A Prospective Study of Genetic Variants in Infants with Congenital Unilateral Sensorineural Hearing Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Genetic Testing
2.4. Estimated Hearing Thresholds, Magnetic Resonance Imaging (MRI), and Congenital Cytomegalovirus (cCMV) Infection Testing
2.5. Statistical Analysis
3. Results
3.1. Subject Group Demographics, Estimated Hearing Thresolds, MRI and cCMV Infection
3.2. Genetic Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehl, A.L.; Thomson, V. Newborn hearing screening: The great omission. Pediatrics 1998, 101, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berninger, E.; Westling, B. Outcome of a universal newborn hearing-screening programme based on multiple transient-evoked otoacoustic emissions and clinical brainstem response audiometry. Acta Otolaryngol. 2011, 131, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Bess, F.H.; Tharpe, A.M. Case history data on unilaterally hearing-impaired children. Ear Hear. 1986, 7, 14–19. [Google Scholar] [CrossRef]
- Bovo, R.; Martini, A.; Agnoletto, M.; Beghi, A.; Carmignoto, D.; Milani, M.; Zangaglia, A.M. Auditory and academic performance of children with unilateral hearing loss. Scand. Audiol. Suppl. 1988, 30, 71–74. [Google Scholar] [PubMed]
- Ruscetta, M.N.; Arjmand, E.M.; Pratt, S.R. Speech recognition abilities in noise for children with severe-to-profound unilateral hearing impairment. Int. J. Pediatr. Otorhinolaryngol. 2005, 69, 771–779. [Google Scholar] [CrossRef] [PubMed]
- McKay, S.; Gravel, J.S.; Tharpe, A.M. Amplification considerations for children with minimal or mild bilateral hearing loss and unilateral hearing loss. Trends Amplif. 2008, 12, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Kuppler, K.; Lewis, M.; Evans, A.K. A review of unilateral hearing loss and academic performance: Is it time to reassess traditional dogmata? Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 617–622. [Google Scholar] [CrossRef]
- Lieu, J.E.C.; Karzon, R.K.; Ead, B.; Tye-Murray, N. Do Audiologic Characteristics Predict Outcomes in Children With Unilateral Hearing Loss? Otol. Neurotol. 2013, 34, 1703–1710. [Google Scholar] [CrossRef] [Green Version]
- Morton, C.C.; Nance, W.E. Newborn hearing screening--a silent revolution. N. Engl. J. Med. 2006, 354, 2151–2164. [Google Scholar] [CrossRef]
- Sloan-Heggen, C.M.; Bierer, A.O.; Shearer, A.E.; Kolbe, D.L.; Nishimura, C.J.; Frees, K.L.; Ephraim, S.S.; Shibata, S.B.; Booth, K.T.; Campbell, C.A.; et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum. Genet. 2016, 135, 441–450. [Google Scholar] [CrossRef]
- Korver, A.M.; Smith, R.J.; Van Camp, G.; Schleiss, M.R.; Bitner-Glindzicz, M.A.; Lustig, L.R.; Usami, S.I.; Boudewyns, A.N. Congenital hearing loss. Nat. Rev. Dis. Primers. 2017, 3, 16094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azaiez, H.; Booth, K.T.; Ephraim, S.S.; Crone, B.; Black-Ziegelbein, E.A.; Marini, R.J.; Shearer, A.E.; Sloan-Heggen, C.M.; Kolbe, D.; Casavant, T.; et al. Genomic Landscape and Mutational Signatures of Deafness-Associated Genes. Am. J. Hum. Genet. 2018, 103, 484–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liming, B.J.; Carter, J.; Cheng, A.; Choo, D.; Curotta, J.; Carvalho, D.; Germiller, J.A.; Hone, S.; Kenna, M.A.; Loundon, N.; et al. International Pediatric Otolaryngology Group (IPOG) consensus recommendations: Hearing loss in the pediatric patient. Int. J. Pediatr. Otorhinolaryngol. 2016, 90, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Gruber, M.; Brown, C.; Mahadevan, M.; Neeff, M. Concomitant imaging and genetic findings in children with unilateral sensorineural hearing loss. J. Laryngol. Otol. 2017, 131, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Marlin, S.; Parodi, M.; Rouillon, I.; Guerlain, J.; Pingault, V.; Couloigner, V.; Garabedian, E.N.; Denoyelle, F.; Loundon, N. Unilateral Sensorineural Hearing Loss: Medical Context and Etiology. Audiol. Neurootol. 2017, 22, 83–88. [Google Scholar] [CrossRef]
- Tropitzsch, A.; Schade-Mann, T.; Gamerdinger, P.; Dofek, S.; Schulte, B.; Schulze, M.; Battke, F.; Fehr, S.; Biskup, S.; Heyd, A.; et al. Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear Hear. 2022, 43, 1049–1066. [Google Scholar] [CrossRef] [PubMed]
- Smith RJH, I.Y.; Schaefer, A.M. Pendred Syndrome/Nonsyndromic Enlarged Vestibular Aqueduct. In GeneReviews®; Adam, M.P., Everman, D.B., Mirzaa, G.M., Eds.; University of Washington: Seattle, WA, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1467/ (accessed on 18 June 2020).
