 diabetes mellitus. J. Clin. Periodontol. 2008, 35, 305–310. [Google Scholar] [CrossRef] [PubMed]
  49. Sperr, M.; Kundi, M.; Tursic, V.; Bristela, M.; Moritz, A.; Andrukhov, O.; Rausch-Fan, X.; Sperr, W.R. Prevalence of comorbidities in periodontitis patients compared with the general Austrian population. J. Periodontol. 2018, 89, 19–27. [Google Scholar] [CrossRef] [PubMed]
  50. Candeo, L.C.; Rigonato-Oliveira, N.C.; Brito, A.A.; Marcos, R.L.; Franca, C.M.; Fernandes, K.P.S.; Mesquita-Ferrari, R.A.; Bussadori, S.K.; Vieira, R.P.; Lino-Dos-Santos-Franco, A.; et al. Effects of periodontitis on the development of asthma: The role of photodynamic therapy. PLoS ONE 2017, 12, e0187945. [Google Scholar] [CrossRef]
  51. Jiao, R.; Li, W.; Song, J.; Chen, Z. Causal association between asthma and periodontitis: A two-sample Mendelian randomization analysis. Oral Dis. 2023. online ahead of print. [Google Scholar] [CrossRef]
  52. Gurkan, A.; Emingil, G.; Saygan, B.H.; Atilla, G.; Kose, T.; Baylas, H.; Berdeli, A. Renin-angiotensin gene polymorphisms in relation to severe chronic periodontitis. J. Clin. Periodontol. 2009, 36, 204–211. [Google Scholar] [CrossRef]
  53. Loos, B.G.; Fiebig, A.; Nothnagel, M.; Jepsen, S.; Groessner-Schreiber, B.; Franke, A.; Jervoe-Storm, P.M.; Schenck, K.; van der Velden, U.; Schreiber, S. NOD1 gene polymorphisms in relation to aggressive periodontitis. Innate Immun. 2009, 15, 225–232. [Google Scholar] [CrossRef] [PubMed]
  54. Yoshikawa, H.; Furuta, K.; Ueno, M.; Egawa, M.; Yoshino, A.; Kondo, S.; Nariai, Y.; Ishibashi, H.; Kinoshita, Y.; Sekine, J. Oral symptoms including dental erosion in gastroesophageal reflux disease are associated with decreased salivary flow volume and swallowing function. J. Gastroenterol. 2012, 47, 412–420. [Google Scholar] [CrossRef] [PubMed]
  55. Watanabe, M.; Nakatani, E.; Yoshikawa, H.; Kanno, T.; Nariai, Y.; Yoshino, A.; Vieth, M.; Kinoshita, Y.; Sekine, J. Oral soft tissue disorders are associated with gastroesophageal reflux disease: Retrospective study. BMC Gastroenterol. 2017, 17, 92. [Google Scholar] [CrossRef]
  56. Liu, Z.; Gao, X.; Liang, L.; Zhou, X.; Han, X.; Yang, T.; Huang, K.; Lin, Y.; Deng, S.; Wang, Z.; et al. Prevalence, General and Periodontal Risk Factors of Gastroesophageal Reflux Disease in China. J. Inflamm. Res. 2023, 16, 235–244. [Google Scholar] [CrossRef] [PubMed]
  57. Song, J.Y.; Kim, H.H.; Cho, E.J.; Kim, T.Y. The relationship between gastroesophageal reflux disease and chronic periodontitis. Gut Liver 2014, 8, 35–40. [Google Scholar] [CrossRef] [PubMed]
  58. Li, X.; Chaouhan, H.S.; Wang, Y.M.; Wang, I.K.; Lin, C.L.; Shen, T.C.; Li, C.Y.; Sun, K.T. Risk of Periodontitis in Patients with Gastroesophageal Reflux Disease: A Nationwide Retrospective Cohort Study. Biomedicines 2022, 10, 2980. [Google Scholar] [CrossRef] [PubMed]
  59. Jiang, S.; Zheng, L.; Miao, Z. Gastroesophageal reflux disease and oral symptoms: A two-sample Mendelian randomization study. Front. Genet. 2022, 13, 1061550. [Google Scholar] [CrossRef]
  60. Yang, L.; Lu, X.; Nossa, C.W.; Francois, F.; Peek, R.M.; Pei, Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 2009, 137, 588–597. [Google Scholar] [CrossRef]
  61. Vakil, N.; van Zanten, S.V.; Kahrilas, P.; Dent, J.; Jones, R.; Global Consensus, G. The Montreal definition and classification of gastroesophageal reflux disease: A global evidence-based consensus. Am. J. Gastroenterol. 2006, 101, 1900–1920, quiz 1943. [Google Scholar] [CrossRef]
  62. Havemann, B.D.; Henderson, C.A.; El-Serag, H.B. The association between gastro-oesophageal reflux disease and asthma: A systematic review. Gut 2007, 56, 1654–1664. [Google Scholar] [CrossRef]
  63. Boulet, L.P. Influence of comorbid conditions on asthma. Eur. Respir. J. 2009, 33, 897–906. [Google Scholar] [CrossRef] [PubMed]
  64. Sigusch, B.; Klinger, G.; Glockmann, E.; Simon, H.U. Early-onset and adult periodontitis associated with abnormal cytokine production by activated T lymphocytes. J. Periodontol. 1998, 69, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
  65. Qin, X.; Hoda, M.N.; Susin, C.; Wheeler, J.N.; Marshall, B.; Perry, L.; Saad, N.; Yin, L.; Elsayed, R.; Elsalanty, M.; et al. Increased Innate Lymphoid Cells in Periodontal Tissue of the Murine Model of Periodontitis: The Role of AMP-Activated Protein Kinase and Relevance for the Human Condition. Front. Immunol. 2017, 8, 922. [Google Scholar] [CrossRef] [PubMed]
  66. Kindstedt, E.; Koskinen Holm, C.; Palmqvist, P.; Sjostrom, M.; Lejon, K.; Lundberg, P. Innate lymphoid cells are present in gingivitis and periodontitis. J. Periodontol. 2019, 90, 200–207. [Google Scholar] [CrossRef]
