A Novel Reperfusion Strategy for Primary Percutaneous Coronary Intervention in Patients with Acute ST-Segment Elevation Myocardial Infarction: A Prospective Case Series
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Procedural Protocol
- (1)
- A guiding catheter (GC1) was engaged to the target coronary artery via a transradial approach, followed by delivery of a guide wire (GW1). After the GW1 passed over the index lesion to the distal segment of target coronary artery, an appropriately sized balloon was immediately positioned at the site of the index lesion and inflated with appropriate pressure (6–12 atm) to completely occlude the forward coronary flow.
- (2)
- After ensuring reocclusion of coronary flow, a second guiding catheter (GC2) was immediately engaged into the target coronary artery through a transfemoral approach. Then, an aspiration catheter filled with contrast medium to prevent bubbles from entering the coronary arteries was advanced on a second guide wire (GW2) and positioned 15–20 mm distal to the index lesion. The balloon remained inflated throughout the entire process except for the moment when the GW2 and aspiration catheter passed through the index lesion.
- (3)
- Before reperfusion, a gentle puff of contrast via the aspiration catheter was applied to confirm the distal lumen patency. At this point, the VCR model was successfully established. Then, arterial blood was extracted via GC1 and diluted with heparin saline (3000 units of heparin to 500 mL of normal saline) at a 1:1 ratio (10 mL:10 mL) and subsequently manually infused through the aspiration catheter into the distal part of the target vessel. The perfusate infusion started at a flow rate of 20 mL/min and was subsequently adjusted based on heart rate and blood pressure measurements to maintain stable heart rate and blood pressure. If the heart rate or blood pressure dropped, the process was paused or the reperfusion speed reduced until all parameters returned to stability. Ten rounds of reperfusion were generally applied, with each round comprising 60 s reperfusion time and 15 s pause for perfusate preparation.
- (4)
- After the first reperfusion step was completed, the balloon was deflated and withdrawn to GC1 and the aspiration catheter withdrawn to GC2. Then, angiography and conventional PCI procedures were performed in sequence. Stent selection, use of glycoprotein IIb/IIIa inhibitors, or intra-aortic balloon pump (IABP) were left to the operators’ discretion.
2.3. Endpoints and Definitions
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med. 2007, 357, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Q.; Corvera, J.S.; Halkos, M.E.; Kerendi, F.; Wang, N.P.; Guyton, R.A.; Vinten-Johansen, J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H579–H588. [Google Scholar] [CrossRef] [PubMed]
- Mykytenko, J.; Reeves, J.G.; Kin, H.; Wang, N.P.; Zatta, A.J.; Jiang, R.; Guyton, R.A.; Vinten-Johansen, J.; Zhao, Z.Q. Persistent beneficial effect of postconditioning against infarct size: Role of mitochondrial K(ATP) channels during reperfusion. Basic Res. Cardiol. 2008, 103, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Guo, T.; Liu, L.; Yu, Z.; Xu, W.; Chen, W.; Shen, L.; Wang, J.; Dou, X. Ischemic postconditioning inhibits apoptosis after acute myocardial infarction in pigs. Heart Surg. Forum 2010, 13, E305–E310. [Google Scholar] [CrossRef] [Green Version]
- Lønborg, J.; Kelbaek, H.; Vejlstrup, N.; Jørgensen, E.; Helqvist, S.; Saunamäki, K.; Clemmensen, P.; Holmvang, L.; Treiman, M.; Jensen, J.S.; et al. Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ. Cardiovasc. Interv. 2010, 3, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Thuny, F.; Lairez, O.; Roubille, F.; Mewton, N.; Rioufol, G.; Sportouch, C.; Sanchez, I.; Bergerot, C.; Thibault, H.; Cung, T.T.; et al. Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2012, 59, 2175–2181. [Google Scholar] [CrossRef] [Green Version]
- Freixa, X.; Bellera, N.; Ortiz-Pérez, J.T.; Jiménez, M.; Paré, C.; Bosch, X.; De Caralt, T.M.; Betriu, A.; Masotti, M. Ischaemic postconditioning revisited: Lack of effects on infarct size following primary percutaneous coronary intervention. Eur. Heart J. 2012, 33, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Tarantini, G.; Favaretto, E.; Marra, M.P.; Frigo, A.C.; Napodano, M.; Cacciavillani, L.; Giovagnoni, A.; Renda, P.; De Biasio, V.; Plebani, M.; et al. Postconditioning during coronary angioplasty in acute myocardial infarction: The POST-AMI trial. Int. J. Cardiol. 2012, 162, 33–38. [Google Scholar] [CrossRef]
