Soluble Vascular Cell Adhesion Molecule-1 as an Inflammation-Related Biomarker of Coronary Slow Flow
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Coronary Angiography and TFC
2.3. Seattle Angina Questionnaire (SAQ)
2.4. Echocardiography
2.5. Detection of sVCAM-1, IL-6, and TNF-α
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tambe, A.A.; Demany, M.A.; Zimmerman, H.A.; Mascarenhas, E. Angina pectoris and slow flow velocity of dye in coronary arteries—A new angiographic finding. Am. Heart J. 1972, 84, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Y.; Li, J.; Li, G.; Kong, F.; Mu, L.; Jia, D.; Li, Y.; Yang, J.; Ma, C. Incremental Value of Three-dimensional Speckle-tracking Echocardiography for Evaluating Left Ventricular Systolic Function in Patients with Coronary Slow Flow. Curr. Probl. Cardiol. 2021, 47, 100928. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, C.; Zhang, Y.; Guan, Z.; Liu, S.; Li, Y.; Yang, J. Assessment of left and right ventricular diastolic and systolic functions using two-dimensional speckle-tracking echocardiography in patients with coronary slow-flow phenomenon. PLoS ONE 2015, 10, e0117979. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zong, Z.; Zhu, Q.; Wang, Y.; Li, X.; Zhang, C.; Ma, C.; Xue, Y. The lncRNA MALAT1 participates in regulating coronary slow flow endothelial dysfunction through the miR-181b-5p-MEF2A-ET-1 axis. Vascul. Pharmacol. 2021, 138, 106841. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wang, S.; Huang, X.; Zhao, C.; Wang, Y.; Li, X.; Jia, D.; Ma, C. Understanding the pathogenesis of coronary slow flow: Recent advances. Trends Cardiovasc. Med. 2022, S1050-1738(22)00142-6, Epub ahead of print. [Google Scholar] [CrossRef]
- Chalikias, G.; Tziakas, D. Slow Coronary Flow: Pathophysiology, Clinical Implications, and Therapeutic Management. Angiology 2021, 72, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Zhao, C.; Wang, Y.; Li, X.; Xue, Y.; Ma, C. LncRNA NEAT1 Promote Inflammatory Responses in Coronary Slow Flow Through Regulating miR-148b-3p/ICAM-1 Axis. J. Inflamm. Res. 2021, 14, 2445–2463. [Google Scholar] [CrossRef]
- Roshanravan, N.; Shabestari, A.N.; Alamdari, N.M.; Ostadrahimi, A.; Separham, A.; Parvizi, R.; Jafarabadi, M.A.; Ghodrat, M.; Akbarzadeh, M.; Naemi, M.; et al. A novel inflammatory signaling pathway in patients with slow coronary flow: NF-kappaB/IL-1beta/nitric oxide. Cytokine 2021, 143, 155511. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Huang, Z.; Wu, F.; Li, N.; Liang, C. Association between impaired cutaneous microvascular endothelial function and lectin-like oxidized low-density lipoprotein receptor-1 in patients with coronary slow flow. Microvasc. Res. 2020, 129, 103984. [Google Scholar] [CrossRef]