  67. Li, C.; Liu, J.; Pan, J.; Wang, Y.; Shen, L.; Xu, Y. ILC1s and ILC3s Exhibit Inflammatory Phenotype in Periodontal Ligament of Periodontitis Patients. Front. Immunol. 2021, 12, 708678. [Google Scholar] [CrossRef] [PubMed]
  68. Hsu, A.T.; Gottschalk, T.A.; Tsantikos, E.; Hibbs, M.L. The Role of Innate Lymphoid Cells in Chronic Respiratory Diseases. Front. Immunol. 2021, 12, 733324. [Google Scholar] [CrossRef]
  69. Son, G.Y.; Son, A.; Yang, Y.M.; Park, W.; Chang, I.; Lee, J.H.; Shin, D.M. Airborne allergens induce protease activated receptor-2-mediated production of inflammatory cytokines in human gingival epithelium. Arch. Oral Biol. 2016, 61, 138–143. [Google Scholar] [CrossRef]
  70. Coquet, J.M. A singular role for interleukin-9 in the development of asthma. Sci. Immunol. 2020, 5, eabc4021. [Google Scholar] [CrossRef]
  71. Huang, S.J.; Li, R.; Xu, S.; Liu, Y.; Li, S.H.; Duan, S.Z. Assessment of bidirectional relationships between circulating cytokines and periodontitis: Insights from a mendelian randomization analysis. Front. Genet. 2023, 14, 1124638. [Google Scholar] [CrossRef]
  72. Coogan, P.F.; Castro-Webb, N.; Yu, J.; O’Connor, G.T.; Palmer, J.R.; Rosenberg, L. Active and passive smoking and the incidence of asthma in the Black Women’s Health Study. Am. J. Respir. Crit. Care Med. 2015, 191, 168–176. [Google Scholar] [CrossRef]
  73. Skaaby, T.; Taylor, A.E.; Jacobsen, R.K.; Paternoster, L.; Thuesen, B.H.; Ahluwalia, T.S.; Larsen, S.C.; Zhou, A.; Wong, A.; Gabrielsen, M.E.; et al. Investigating the causal effect of smoking on hay fever and asthma: A Mendelian randomization meta-analysis in the CARTA consortium. Sci. Rep. 2017, 7, 2224. [Google Scholar] [CrossRef] [PubMed]
  74. Jayes, L.; Haslam, P.L.; Gratziou, C.G.; Powell, P.; Britton, J.; Vardavas, C.; Jimenez-Ruiz, C.; Leonardi-Bee, J.; Tobacco Control Committee of the European Respiratory Society. SmokeHaz: Systematic Reviews and Meta-analyses of the Effects of Smoking on Respiratory Health. Chest 2016, 150, 164–179. [Google Scholar] [CrossRef] [PubMed]
  75. Thomson, N.C.; Polosa, R.; Sin, D.D. Cigarette Smoking and Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 2783–2797. [Google Scholar] [CrossRef] [PubMed]
  76. Westergaard, C.G.; Porsbjerg, C.; Backer, V. The effect of smoking cessation on airway inflammation in young asthma patients. Clin. Exp. Allergy 2014, 44, 353–361. [Google Scholar] [CrossRef]
  77. Apatzidou, D.A. The role of cigarette smoking in periodontal disease and treatment outcomes of dental implant therapy. Periodontol. 2000 2022, 90, 45–61. [Google Scholar] [CrossRef]
  78. SSY, A.L.; Natto, Z.S.; Midle, J.B.; Gyurko, R.; O’Neill, R.; Steffensen, B. Association between time since quitting smoking and periodontitis in former smokers in the National Health and Nutrition Examination Surveys (NHANES) 2009 to 2012. J. Periodontol. 2019, 90, 16–25. [Google Scholar] [CrossRef]
  79. Huang, C.; Shi, G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J. Transl. Med. 2019, 17, 225. [Google Scholar] [CrossRef]
  80. Chang, Q.; Zhu, Y.; Zhou, G.; Liang, H.; Li, D.; Cheng, J.; Pan, P.; Zhang, Y. Vitamin D status, sleep patterns, genetic susceptibility, and the risk of incident adult-onset asthma: A large prospective cohort study. Front. Nutr. 2023, 10, 1222499. [Google Scholar] [CrossRef]
  81. Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Griffiths, C.J.; Camargo, C.A., Jr.; Kerley, C.P.; Jensen, M.E.; Mauger, D.; Stelmach, I.; Urashima, M.; et al. Vitamin D supplementation to prevent asthma exacerbations: A systematic review and meta-analysis of individual participant data. Lancet Respir. Med. 2017, 5, 881–890. [Google Scholar] [CrossRef]
  82. Wang, M.; Liu, M.; Wang, C.; Xiao, Y.; An, T.; Zou, M.; Cheng, G. Association between vitamin D status and asthma control: A meta-analysis of randomized trials. Respir. Med. 2019, 150, 85–94. [Google Scholar] [CrossRef]
  83. de Groot, J.C.; van Roon, E.N.; Storm, H.; Veeger, N.J.; Zwinderman, A.H.; Hiemstra, P.S.; Bel, E.H.; ten Brinke, A. Vitamin D reduces eosinophilic airway inflammation in nonatopic asthma. J. Allergy Clin. Immunol. 2015, 135, 670–675.e3. [Google Scholar] [CrossRef] [PubMed]
  84. Machado, V.; Lobo, S.; Proenca, L.; Mendes, J.J.; Botelho, J. Vitamin D and Periodontitis: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2177. [Google Scholar] [CrossRef]