- van Beeck Calkoen, E.A.; Engel, M.S.D.; van de Kamp, J.M.; Yntema, H.G.; Goverts, S.T.; Mulder, M.F.; Merkus, P.; Hensen, E.F. The etiological evaluation of sensorineural hearing loss in children. Eur. J. Pediatr. 2019, 178, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Larson, D.A.; Shott, G.; Rasmussen, B.; Cohen, A.P.; Benton, C.; Halsted, M.; Choo, D.; Meinzen-Derr, J.; Greinwald, J.H., Jr. Audiologic and temporal bone imaging findings in patients with sensorineural hearing loss and GJB2 mutations. Laryngoscope 2009, 119, 554–558. [Google Scholar] [CrossRef]
- Johansson, M.; Karltorp, E.; Edholm, K.; Drott, M.; Berninger, E. A Prospective Study of Etiology and Auditory Profiles in Infants with Congenital Unilateral Sensorineural Hearing Loss. J. Clin. Med. 2022, 11, 3966. [Google Scholar] [CrossRef]
- Berninger, E. Characteristics of normal newborn transient-evoked otoacoustic emissions: Ear asymmetries and sex effects. Int. J. Audiol. 2007, 46, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Olofsson, Å.; Berninger, E. Twin study of neonatal transient-evoked otoacoustic emissions. Hear. Res. 2020, 398, 108108. [Google Scholar] [CrossRef] [PubMed]
- Berninger, E. Letter to the Editor regarding “Otoacoustic emissions in newborn hearing screening: A systematic review of the effects of different protocols on test outcomes”. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 2022. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M. The Swedish Communicative Development Inventory III: Parent reports on language in preschool children. Int. J. Behav. Dev. 2016, 41, 647–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berninger, E.; Olofsson, A.; Leijon, A. Analysis of click-evoked auditory brainstem responses using time domain cross-correlations between interleaved responses. Ear Hear. 2014, 35, 318–329. [Google Scholar] [CrossRef]
- Berninger, E.; Drott, M.; Romanitan, M.; Tranebjærg, L.; Hellström, S. Congenital Nonprofound Bilateral Sensorineural Hearing Loss in Children: Comprehensive Characterization of Auditory Function and Hearing Aid Benefit. Audiol. Res. 2022, 12, 539–563. [Google Scholar] [CrossRef]
- Statistics Sweden. 2022. Available online: https://www.scb.se/en (accessed on 28 October 2022).