- Niu, H.; Wei, Z.; Zhang, Y.; He, J.; Jia, D. Atorvastatin improves coronary flow and endothelial function in patients with coronary slow flow. Exp. Ther. Med. 2018, 15, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Kayapinar, O.; Ozde, C.; Kaya, A. Relationship Between the Reciprocal Change in Inflammation-Related Biomarkers (Fibrinogen-to-Albumin and hsCRP-to-Albumin Ratios) and the Presence and Severity of Coronary Slow Flow. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619835383. [Google Scholar] [CrossRef] [PubMed]
- Willeit, K.; Pechlaner, R.; Willeit, P.; Skroblin, P.; Paulweber, B.; Schernthaner, C.; Toell, T.; Egger, G.; Weger, S.; Oberhollenzer, M.; et al. Association Between Vascular Cell Adhesion Molecule 1 and Atrial Fibrillation. JAMA Cardiol. 2017, 2, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Moccetti, F.; Brown, E.; Xie, A.; Packwood, W.; Qi, Y.; Ruggeri, Z.; Shentu, W.; Chen, J.; Lopez, J.A.; Lindner, J.R. Myocardial Infarction Produces Sustained Proinflammatory Endothelial Activation in Remote Arteries. J. Am. Coll Cardiol. 2018, 72, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Arends, C.M.; Liman, T.G.; Strzelecka, P.M.; Kufner, A.; Lowe, P.; Huo, S.; Stein, C.M.; Piper, S.K.; Tilgner, M.; Sperber, P.S.; et al. Associations of clonal haematopoiesis with recurrent vascular events and death in patients with incident ischemic stroke. Blood 2022, 2022017661, Epub ahead of print. [Google Scholar] [CrossRef]
- Chyrchel, B.; Kruszelnicka, O.; Surdacki, A. Endothelial biomarkers and platelet reactivity on ticagrelor versus clopidogrel in patients after acute coronary syndrome with and without concomitant type 2 diabetes: A preliminary observational study. Cardiovasc. Diabetol. 2022, 21, 249. [Google Scholar] [CrossRef]
- Gibson, C.M.; Cannon, C.P.; Daley, W.L.; Dodge, J.T., Jr.; Alexander, B., Jr.; Marble, S.J.; McCabe, C.H.; Raymond, L.; Fortin, T.; Poole, W.K.; et al. TIMI frame count: A quantitative method of assessing coronary artery flow. Circulation 1996, 93, 879–888. [Google Scholar] [CrossRef]
- Yao, G.H.; Deng, Y.; Liu, Y.; Xu, M.J.; Zhang, C.; Deng, Y.B.; Ren, W.D.; Li, Z.A.; Tang, H.; Zhang, Q.B.; et al. Echocardiographic measurements in normal chinese adults focusing on cardiac chambers and great arteries: A prospective, nationwide, and multicenter study. J. Am. Soc. Echocardiogr. 2015, 28, 570–579. [Google Scholar] [CrossRef]
- Wang, Y.H.; Kang, Y.Q.; Jin, X.Y.; Meng, P.P.; Guan, Z.Y.; Jia, D.L.; Gao, M.Y.; Ma, C.Y. Reference values of the carotid elastic modulus using shear wave elastography and arterial stiffness change in coronary slow flow. Eur. J. Radiol. 2022, 157, 110582. [Google Scholar] [CrossRef]
- Li, M.; Su, H.; Jiang, M.; Zuo, Z.; Su, Z.; Hao, L.; Yang, J.; Zhang, Z.; Wang, H.; Kong, X. Predictive value of thrombolysis in myocardial infarction frame count for coronary microvascular dysfunction evaluated with an angiography-derived index of microcirculatory resistance in patients with coronary slow flow. Quant Imaging Med. Surg. 2022, 12, 4942–4952. [Google Scholar] [CrossRef]