  85. Liang, F.; Zhou, Y.; Zhang, Z.; Zhang, Z.; Shen, J. Association of vitamin D in individuals with periodontitis: An updated systematic review and meta-analysis. BMC Oral Health 2023, 23, 387. [Google Scholar] [CrossRef]
  86. Grant, W.B.; van Amerongen, B.M.; Boucher, B.J. Periodontal Disease and Other Adverse Health Outcomes Share Risk Factors, including Dietary Factors and Vitamin D Status. Nutrients 2023, 15, 2787. [Google Scholar] [CrossRef] [PubMed]
  87. van der Putten, G.J.; Vanobbergen, J.; De Visschere, L.; Schols, J.; de Baat, C. Association of some specific nutrient deficiencies with periodontal disease in elderly people: A systematic literature review. Nutrition 2009, 25, 717–722. [Google Scholar] [CrossRef] [PubMed]
  88. Pinto, J.; Goergen, J.; Muniz, F.; Haas, A.N. Vitamin D levels and risk for periodontal disease: A systematic review. J. Periodontal Res. 2018, 53, 298–305. [Google Scholar] [CrossRef]
  89. Hu, Z.; Zhou, F.; Xu, H. Circulating vitamin C and D concentrations and risk of dental caries and periodontitis: A Mendelian randomization study. J. Clin. Periodontol. 2022, 49, 335–344. [Google Scholar] [CrossRef]
  90. Chaffee, B.W.; Weston, S.J. Association between chronic periodontal disease and obesity: A systematic review and meta-analysis. J. Periodontol. 2010, 81, 1708–1724. [Google Scholar] [CrossRef]
  91. Martinez-Herrera, M.; Silvestre-Rangil, J.; Silvestre, F.J. Association between obesity and periodontal disease. A systematic review of epidemiological studies and controlled clinical trials. Med. Oral Patol. Oral Y Cir. Buccal 2017, 22, e708–e715. [Google Scholar] [CrossRef]
  92. Kim, C.M.; Lee, S.; Hwang, W.; Son, E.; Kim, T.W.; Kim, K.; Kim, Y.H. Obesity and periodontitis: A systematic review and updated meta-analysis. Front. Endocrinol. 2022, 13, 999455. [Google Scholar] [CrossRef]
  93. Nascimento, G.G.; Leite, F.R.; Do, L.G.; Peres, K.G.; Correa, M.B.; Demarco, F.F.; Peres, M.A. Is weight gain associated with the incidence of periodontitis? A systematic review and meta-analysis. J. Clin. Periodontol. 2015, 42, 495–505. [Google Scholar] [CrossRef] [PubMed]
  94. Beuther, D.A.; Sutherland, E.R. Overweight, obesity, and incident asthma: A meta-analysis of prospective epidemiologic studies. Am. J. Respir. Crit. Care Med. 2007, 175, 661–666. [Google Scholar] [CrossRef] [PubMed]
  95. Winsa-Lindmark, S.; Stridsman, C.; Sahlin, A.; Hedman, L.; Stenfors, N.; Myrberg, T.; Lindberg, A.; Ronmark, E.; Backman, H. Severity of adult onset-asthma-a matter of blood neutrophils and severe obesity. Respir. Med. 2023, 219, 107418. [Google Scholar] [CrossRef] [PubMed]
  96. Akerman, M.J.; Calacanis, C.M.; Madsen, M.K. Relationship between asthma severity and obesity. J. Asthma 2004, 41, 521–526. [Google Scholar] [CrossRef]
  97. Miethe, S.; Karsonova, A.; Karaulov, A.; Renz, H. Obesity and asthma. J. Allergy Clin. Immunol. 2020, 146, 685–693. [Google Scholar] [CrossRef]
  98. Chrystyn, H. Methods to identify drug deposition in the lungs following inhalation. Br. J. Clin. Pharmacol. 2001, 51, 289–299. [Google Scholar] [CrossRef]
  99. Thomas, M.S.; Parolia, A.; Kundabala, M.; Vikram, M. Asthma and oral health: A review. Aust. Dent. J. 2010, 55, 128–133. [Google Scholar] [CrossRef]
  100. Widmer, R.P. Oral health of children with respiratory diseases. Paediatr. Respir. Rev. 2010, 11, 226–232. [Google Scholar] [CrossRef]
  101. Gani, F.; Caminati, M.; Bellavia, F.; Baroso, A.; Faccioni, P.; Pancera, P.; Batani, V.; Senna, G. Oral health in asthmatic patients: A review: Asthma and its therapy may impact on oral health. Clin. Mol. Allergy 2020, 18, 22. [Google Scholar] [CrossRef]
  102. Bozejac, B.V.; Stojsin, I.; Ethuric, M.; Zvezdin, B.; Brkanic, T.; Budisin, E.; Vukoje, K.; Secen, N. Impact of inhalation therapy on the incidence of carious lesions in patients with asthma and COPD. J. Appl. Oral. Sci. 2017, 25, 506–514. [Google Scholar] [CrossRef]
  103. Marsh, P.D.; Do, T.; Beighton, D.; Devine, D.A. Influence of saliva on the oral microbiota. Periodontol. 2000 2016, 70, 80–92. [Google Scholar] [CrossRef] [PubMed]
  104. Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed]
  105. Segata, N.; Haake, S.K.; Mannon, P.; Lemon, K.P.; Waldron, L.; Gevers, D.; Huttenhower, C.; Izard, J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012, 13, R42. [Google Scholar] [CrossRef]
  106. Espuela-Ortiz, A.; Lorenzo-Diaz, F.; Baez-Ortega, A.; Eng, C.; Hernandez-Pacheco, N.; Oh, S.S.; Lenoir, M.; Burchard, E.G.; Flores, C.; Pino-Yanes, M. Bacterial salivary microbiome associates with asthma among african american children and young adults. Pediatr. Pulmonol. 2019, 54, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