- Haffey, T.; Fowler, N.; Anne, S. Evaluation of unilateral sensorineural hearing loss in the pediatric patient. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 955–958. [Google Scholar] [CrossRef]
- Martínez-Frías, M.L.; Bermejo Sánchez, E.; Arroyo Carrera, I.; Pérez Fernández, J.L.; Pardo Romero, M.; Burón Martínez, E.; Hernández Ramón, F. The Townes-Brocks syndrome in Spain: The epidemiological aspects in a consecutive series of cases. An Esp. Pediatr. 1999, 50, 57–60. [Google Scholar]
- García-Santiago, F.A.; Martínez-Glez, V.; Santos, F.; García-Miñaur, S.; Mansilla, E.; Meneses, A.G.; Rosell, J.; Granero, Á.P.; Vallespín, E.; Fernández, L.; et al. Analysis of invdupdel(8p) rearrangement: Clinical, cytogenetic and molecular characterization. Am. J. Med. Genet. A 2015, 167, 1018–1025. [Google Scholar] [CrossRef]
- Kreicher, K.L.; Weir, F.W.; Nguyen, S.A.; Meyer, T.A. Characteristics and Progression of Hearing Loss in Children with Down Syndrome. J. Pediatr. 2018, 193, 27–33.e2. [Google Scholar] [CrossRef]
- Pryor, S.P.; Madeo, A.C.; Reynolds, J.C.; Sarlis, N.J.; Arnos, K.S.; Nance, W.E.; Yang, Y.; Zalewski, C.K.; Brewer, C.C.; Butman, J.A.; et al. SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): Evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J. Med. Genet. 2005, 42, 159. [Google Scholar] [CrossRef] [Green Version]
- Greinwald, J.; deAlarcon, A.; Meinzen-Derr, J.; Greinwald, J.; deAlarcon, A.; Cohen, A.; Uwiera, T.; Zhang, K.; Benton, C.; Halstead, M.; et al. Significance of unilateral enlarged vestibular aqueduct. Laryngoscope 2013, 123, 1537–1546. [Google Scholar] [CrossRef]
- Colvin, I.B.; Beale, T.; Harrop-Griffiths, K. Long-term follow-up of hearing loss in children and young adults with enlarged vestibular aqueducts: Relationship to radiologic findings and Pendred syndrome diagnosis. Laryngoscope 2006, 116, 2027–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesdorp, M.; de Koning Gans, P.A.M.; Schraders, M.; Oostrik, J.; Huynen, M.A.; Venselaar, H.; Beynon, A.J.; van Gaalen, J.; Piai, V.; Voermans, N.; et al. Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction. Hum. Genet. 2018, 137, 389–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, S.K.; Hill, J.K.; Hwang, C.H.; Lin, Z.S.; Millen, K.J.; Wu, D.K. Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Dev. Biol. 2009, 333, 14–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, Z.F.; Gálvez, H.; Pedreno, D.; Chen, Z.; Chrysostomou, E.; Żak, M.; Kang, M.; Canden, E.; Daudet, N. Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. eLife 2017, 6, e33323. [Google Scholar] [CrossRef] [PubMed]
- Sanlaville, D.; Verloes, A. CHARGE syndrome: An update. Eur. J. Med. Genet. 2007, 15, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Solomon, B.D. VACTERL/VATER Association. Orphanet. J. Rare Dis. 2011, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Beleza-Meireles, A.; Clayton-Smith, J.; Saraiva, J.M.; Tassabehji, M. Oculo-auriculo-vertebral spectrum: A review of the literature and genetic update. J. Med. Genet. 2014, 51, 635–645. [Google Scholar] [CrossRef]
- Bisdas, S.; Lenarz, M.; Lenarz, T.; Becker, H. Inner Ear Abnormalities in Patients with Goldenhar Syndrome. Otol. Neurotol. 2005, 26, 398–404. [Google Scholar] [CrossRef]
- Song, J.; Feng, Y.; Acke, F.R.; Coucke, P.; Vleminckx, K.; Dhooge, I.J. Hearing loss in Waardenburg syndrome: A systematic review. Clin. Genet. 2016, 89, 416–425. [Google Scholar] [CrossRef]
- Usami, S.I.; Kitoh, R.; Moteki, H.; Nishio, S.Y.; Kitano, T.; Kobayashi, M.; Shinagawa, J.; Yokota, Y.; Sugiyama, K.; Watanabe, K. Etiology of single-sided deafness and asymmetrical hearing loss. Acta Otolaryngol. 2017, 137, S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Orzan, E.; Pizzamiglio, G.; Gregori, M.; Marchi, R.; Torelli, L.; Muzzi, E. Correlation of cochlear aperture stenosis with cochlear nerve deficiency in congenital unilateral hearing loss and prognostic relevance for cochlear implantation. Sci. Rep. 2021, 11, 3338. [Google Scholar] [CrossRef] [PubMed]