- Spertus, J.A.; Winder, J.A.; Dewhurst, T.A.; Deyo, R.A.; Prodzinski, J.; McDonell, M.; Fihn, S.D. Development and evaluation of the Seattle Angina Questionnaire: A new functional status measure for coronary artery disease. J. Am. Coll Cardiol. 1995, 25, 333–341. [Google Scholar] [CrossRef]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.O., 3rd. Microvascular angina and the continuing dilemma of chest pain with normal coronary angiograms. J. Am. Coll Cardiol. 2009, 54, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Kanar, H.S.; Arsan, A.; Kup, A.; Kanar, B.G.; Tanyildiz, B.; Akaslan, D.; Uslu, A.; Sadic, B.O. Comparison of subfoveal choroidal thickness and retinal nerve fiber layer thickness in patients with coronary slow flow phenomenon and microvascular angina: Optical coherence tomography based study. Photodiagnosis. Photodyn. Ther. 2021, 33, 102189. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zou, R.; Shi, W.; Zhou, N.; Chen, S.; Zhou, H.; Chen, X.; Wu, Y. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics 2022, 12, 5034–5050. [Google Scholar] [CrossRef]
- Kozakova, M.; Morizzo, C.; Goncalves, I.; Natali, A.; Nilsson, J.; Palombo, C. Cardiovascular organ damage in type 2 diabetes mellitus: The role of lipids and inflammation. Cardiovasc. Diabetol. 2019, 18, 61. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Su, Q.; Yang, H.; Li, L. Circulating miRNA-155 as a Potential Biomarker for Coronary Slow Flow. Dis. Markers 2018, 2018, 6345284. [Google Scholar] [CrossRef]
- Akbar, N.; Braithwaite, A.T.; Corr, E.M.; Koelwyn, G.J.; van Solingen, C.; Cochain, C.; Saliba, A.E.; Corbin, A.; Pezzolla, D.; Moller Jorgensen, M.; et al. Rapid neutrophil mobilisation by VCAM-1+ endothelial extracellular vesicles. Cardiovasc Res. 2022, cvac012, Epub ahead of print. [Google Scholar] [CrossRef]
- Kong, D.H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 1057. [Google Scholar] [CrossRef]
- Troncoso, M.F.; Ortiz-Quintero, J.; Garrido-Moreno, V.; Sanhueza-Olivares, F.; Guerrero-Moncayo, A.; Chiong, M.; Castro, P.F.; Garcia, L.; Gabrielli, L.; Corbalan, R.; et al. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166170. [Google Scholar] [CrossRef]
- Llibre, J.M.; Lopez Cortes, L.F.; Aylott, A.; Wynne, B.; Matthews, J.; Van Solingen-Ristea, R.; Vandermeulen, K.; van Wyk, J.; Kahl, L.P. Brief Report: Evaluation of Inflammation and Atherogenesis Biomarkers Through 148 Weeks Postswitch to Dolutegravir and Rilpivirine in SWORD-1/SWORD-2. J. Acquir. Immune. Defic. Syndr. 2022, 91, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Turhan, H.; Saydam, G.S.; Erbay, A.R.; Ayaz, S.; Yasar, A.S.; Aksoy, Y.; Basar, N.; Yetkin, E. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow. Int. J. Cardiol. 2006, 108, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Spertus, J.A.; Arnold, S.V. The Evolution of Patient-Reported Outcomes in Clinical Trials and Management of Patients With Coronary Artery Disease: 20 Years With the Seattle Angina Questionnaire. JAMA Cardiol. 2018, 3, 1035–1036. [Google Scholar] [CrossRef] [PubMed]