  107. Ortiz, A.P.; Acosta-Pagan, K.T.; Oramas-Sepulveda, C.; Castaneda-Avila, M.A.; Vilanova-Cuevas, B.; Ramos-Cartagena, J.M.; Vivaldi, J.A.; Perez-Santiago, J.; Perez, C.M.; Godoy-Vitorino, F. Oral microbiota and periodontitis severity among Hispanic adults. Front. Cell Infect. Microbiol. 2022, 12, 965159. [Google Scholar] [CrossRef]
  108. Arweiler, N.B.; Rahmel, V.; Alhamwe, B.A.; Alhamdan, F.; Zemlin, M.; Boutin, S.; Dalpke, A.; Renz, H. Dental Biofilm and Saliva Microbiome and Its Interplay with Pediatric Allergies. Microorganisms 2021, 9, 1330. [Google Scholar] [CrossRef]
  109. Stensson, M.; Wendt, L.K.; Koch, G.; Oldaeus, G.; Birkhed, D. Oral health in preschool children with asthma. Int. J. Paediatr. Dent. 2008, 18, 243–250. [Google Scholar] [CrossRef]
  110. Arafa, A.; Aldahlawi, S.; Fathi, A. Assessment of the oral health status of asthmatic children. Eur. J. Dent. 2017, 11, 357–363. [Google Scholar] [CrossRef]
  111. Bairappan, S.; Puranik, M.P.; Sowmya, K.R. Impact of asthma and its medication on salivary characteristics and oral health in adolescents: A cross-sectional comparative study. Spec. Care Dent. 2020, 40, 227–237. [Google Scholar] [CrossRef]
  112. Stensson, M.; Wendt, L.K.; Koch, G.; Oldaeus, G.; Ramberg, P.; Birkhed, D. Oral health in young adults with long-term, controlled asthma. Acta Odontol. Scand. 2011, 69, 158–164. [Google Scholar] [CrossRef]
  113. Lenander-Lumikari, M.; Laurikainen, K.; Kuusisto, P.; Vilja, P. Stimulated salivary flow rate and composition in asthmatic and non-asthmatic adults. Arch. Oral Biol. 1998, 43, 151–156. [Google Scholar] [CrossRef]
  114. Laurikainen, K.; Kuusisto, P. Comparison of the oral health status and salivary flow rate of asthmatic patients with those of nonasthmatic adults--results of a pilot study. Allergy 1998, 53, 316–319. [Google Scholar] [CrossRef] [PubMed]
  115. Hatipoglu, O.; Pertek Hatipoglu, F. Association between asthma and caries-related salivary factors: A meta-analysis. J. Asthma 2022, 59, 38–53. [Google Scholar] [CrossRef] [PubMed]
  116. Ryberg, M.; Moller, C.; Ericson, T. Effect of beta 2-adrenoceptor agonists on saliva proteins and dental caries in asthmatic children. J. Dent. Res. 1987, 66, 1404–1406. [Google Scholar] [CrossRef] [PubMed]
  117. Ryberg, M.; Moller, C.; Ericson, T. Saliva composition and caries development in asthmatic patients treated with beta 2-adrenoceptor agonists: A 4-year follow-up study. Scand J. Dent. Res. 1991, 99, 212–218. [Google Scholar] [CrossRef] [PubMed]
  118. Ryberg, M.; Moller, C.; Ericson, T. Saliva composition in asthmatic patients after treatment with two dose levels of a beta 2-adrenoceptor agonist. Arch. Oral Biol. 1990, 35, 945–948. [Google Scholar] [CrossRef] [PubMed]
  119. Breivik, T.; Gundersen, Y.; Opstad, P.K.; Fonnum, F. Chemical sympathectomy inhibits periodontal disease in Fischer 344 rats. J. Periodontal Res. 2005, 40, 325–330. [Google Scholar] [CrossRef]
  120. Wang, T.; Cao, J.; Du, Z.J.; Zhang, Y.B.; Liu, Y.P.; Wang, L.; Lei, D.L. Effects of sympathetic innervation loss on mandibular distraction osteogenesis. J. Craniofacial Surg. 2012, 23, 1524–1528. [Google Scholar] [CrossRef]
  121. Gruber, R.; Leimer, M.; Fischer, M.B.; Agis, H. Beta2-adrenergic receptor agonists reduce proliferation but not protein synthesis of periodontal fibroblasts stimulated with platelet-derived growth factor-BB. Arch. Oral Biol. 2013, 58, 1812–1817. [Google Scholar] [CrossRef]
  122. Martins, L.G.; Spreafico, C.S.; Tanobe, P.G.; Tavares, T.A.A.; Castro, M.L.; Franco, G.C.N.; do Prado, R.F.; Anbinder, A.L. Influence of Adrenergic Neuromodulation during Induction of Periodontitis in Rats. J. Int. Acad. Periodontol. 2017, 19, 80–88. [Google Scholar]
  123. Okada, Y.; Hamada, N.; Kim, Y.; Takahashi, Y.; Sasaguri, K.; Ozono, S.; Sato, S. Blockade of sympathetic b-receptors inhibits Porphyromonas gingivalis-induced alveolar bone loss in an experimental rat periodontitis model. Arch. Oral Biol. 2010, 55, 502–508. [Google Scholar] [CrossRef] [PubMed]
  124. Rodrigues, W.F.; Madeira, M.F.; da Silva, T.A.; Clemente-Napimoga, J.T.; Miguel, C.B.; Dias-da-Silva, V.J.; Barbosa-Neto, O.; Lopes, A.H.; Napimoga, M.H. Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation. Br. J. Pharmacol. 2012, 165, 2140–2151. [Google Scholar] [CrossRef] [PubMed]
  125. Hyyppa, T.M.; Koivikko, A.; Paunio, K.U. Studies on periodontal conditions in asthmatic children. Acta Odontol. Scand. 1979, 37, 15–20. [Google Scholar] [CrossRef] [PubMed]