- Ropers, F.G.; Pham, E.N.B.; Kant, S.G.; Rotteveel, L.J.C.; Rings, E.; Verbist, B.M.; Dekkers, O.M. Assessment of the Clinical Benefit of Imaging in Children With Unilateral Sensorineural Hearing Loss: A Systematic Review and Meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Jonard, L.; Niasme-Grare, M.; Bonnet, C.; Feldmann, D.; Rouillon, I.; Loundon, N.; Calais, C.; Catros, H.; David, A.; Dollfus, H.; et al. Screening of SLC26A4, FOXI1 and KCNJ10 genes in unilateral hearing impairment with ipsilateral enlarged vestibular aqueduct. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Noordman, B.J.; van Beeck Calkoen, E.A.; Witte, B.I.; Goverts, S.T.; Hensen, E.F.; Merkus, P. Prognostic Factors for Sudden Drops in Hearing Level After Minor Head Injury in Patients With an Enlarged Vestibular Aqueduct: A Meta-analysis. Otol. Neurotol. 2015, 36, 4–11. [Google Scholar] [CrossRef]
- Orzan, E.; Polli, R.; Martella, M.; Vinanzi, C.; Leonardi, M.; Murgia, A. Molecular genetics applied to clinical practice: The Cx26 hearing impairment. Br. J. Audiol. 1999, 33, 291–295. [Google Scholar] [CrossRef]
- Cama, E.; Melchionda, S.; Palladino, T.; Carella, M.; Santarelli, R.; Genovese, E.; Benettazzo, F.; Zelante, L.; Arslan, E. Hearing loss features in GJB2 biallelic mutations and GJB2/GJB6 digenic inheritance in a large Italian cohort. Int. J. Audiol. 2009, 48, 12–17. [Google Scholar] [CrossRef]
- Vos, B.; Noll, D.; Whittingham, J.; Pigeon, M.; Bagatto, M.; Fitzpatrick, E.M. Cytomegalovirus-A Risk Factor for Childhood Hearing Loss: A Systematic Review. Ear Hear. 2021, 42, 1447–1461. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.B.; McCollister, F.P.; Dahle, A.J.; Boppana, S.; Britt, W.J.; Pass, R.F. Progressive and fluctuating sensorineural hearing loss in children with asymptomatic congenital cytomegalovirus infection. J. Pediatr. 1997, 130, 624–630. [Google Scholar] [CrossRef]
- Thomas, J.P.; Neumann, K.; Dazert, S.; Voelter, C. Cochlear Implantation in Children With Congenital Single-Sided Deafness. Otol. Neurotol. 2017, 38, 496–503. [Google Scholar] [CrossRef]
- Polonenko, M.J.; Gordon, K.A.; Cushing, S.L.; Papsin, B.C. Cortical organization restored by cochlear implantation in young children with single sided deafness. Sci. Rep. 2017, 7, 16900. [Google Scholar] [CrossRef]
- Arndt, S.; Prosse, S.; Laszig, R.; Wesarg, T.; Aschendorff, A.; Hassepass, F. Cochlear Implantation in Children with Single-Sided Deafness: Does Aetiology and Duration of Deafness Matter? Audiol. Neurootol. 2015, 20, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Karltorp, E.; Hellström, S.; Lewensohn-Fuchs, I.; Carlsson-Hansén, E.; Carlsson, P.I.; Engman, M.L. Congenital cytomegalovirus infection—A common cause of hearing loss of unknown aetiology. Acta Paediatr. 2012, 101, e357–e362. [Google Scholar] [CrossRef]
- Fowler, K.B.; Dahle, A.J.; Boppana, S.B.; Pass, R.F. Newborn hearing screening: Will children with hearing loss caused by congenital cytomegalovirus infection be missed? J. Pediatr. 1999, 135, 60–64. [Google Scholar] [CrossRef]
- Fowler, K.B.; McCollister, F.P.; Sabo, D.L.; Shoup, A.G.; Owen, K.E.; Woodruff, J.L.; Cox, E.; Mohamed, L.S.; Choo, D.I.; Boppana, S.B. A Targeted Approach for Congenital Cytomegalovirus Screening Within Newborn Hearing Screening. Pediatrics 2017, 139, e20162128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, E. Perinatal asphyxia, hypoxia, ischemia and hearing loss. An overview. Scand. Audiol. 1997, 26, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medi-cal Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef]
ID | IE | Sex | ABR Threshold IE (dB nHL) | MRI Result | Variants Found in Genes, with Probable Genetic Cause for Hearing Loss | Genes with Hearing Loss Related Variants Specifically Discussed in MORL Expert Group Where a Genetic Explanation for the Hearing Loss Could Not Be Established † | Possibly Relevant Clinical Features or Family History of Hearing Loss |