CSF (n = 46) | Controls (n = 30) | p Value | |
---|---|---|---|
Demographics | |||
Age (yrs) | 56.11 ± 11.39 | 56.67 ± 8.30 | 0.82 |
Male (n(%)) | 25 (54.3) | 12(40.0) | 0.22 |
Body mass index (kg/m2) | 25.63 ± 5.68 | 25.90 ± 3.41 | 0.82 |
Medical history | |||
Smoking (n (%)) | 10 (21.7) | 6 (20.0) | 0.86 |
Hypertension (n (%)) | 20 (43.5) | 9 (30.0) | 0.24 |
Diabetes mellitus (n (%)) | 5 (10.9) | 3 (10.0) | 0.90 |
Family history of myocardial infarction | 7 (15.2) | 7 (23.3) | 0.37 |
Laboratory values | |||
Triglycerides (mmol/L) | 1.62 ± 0.97 | 1.74 ± 0.75 | 0.57 |
Total cholesterol (mmol/L) | 4.44 ± 1.00 | 4.73 ± 1.07 | 0.25 |
LDL cholesterol (mmol/L) | 2.86 ± 0.82 | 3.06 ± 0.94 | 0.33 |
HDL cholesterol (mmol/L) | 1.09 ± 0.26 | 1.16 ± 0.36 | 0.31 |
Fasting blood glucose (mmol/L) | 5.58 ± 1.58 | 5.68 ± 1.72 | 0.81 |
Red blood cell count (1012/L) | 4.61 ± 0.35 | 4.42 ± 0.37 | 0.10 |
Red cell distribution width (%) | 13.03 ± 0.34 | 12.94 ± 0.29 | 0.24 |
Platelet count (109/L) | 222.45 ± 38.88 | 220.85 ± 46.87 | 0.33 |
Platelet distribution width (%) | 11.82 ± 1.37 | 12.09 ± 1.70 | 0.48 |
Medications | |||
Aspirin (n (%)) | 10 (21.7) | 6 (20.0) | 0.86 |
ACEI/ARB (n (%)) | 20 (43.4) | 11 (36.7) | 0.55 |
β-Blockers (n (%)) | 24 (52.2) | 14 (46.7) | 0.64 |
Calcium channel blocker (n (%)) | 12 (26.1) | 6 (20.0) | 0.54 |
Statin (n (%)) | 34 (73.9) | 19 (63.3) | 0.33 |
Nitrates (n (%)) | 33 (71.7) | 20 (66.7) | 0.64 |
TFC | |||
cLAD | 30.61 ± 5.97 | 16.26 ± 4.10 | <0.001 |
LCX | 40.00 ± 6.97 | 19.63 ± 3.53 | <0.001 |
RCA | 25.04 ± 8.24 | 13.73 ± 5.01 | <0.001 |
Mean | 31.89 ± 4.46 | 16.54 ± 2.79 | <0.001 |
Vessel involved | |||
1-vessel (n (%)) | 12 (26.09) | ||
2-vessel (n (%)) | 23 (50.00) | ||
3-vessel (n (%)) | 11 (23.91) |
CSF (n = 46) | Controls (n = 30) | p Value | |
---|---|---|---|
Physical limitation | 56.76 ± 21.84 | 68.65 ± 16.30 | 0.008 |
Angina stability | 68.48 ± 33.10 | 68.52 ± 22.57 | 0.99 |
Angina frequency | 74.57 ± 21.57 | 79.09 ± 19.00 | 0.40 |
Treatment satisfaction | 75.06 ± 17.80 | 79.96 ± 11.72 | 0.18 |
Quality of life | 51.45 ± 26.89 | 51.51 ± 17.36 | 0.99 |
CSF (n = 46) | Controls (n = 30) | p Value | |
---|---|---|---|
LV end-diastolic diameter (mm) | 47.20 ± 3.86 | 47.10 ± 3.18 | 0.92 |
LV end-systolic diameter (mm) | 27.74 ± 3.12 | 26.90 ± 2.63 | 0.27 |
LV end-diastolic volume (mL) | 87.62 ± 21.50 | 84.00 ± 20.51 | 0.50 |
LV end-systolic volume (mL) | 31.24 ± 7.64 | 30.75 ± 8.53 | 0.81 |
LV ejection fraction (%) | 64.16 ± 2.71 | 63.50 ± 2.95 | 0.36 |
LV GLS (%) | −17.22 ± 2.23 | −18.46 ± 2.37 | 0.04 |
LA volume index (mL/m2) | 27.91 ± 8.51 | 31.95 ± 10.37 | 0.16 |
mitral E (cm/s) | 59.76 ± 11.22 | 67.77 ± 13.36 | 0.01 |
mitral A (cm/s) | 72.51 ± 15.14 | 67.54 ± 13.11 | 0.17 |
mitral E/A | 0.87 ± 0.31 | 1.05 ± 0.32 | 0.03 |
mitral e’ (cm/s) | 7.43 ± 2.19 | 7.88 ± 1.91 | 0.41 |
mitral E/e’ | 8.47 ± 2.52 | 8.42 ± 1.86 | 0.92 |
TR V (m/s) | 2.30 ± 0.46 | 2.09 ± 0.62 | 0.24 |