  126. Bansal, V.; Reddy, K.V.G.; Shrivastava, S.; Dhaded, S.; Noorani, S.M.; Shaikh, M.I. Oral health assessment in children aging 8–15 years with bronchial asthma using inhalation medication. Tzu Chi Med. J. 2022, 34, 239–244. [Google Scholar] [CrossRef]
  127. Sag, C.; Ozden, F.O.; Acikgoz, G.; Anlar, F.Y. The effects of combination treatment with a long-acting beta2-agonist and a corticosteroid on salivary flow rate, secretory immunoglobulin A, and oral health in children and adolescents with moderate asthma: A 1-month, single-blind clinical study. Clin. Ther. 2007, 29, 2236–2242. [Google Scholar] [CrossRef]
  128. Han, E.R.; Choi, I.S.; Kim, H.K.; Kang, Y.W.; Park, J.G.; Lim, J.R.; Seo, J.H.; Choi, J.H. Inhaled corticosteroid-related tooth problems in asthmatics. J. Asthma 2009, 46, 160–164. [Google Scholar] [CrossRef]
  129. Gunen-Yilmaz, S.; Aytekin, Z. Evaluation of jaw bone changes in patients with asthma using inhaled corticosteroids with mandibular radiomorphometric indices on dental panoramic radiographs. Med. Oral Patol. Oral Y Cirugía Bucal 2023, 28, e285–e292. [Google Scholar] [CrossRef]
  130. Moosavi, M.S.; Hosseinizade, P.S.; Panahi, G.; Shariat, M. Decreased salivary beta-defensin 2 in children with asthma after treatment with corticosteroid inhaler. Eur. Arch. Paediatr. Dent. 2023, 24, 249–254. [Google Scholar] [CrossRef]
  131. Hagewald, S.; Bernimoulin, J.P.; Kottgen, E.; Kage, A. Salivary IgA subclasses and bacteria-reactive IgA in patients with aggressive periodontitis. J. Periodontal Res. 2002, 37, 333–339. [Google Scholar] [CrossRef]
  132. Hagewald, S.; Bernimoulin, J.P.; Kottgen, E.; Kage, A. Total IgA and Porphyromonas gingivalis-reactive IgA in the saliva of patients with generalised early-onset periodontitis. Eur. J. Oral Sci. 2000, 108, 147–153. [Google Scholar] [CrossRef]
  133. Chang, E.; Kobayashi, R.; Fujihashi, K.; Komiya, M.; Kurita-Ochiai, T. Impaired salivary SIgA antibodies elicit oral dysbiosis and subsequent induction of alveolar bone loss. Inflamm. Res. 2021, 70, 151–158. [Google Scholar] [CrossRef] [PubMed]
  134. Fukushima, C.; Matsuse, H.; Saeki, S.; Kawano, T.; Machida, I.; Kondo, Y.; Kohno, S. Salivary IgA and oral candidiasis in asthmatic patients treated with inhaled corticosteroid. J. Asthma 2005, 42, 601–604. [Google Scholar] [CrossRef] [PubMed]
  135. Tiisanoja, A.; Syrjala, A.M.; Anttonen, V.; Ylostalo, P. Anticholinergic burden, oral hygiene practices, and oral hygiene status-cross-sectional findings from the Northern Finland Birth Cohort 1966. Clin. Oral Investig. 2021, 25, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
  136. Batig, V.M.; Kaskova, L.F.; Ostafiichuk, M.A.; Abramchuk, I.I.; Mytchenok, M.P.; Karatintseva, K.P.; Ishkov, M.O.; Batih, I.V.; Sheremet, M.I. Influence of anticholinergic drugs on the development of an experimental periodontitis model. J. Med. Life 2021, 14, 408–412. [Google Scholar] [CrossRef] [PubMed]
  137. Dahl, R.; Engel, M.; Dusser, D.; Halpin, D.; Kerstjens, H.A.M.; Zaremba-Pechmann, L.; Moroni-Zentgraf, P.; Busse, W.W.; Bateman, E.D. Safety and tolerability of once-daily tiotropium Respimat((R)) as add-on to at least inhaled corticosteroids in adult patients with symptomatic asthma: A pooled safety analysis. Respir. Med. 2016, 118, 102–111. [Google Scholar] [CrossRef] [PubMed]
  138. Vogelberg, C.; Engel, M.; Laki, I.; Bernstein, J.A.; Schmidt, O.; El Azzi, G.; Moroni-Zentgraf, P.; Sigmund, R.; Hamelmann, E. Tiotropium add-on therapy improves lung function in children with symptomatic moderate asthma. J. Allergy Clin. Immunol. Pract. 2018, 6, 2160–2162.e9. [Google Scholar] [CrossRef] [PubMed]
  139. Yamasaki, K. The role of cyclic AMP, calcium, and prostaglandins in the induction of osteoclastic bone resorption associated with experimental tooth movement. J. Dent. Res. 1983, 62, 877–881. [Google Scholar] [CrossRef]
  140. Moro, M.G.; Oliveira, M.D.S.; Santana, M.M.; de Jesus, F.N.; Feitosa, K.; Teixeira, S.A.; Franco, G.C.N.; Spolidorio, L.C.; Muscara, M.N.; Holzhausen, M. Leukotriene receptor antagonist reduces inflammation and alveolar bone loss in a rat model of experimental periodontitis. J. Periodontol. 2021, 92, e84–e93. [Google Scholar] [CrossRef]
  141. Kang, J.H.; Lim, H.; Lee, D.S.; Yim, M. Montelukast inhibits RANKL-induced osteoclast formation and bone loss via CysLTR1 and P2Y12. Mol. Med. Rep. 2018, 18, 2387–2398. [Google Scholar] [CrossRef]
  142. Thamban Chandrika, N.; Fosso, M.Y.; Alimova, Y.; May, A.; Gonzalez, O.A.; Garneau-Tsodikova, S. Novel zafirlukast derivatives exhibit selective antibacterial activity against Porphyromonas gingivalis. Medchemcomm 2019, 10, 926–933. [Google Scholar] [CrossRef]