---|---|---|---|---|---|---|---|
1 | L | M | 45 | -- | -- | -- | Asphyxia with brain injury |
2 | L | F | 35 | 0 | GJB2, two variants at the DFNB1 locus, autosomal recessive non-syndromic hearing loss (P) | -- | |
3 | L | F | >90 | Hypoplasia cochlea, aplasia/severe hypoplasia auditory nerve, semicircular canal dysplasia and EVA | SALL1 (LP), one variant found for Townes–Brocks syndrome* | -- | Anal atresia, finger malformation |
4 | R | F | 40 | -- | -- | -- | Strabismus, slight stutter |
5 | L | M | 40 | 0 | 0 | 0 | |
6 | L | M | >90 | Aplasia cochlea, aplasia/severe hypoplasia auditory nerve, labyrinth dysplasia, and semicircular canal dysplasia | 0 | 0 | |
7 | R | F | 45 | Bilateral EVA with probable IP II | SLC26A4, two variants, also found in parents, Pendred syndrome* | -- | |
8 | R | F | >90 | Aplasia/severe hypoplasia auditory nerve and hypoplasia inner ear canal | 0 | 0 | |
9 | L | M | >90 | -- | 0 | 0 | |
10 | L | M | 40 | -- | Chromosome 8P inverted duplication (8p11.1p23.1, ~6.9 Mb) and deletion (8p11.1p23.1, ~30.8 Mb) syndrome * | -- | Corpus callosum agenesia |
11 | R | M | >90 | Aplasia/severe hypoplasia auditory nerve and hypoplasia inner ear canal | 0 | 0 | |
12 | R | F | >90 | Aplasia/severe hypoplasia auditory nerve and hypoplasia inner ear canal | 0 | ADGRV1 two variants associated with autosomal recessive Usher syndrome type 2C, but not consistent with uSNHL (VUS) | Born small for age in week 36 + 1, NICU 1 week for jaundice |
13 | L | F | >90 | 0 | 0 | KITLG associated with autosomal dominant non-syndromic hearing loss at the DFNA69 locus and Waardenburg syndrome type 2 (VUS) STRC associated with autosomal recessive non-syndromic hearing loss at the DFNB16 locus and Deafness Infertility Syndrome (VUS) | Older brother with single-sided deafness >80 dB nHL, IE also L |
14 | L | M | >90 | Aplasia/severe hypoplasia auditory nerve | 0 | 0 | Born with mild respiratory distress syndrome, 3 days NICU, no apparent permanent effects |
15 | L | M | 40 | 0 | 0 | LMX1A associated with autosomal dominant non-syndromic hearing loss at the DFNA7 locus and autosomal recessive non-syndromic hearing loss, but with missense allele (LP) | Twin |
16 | L | F | 45 | 0 | 0 | COL4A4 associated with autosomal recessive Alport syndrome type 2 (VUS) | |
17 | L | M | 60 | Aplasia/severe hypoplasia auditory nerve | 0 | 0 | Twin |
18 | R | F | 60 | Unilateral EVA with probable IP II | 0 | TCOF1 associated with autosomal dominant Treacher Collins syndrome type 1 (VUS) TMC1 pathogenic for autosomal recessive non-syndromic hearing loss at the DFNB11 locus, but in homozygous state (P) | |
19 | L | M | 40 | -- | CHD7, autosomal dominant CHARGE syndrome (VUS) | -- | Tetralogy of Fallot (congenital heart Defect), feeding difficulties |
20 | R | F | 50 | -- | 0 | LOXHD1 associated with autosomal recessive non-syndromic hearing loss at the DFNB77 locus, and in one individual with late onset Fuchs corneal dystrophy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johansson, M.; Karltorp, E.; Asp, F.; Berninger, E. A Prospective Study of Genetic Variants in Infants with Congenital Unilateral Sensorineural Hearing Loss. J. Clin. Med. 2023, 12, 495. https://doi.org/10.3390/jcm12020495
Johansson M, Karltorp E, Asp F, Berninger E. A Prospective Study of Genetic Variants in Infants with Congenital Unilateral Sensorineural Hearing Loss. Journal of Clinical Medicine. 2023; 12(2):495. https://doi.org/10.3390/jcm12020495
Chicago/Turabian StyleJohansson, Marlin, Eva Karltorp, Filip Asp, and Erik Berninger. 2023. "A Prospective Study of Genetic Variants in Infants with Congenital Unilateral Sensorineural Hearing Loss" Journal of Clinical Medicine 12, no. 2: 495. https://doi.org/10.3390/jcm12020495
APA StyleJohansson, M., Karltorp, E., Asp, F., & Berninger, E. (2023). A Prospective Study of Genetic Variants in Infants with Congenital Unilateral Sensorineural Hearing Loss. Journal of Clinical Medicine, 12(2), 495. https://doi.org/10.3390/jcm12020495