RV basal diameter (mm) | 28.94 ± 4.22 | 28.49 ± 5.38 | 0.71 |
RV fractional area change (%) | 46.78 ± 6.56 | 48.84 ± 6.37 | 0.18 |
TAPSE (mm) | 25.03 ± 4.32 | 23.00 ± 4.91 | 0.09 |
tricuspid E/A | 1.21 ± 0.38 | 1.36 ± 0.32 | 0.10 |
tricuspid S’ (cm/s) | 11.72 ± 2.43 | 11.29 ± 1.68 | 0.45 |
tricuspid E/e’ | 6.47 ± 1.69 | 5.95 ± 1.56 | 0.23 |
Variables | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
Unadjusted | Adjusted | |||||
β [95% CI] | p Value | β [95% CI] | p Value | β [95% CI] | p Value | |
Physical Limitation | −0.07 [−0.17–0.02] | 0.13 | ||||
Mitral E | −0.15 [−0.30–0.01] | 0.07 | ||||
Mitral E/A | −3.23 [−9.53–3.08] | 0.31 | ||||
TAPSE | 0.44 [0.00–0.88] | 0.05 | ||||
LV GLS | 0.88 [0.02–1.75] | 0.045 | 0.40 [−0.35–1.15] | 0.29 | −0.06 [−0.85–0.74] | 0.89 |
IL-6 | 0.06 [0.02–0.10] | 0.002 | −0.05 [−0.11–0.02] | 0.17 | −0.06 [−0.13–0.00] | 0.06 |
TNF-α | 3.20 [0.27–6.13] | 0.03 | −2.73 [−6.50–1.04] | 0.15 | −2.97 [−6.79–0.86] | 0.13 |
sVCAM-1 | 0.06 [0.04–0.07] | <0.001 | 0.08 [0.05–0.11] | <0.001 | 0.09 [0.06–0.12] | <0.001 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
OR [95% CI] | p Value | OR [95% CI] | p Value | OR [95% CI] | p Value | |
Age | 0.99 [0.93–1.04] | 0.58 | 0.93 [0.86–1.01] | 0.10 | 0.94 [0.79–1.11] | 0.48 |
Sex | 0.29 [0.09–0.90] | 0.03 | 0.34 [0.07–1.78] | 0.20 | 0.84 [0.04–19.64] | 0.91 |
BMI | 0.99 [0.89–1.09] | 0.79 | 1.02 [0.90–1.16] | 0.79 | 1.11 [0.93–1.32] | 0.26 |
Physical Limitation | 0.95 [0.92–0.98] | 0.003 | 0.94 [0.90–0.98] | 0.003 | 0.95 [0.88–1.02] | 0.16 |
Mitral E | 0.93 [0.86–1.01] | 0.09 | 0.95 [0.83–1.09] | 0.46 | ||
Mitral E/A | 0.36 [0.01–10.35] | 0.55 | 0.13 [0.00–76.76] | 0.53 | ||
TAPSE | 1.16 [0.97–1.40] | 0.11 | 1.37 [0.96–1.96] | 0.08 | ||
LV GLS | 1.17 [0.84–1.61] | 0.35 | 1.24 [0.73–2.10] | 0.43 | ||
IL-6 | 0.95 [0.90–1.01] | 0.10 | ||||
TNF-α | 0.41 [0.01–12.44] | 0.61 | ||||
sVCAM-1 | 1.07 [1.03–1.11] | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Zhao, C.; Wang, Y.; Mu, L.; Li, X.; Qi, Y.; Yang, J.; Ma, C. Soluble Vascular Cell Adhesion Molecule-1 as an Inflammation-Related Biomarker of Coronary Slow Flow. J. Clin. Med. 2023, 12, 543. https://doi.org/10.3390/jcm12020543
Zhu Q, Zhao C, Wang Y, Mu L, Li X, Qi Y, Yang J, Ma C. Soluble Vascular Cell Adhesion Molecule-1 as an Inflammation-Related Biomarker of Coronary Slow Flow. Journal of Clinical Medicine. 2023; 12(2):543. https://doi.org/10.3390/jcm12020543
Chicago/Turabian StyleZhu, Qing, Cuiting Zhao, Yonghuai Wang, Lixin Mu, Xinxin Li, Yiqiu Qi, Jun Yang, and Chunyan Ma. 2023. "Soluble Vascular Cell Adhesion Molecule-1 as an Inflammation-Related Biomarker of Coronary Slow Flow" Journal of Clinical Medicine 12, no. 2: 543. https://doi.org/10.3390/jcm12020543
APA StyleZhu, Q., Zhao, C., Wang, Y., Mu, L., Li, X., Qi, Y., Yang, J., & Ma, C. (2023). Soluble Vascular Cell Adhesion Molecule-1 as an Inflammation-Related Biomarker of Coronary Slow Flow. Journal of Clinical Medicine, 12(2), 543. https://doi.org/10.3390/jcm12020543