  143. Howard, K.C.; Gonzalez, O.A.; Garneau-Tsodikova, S. Second Generation of Zafirlukast Derivatives with Improved Activity against the Oral Pathogen Porphyromonas gingivalis. ACS Med. Chem. Lett. 2020, 11, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
  144. Howard, K.C.; Garneau-Tsodikova, S. Selective Inhibition of the Periodontal Pathogen Porphyromonas gingivalis by Third-Generation Zafirlukast Derivatives. J. Med. Chem. 2022, 65, 14938–14956. [Google Scholar] [CrossRef] [PubMed]
  145. Eloot, A.K.; Vanobbergen, J.N.; De Baets, F.; Martens, L.C. Oral health and habits in children with asthma related to severity and duration of condition. Eur. J. Paediatr. Dent. 2004, 5, 210–215. [Google Scholar] [PubMed]
  146. Dogan, M.; Sahiner, U.M.; Atac, A.S.; Ballikaya, E.; Soyer, O.U.; Sekerel, B.E. Oral health status of asthmatic children using inhaled corticosteroids. Turk. J. Pediatr. 2021, 63, 77–85. [Google Scholar] [CrossRef]
  147. Brigic, A.; Kobaslija, S.; Zukanovic, A. Antiasthmatic Inhaled Medications as Favoring Factors for Increased Concentration of Streptococcus Mutans. Mater. Socio-Medica 2015, 27, 237–240. [Google Scholar] [CrossRef]
  148. Scarabelot, V.L.; Cavagni, J.; Medeiros, L.F.; Detanico, B.; Rozisky, J.R.; de Souza, A.; Daudt, L.D.; Gaio, E.J.; Ferreira, M.B.; Rosing, C.K.; et al. Periodontal disease and high doses of inhaled corticosteroids alter NTPDase activity in the blood serum of rats. Arch. Oral Biol. 2014, 59, 841–847. [Google Scholar] [CrossRef]
  149. Sharma, M.; Patterson, L.; Chapman, E.; Flood, P.M. Salmeterol, a Long-Acting beta2-Adrenergic Receptor Agonist, Inhibits Macrophage Activation by Lipopolysaccharide From Porphyromonas gingivalis. J. Periodontol. 2017, 88, 681–692. [Google Scholar] [CrossRef]
  150. Skold, U.M.; Birkhed, D.; Xu, J.Z.; Lien, K.H.; Stensson, M.; Liu, J.F. Risk factors for and prevention of caries and dental erosion in children and adolescents with asthma. J. Dent. Sci. 2022, 17, 1387–1400. [Google Scholar] [CrossRef]
  151. Lima, L.R.S.; Pereira, A.S.; de Moura, M.S.; Lima, C.C.B.; Paiva, S.M.; Moura, L.; de Deus Moura de Lima, M. Pre-term birth and asthma is associated with hypomineralized second primary molars in pre-schoolers: A population-based study. Int. J. Paediatr. Dent. 2020, 30, 193–201. [Google Scholar] [CrossRef]
  152. Motohira, H.; Hayashi, J.; Tatsumi, J.; Tajima, M.; Sakagami, H.; Shin, K. Hypoxia and reoxygenation augment bone-resorbing factor production from human periodontal ligament cells. J. Periodontol. 2007, 78, 1803–1809. [Google Scholar] [CrossRef]
  153. Li, K.; Dong, S.G.; Zhang, H.X.; Zhou, S.; Ma, L.; Yu, Q.Q.; Jiang, Z.Y.; Hu, Q.F.; Zhou, D. Expression of RUNX2 and MDM21 in rats with periodontitis under chronic intermittent hypoxia. Asian Pac. J. Trop. Med. 2016, 9, 781–785. [Google Scholar] [CrossRef] [PubMed]
  154. Matsunaga, K.; Hirano, T.; Oka, A.; Ito, K.; Edakuni, N. Persistently high exhaled nitric oxide and loss of lung function in controlled asthma. Allergol. Int. 2016, 65, 266–271. [Google Scholar] [CrossRef] [PubMed]
  155. Aksit-Bicak, D.; Emekli-Alturfan, E.; Ustundag, U.V.; Akyuz, S. Assessment of dental caries and salivary nitric oxide levels in children with dyspepsia. BMC Oral Health 2019, 19, 11. [Google Scholar] [CrossRef] [PubMed]
  156. Ambe, K.; Watanabe, H.; Takahashi, S.; Nakagawa, T.; Sasaki, J. Production and physiological role of NO in the oral cavity. Jpn. Dent. Sci. Rev. 2016, 52, 14–21. [Google Scholar] [CrossRef][Green Version]
  157. Leitao, R.F.; Ribeiro, R.A.; Chaves, H.V.; Rocha, F.A.; Lima, V.; Brito, G.A. Nitric oxide synthase inhibition prevents alveolar bone resorption in experimental periodontitis in rats. J. Periodontol. 2005, 76, 956–963. [Google Scholar] [CrossRef]
  158. Kim, Y.S.; Pi, S.H.; Lee, Y.M.; Lee, S.I.; Kim, E.C. The anti-inflammatory role of heme oxygenase-1 in lipopolysaccharide and cytokine-stimulated inducible nitric oxide synthase and nitric oxide production in human periodontal ligament cells. J. Periodontol. 2009, 80, 2045–2055. [Google Scholar] [CrossRef]
  159. Batista, A.C.; Silva, T.A.; Chun, J.H.; Lara, V.S. Nitric oxide synthesis and severity of human periodontal disease. Oral Dis. 2002, 8, 254–260. [Google Scholar] [CrossRef]
  160. Reher, V.G.; Zenobio, E.G.; Costa, F.O.; Reher, P.; Soares, R.V. Nitric oxide levels in saliva increase with severity of chronic periodontitis. J. Oral Sci. 2007, 49, 271–276. [Google Scholar] [CrossRef]
  161. Shibata, K.; Warbington, M.L.; Gordon, B.J.; Kurihara, H.; Van Dyke, T.E. Nitric oxide synthase activity in neutrophils from patients with localized aggressive periodontitis. J. Periodontol. 2001, 72, 1052–1058. [Google Scholar] [CrossRef]
  162. Lappin, D.F.; Kjeldsen, M.; Sander, L.; Kinane, D.F. Inducible nitric oxide synthase expression in periodontitis. J. Periodontal Res. 2000, 35, 369–373. [Google Scholar] [CrossRef]
  163. Wadhwa, D.; Bey, A.; Hasija, M.; Moin, S.; Kumar, A.; Aman, S.; Sharma, V.K. Determination of levels of nitric oxide in smoker and nonsmoker patients with chronic periodontitis. J. Periodontal Implant. Sci. 2013, 43, 215–220. [Google Scholar] [CrossRef]
  164. Wyszyńska, M.; Czelakowska, A.; Rój, R.; Zając, M.; Mielnik, M.; Kasperski, J.; Skucha-Nowak, M. Measurement of the Level of Nitric Oxide in Exhaled Air in Patients Using Acrylic Complete Dentures and with Oral Pathologies. Coatings 2021, 11, 169. [Google Scholar] [CrossRef]
  165. Chen, M.; Cai, W.; Zhao, S.; Shi, L.; Chen, Y.; Li, X.; Sun, X.; Mao, Y.; He, B.; Hou, Y.; et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2019, 46, 608–622. [Google Scholar] [CrossRef] [PubMed]
  166. Zhao, T.; Thiering, E.; Jorres, R.A.; Standl, M.; Kuhnisch, J.; Heinrich, J. Oral inflammation and exhaled nitric oxide fraction: A cross-sectional study. ERJ Open Res. 2023, 9, 00640-2022. [Google Scholar] [CrossRef] [PubMed]
  167. Silva, M.J.; Sousa, L.M.; Lara, V.P.; Cardoso, F.P.; Junior, G.M.; Totola, A.H.; Caliari, M.V.; Romero, O.B.; Silva, G.A.; Ribeiro-Sobrinho, A.P.; et al. The role of iNOS and PHOX in periapical bone resorption. J. Dent. Res. 2011, 90, 495–500. [Google Scholar] [CrossRef]
  168. Fukada, S.Y.; Silva, T.A.; Saconato, I.F.; Garlet, G.P.; Avila-Campos, M.J.; Silva, J.S.; Cunha, F.Q. iNOS-derived nitric oxide modulates infection-stimulated bone loss. J. Dent. Res. 2008, 87, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
  169. Aurer, A.; Aleksic, J.; Ivic-Kardum, M.; Aurer, J.; Culo, F. Nitric oxide synthesis is decreased in periodontitis. J. Clin. Periodontol. 2001, 28, 565–568. [Google Scholar] [CrossRef] [PubMed]
  170. Kairaitis, K.; Garlick, S.R.; Wheatley, J.R.; Amis, T.C. Route of breathing in patients with asthma. Chest 1999, 116, 1646–1652. [Google Scholar] [CrossRef]
  171. Izuhara, Y.; Matsumoto, H.; Nagasaki, T.; Kanemitsu, Y.; Murase, K.; Ito, I.; Oguma, T.; Muro, S.; Asai, K.; Tabara, Y.; et al. Mouth breathing, another risk factor for asthma: The Nagahama Study. Allergy 2016, 71, 1031–1036. [Google Scholar] [CrossRef]
  172. Steinsvag, S.K.; Skadberg, B.; Bredesen, K. Nasal symptoms and signs in children suffering from asthma. Int. J. Pediatr. Otorhinolaryngol. 2007, 71, 615–621. [Google Scholar] [CrossRef]
  173. Lee, D.W.; Kim, J.G.; Yang, Y.M. Influence of mouth breathing on atopic dermatitis risk and oral health in children: A population-based cross-sectional study. J. Dent. Sci. 2021, 16, 178–185. [Google Scholar] [CrossRef]
  174. Togias, A.; Gergen, P.J.; Hu, J.W.; Babineau, D.C.; Wood, R.A.; Cohen, R.T.; Makhija, M.M.; Khurana Hershey, G.K.; Kercsmar, C.M.; Gruchalla, R.S.; et al. Rhinitis in children and adolescents with asthma: Ubiquitous, difficult to control, and associated with asthma outcomes. J. Allergy Clin. Immunol. 2019, 143, 1003–1011.e10. [Google Scholar] [CrossRef]
  175. Araujo, B.C.L.; de Magalhaes Simoes, S.; de Gois-Santos, V.T.; Martins-Filho, P.R.S. Association Between Mouth Breathing and Asthma: A Systematic Review and Meta-analysis. Curr. Allergy Asthma Rep. 2020, 20, 24. [Google Scholar] [CrossRef] [PubMed]
  176. Choi, J.E.; Waddell, J.N.; Lyons, K.M.; Kieser, J.A. Intraoral pH and temperature during sleep with and without mouth breathing. J. Oral Rehabil. 2016, 43, 356–363. [Google Scholar] [CrossRef] [PubMed]
  177. Eliasson, L.; Carlen, A.; Almstahl, A.; Wikstrom, M.; Lingstrom, P. Dental plaque pH and micro-organisms during hyposalivation. J. Dent. Res. 2006, 85, 334–338. [Google Scholar] [CrossRef] [PubMed]
  178. Wagaiyu, E.G.; Ashley, F.P. Mouthbreathing, lip seal and upper lip coverage and their relationship with gingival inflammation in 11-14 year-old schoolchildren. J. Clin. Periodontol. 1991, 18, 698–702. [Google Scholar] [CrossRef]
  179. Kaur, M.; Sharma, R.K.; Tewari, S.; Narula, S.C. Influence of mouth breathing on outcome of scaling and root planing in chronic periodontitis. BDJ Open 2018, 4, 17039. [Google Scholar] [CrossRef]
  180. Bisgaard, H.; Hermansen, M.N.; Buchvald, F.; Loland, L.; Halkjaer, L.B.; Bonnelykke, K.; Brasholt, M.; Heltberg, A.; Vissing, N.H.; Thorsen, S.V.; et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 2007, 357, 1487–1495. [Google Scholar] [CrossRef]
  181. Zhang, Q.; Illing, R.; Hui, C.K.; Downey, K.; Carr, D.; Stearn, M.; Alshafi, K.; Menzies-Gow, A.; Zhong, N.; Fan Chung, K. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir. Res. 2012, 13, 35. [Google Scholar] [CrossRef]
  182. Atkinson, J.J.; Senior, R.M. Matrix metalloproteinase-9 in lung remodeling. Am. J. Respir. Cell Mol. Biol. 2003, 28, 12–24. [Google Scholar] [CrossRef]
  183. Grzela, K.; Litwiniuk, M.; Zagorska, W.; Grzela, T. Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: The Role of Matrix Metalloproteinase-9. Arch. Immunol. Ther. Exp. 2016, 64, 47–55. [Google Scholar] [CrossRef] [PubMed]
  184. Carneiro, E.; Menezes, R.; Garlet, G.P.; Garcia, R.B.; Bramante, C.M.; Figueira, R.; Sogayar, M.; Granjeiro, J.M. Expression analysis of matrix metalloproteinase-9 in epithelialized and nonepithelialized apical periodontitis lesions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2009, 107, 127–132. [Google Scholar] [CrossRef] [PubMed]
  185. Kushlinskii, N.E.; Solovykh, E.A.; Karaoglanova, T.B.; Bayar, U.; Gershtein, E.S.; Troshin, A.A.; Kostyleva, O.I.; Grinin, V.M.; Maksimovskaya, L.N.; Yanushevitch, O.O. Content of matrix metalloproteinase-8 and matrix metalloproteinase-9 in oral fluid of patients with chronic generalized periodontitis. Bull. Exp. Biol. Med. 2011, 152, 240–244. [Google Scholar] [CrossRef] [PubMed]
  186. Kim, H.D.; Kim, S.; Jeon, S.; Kim, S.J.; Cho, H.J.; Choi, Y.N. Diagnostic and Prognostic ability of salivary MMP-9 and S100A8 for periodontitis. J. Clin. Periodontol. 2020, 47, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
  187. Yang, S.; Gu, B.; Zhao, L.; Shi, Q.; Xu, J.; Wen, N. Meta-analysis of the association between serum and gingival crevicular fluid matrix metalloproteinase-9 and periodontitis. J. Am. Dent. Assoc. 2019, 150, 34–41. [Google Scholar] [CrossRef] [PubMed]
  188. Suzuki, R.; Kamio, N.; Sugimoto, K.; Maruoka, S.; Gon, Y.; Kaneko, T.; Yonehara, Y.; Imai, K. Periodontopathic Bacterium Fusobacterium nucleatum Affects Matrix Metalloproteinase-9 Expression in Human Alveolar Epithelial Cells and Mouse Lung. In Vivo 2022, 36, 649–656. [Google Scholar] [CrossRef]
  189. Zhang, Z.; Yang, X.; Zhang, H.; Liu, X.; Pan, S.; Li, C. The role of extracellular matrix metalloproteinase inducer glycosylation in regulating matrix metalloproteinases in periodontitis. J. Periodontal Res. 2018, 53, 391–402. [Google Scholar] [CrossRef]
  190. Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef]
  191. Hyyppa, T. Gingival IgE and histamine concentrations in patients with asthma and in patients with periodontitis. J. Clin. Periodontol. 1984, 11, 132–137. [Google Scholar] [CrossRef]
  192. Hara, Y.; Maeda, K.; Akamine, A.; Miyatake, S.; Aono, M. Immunohistological evidence for gingival IgE-bearing cells in human periodontitis. J. Periodontal Res. 1987, 22, 370–374. [Google Scholar] [CrossRef]
  193. Nevins, A.J.; Levine, S.; Faitlowicz-Gayer, Y.; Svetcov, S. Sensitization via IgE-mediated mechanism in patients with chronic periapical lesions. J. Endod. 1985, 11, 228–230. [Google Scholar] [CrossRef] [PubMed]
  194. Han, K.; Lee, E.; Park, J.B. Evaluation of the associations between immunoglobulin E levels and the number of natural teeth. J. Formos. Med. Assoc. 2018, 117, 605–612. [Google Scholar] [CrossRef] [PubMed]
  195. Card, J.W.; Carey, M.A.; Voltz, J.W.; Bradbury, J.A.; Ferguson, C.D.; Cohen, E.A.; Schwartz, S.; Flake, G.P.; Morgan, D.L.; Arbes, S.J., Jr.; et al. Modulation of allergic airway inflammation by the oral pathogen Porphyromonas gingivalis. Infect. Immun. 2010, 78, 2488–2496. [Google Scholar] [CrossRef] [PubMed][Green Version]
  196. Kato, T.; Kimizuka, R.; Okuda, K. Changes of immunoresponse in BALB/c mice neonatally treated with periodontopathic bacterial endotoxin. FEMS Immunol. Med. Microbiol. 2006, 47, 420–424. [Google Scholar] [CrossRef] [PubMed]
  197. Wilson, S.R.; Rand, C.S.; Cabana, M.D.; Foggs, M.B.; Halterman, J.S.; Olson, L.; Vollmer, W.M.; Wright, R.J.; Taggart, V. Asthma outcomes: Quality of life. J. Allergy Clin. Immunol. 2012, 129, S88–S123. [Google Scholar] [CrossRef] [PubMed]
  198. Rodrigues, G.; Wuo, A.D.V.; Klein, S.; de Almeida, P.; Damazo, A.S.; Marcos, R.L.; Horliana, A.; Lino-Dos-Santos-Franco, A. The impact of maternal periodontitis in the development of asthma in the offspring. J. Dev. Orig. Health Dis. 2021, 12, 293–299. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.