- Sörensson, P.; Saleh, N.; Bouvier, F.; Böhm, F.; Settergren, M.; Caidahl, K.; Tornvall, P.; Arheden, H.; Rydén, L.; Pernow, J. Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart 2010, 96, 1710–1715. [Google Scholar] [CrossRef]
- Hahn, J.Y.; Yu, C.W.; Park, H.S.; Song, Y.B.; Kim, E.K.; Lee, H.J.; Bae, J.W.; Chung, W.Y.; Choi, S.H.; Choi, J.H.; et al. Long-term effects of ischemic postconditioning on clinical outcomes: 1-year follow-up of the POST randomized trial. Am. Heart J. 2015, 169, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Engstrøm, T.; Kelbæk, H.; Helqvist, S.; Høfsten, D.E.; Kløvgaard, L.; Clemmensen, P.; Holmvang, L.; Jørgensen, E.; Pedersen, F.; Saunamaki, K.; et al. Effect of Ischemic Postconditioning During Primary Percutaneous Coronary Intervention for Patients With ST-Segment Elevation Myocardial Infarction: A Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 490–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausenloy, D.J.; Yellon, D.M. Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 2016, 13, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Heusch, G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol. 2020, 17, 773–789. [Google Scholar] [CrossRef]
- Heusch, G. Treatment of Myocardial Ischemia/Reperfusion Injury by Ischemic and Pharmacological Postconditioning. Compr. Physiol. 2015, 5, 1123–1145. [Google Scholar] [CrossRef]
- Sato, H.; Jordan, J.E.; Zhao, Z.Q.; Sarvotham, S.S.; Vinten-Johansen, J. Gradual reperfusion reduces infarct size and endothelial injury but augments neutrophil accumulation. Ann. Thorac. Surg. 1997, 64, 1099–1107. [Google Scholar] [CrossRef]
- Okamoto, F.; Allen, B.S.; Buckberg, G.D.; Bugyi, H.; Leaf, J. Reperfusion conditions: Importance of ensuring gentle versus sudden reperfusion during relief of coronary occlusion. J. Thorac. Cardiovasc. Surg. 1986, 92, 613–620. [Google Scholar] [CrossRef]
- Ben-Gal, Y.; Weisz, G.; Collins, M.B.; Genereux, P.; Dangas, G.D.; Teirstein, P.S.; Singh, V.P.; Rabbani, L.E.; Kodali, S.K.; Sherman, W.; et al. Dual catheter technique for the treatment of severe coronary artery perforations. Catheter. Cardiovasc. Interv. 2010, 75, 708–712. [Google Scholar] [CrossRef]
- Thomas, C.N.; Robinson, K.A.; Cipolla, G.D.; King, S.B., 3rd; Scott, N.A. Local intracoronary heparin delivery with a microporous balloon catheter. Am. Heart J. 1996, 132, 969–972. [Google Scholar] [CrossRef]
- Camenzind, E.; Kint, P.P.; Di Mario, C.; Ligthart, J.; van der Giessen, W.; Boersma, E.; Serruys, P.W. Intracoronary heparin delivery in humans. Acute feasibility and long-term results. Circulation 1995, 92, 2463–2472. [Google Scholar] [CrossRef]
- Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; Blackstone, E.H.; et al. Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. J. Am. Coll. Cardiol. 2021, 77, 2717–2746. [Google Scholar] [CrossRef] [PubMed]
- Cutlip, D.E.; Windecker, S.; Mehran, R.; Boam, A.; Cohen, D.J.; van Es, G.A.; Steg, P.G.; Morel, M.A.; Mauri, L.; Vranckx, P.; et al. Clinical end points in coronary stent trials: A case for standardized definitions. Circulation 2007, 115, 2344–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, R.; Dissmann, R.; Brüggemann, T.; Wegscheider, K.; Linderer, T.; Tebbe, U.; Neuhaus, K.L. Extent of early ST segment elevation resolution: A simple but strong predictor of outcome in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 1994, 24, 384–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mewton, N.; Thibault, H.; Roubille, F.; Lairez, O.; Rioufol, G.; Sportouch, C.; Sanchez, I.; Bergerot, C.; Cung, T.T.; Finet, G.; et al. Postconditioning attenuates no-reflow in STEMI patients. Basic Res. Cardiol. 2013, 108, 383. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Lee, J.H.; Jang, S.Y.; Bae, M.H.; Yang, D.H.; Park, H.S.; Cho, Y.; Yoon, J.Y.; Jeong, M.H.; Park, J.S.; et al. Radial Versus Femoral Access with or without Vascular Closure Device in Patients with Acute Myocardial Infarction. Am. J. Cardiol. 2019, 123, 742–749. [Google Scholar] [CrossRef]
- Beraldo de Andrade, P.; de Ribamar Costa, J., Jr.; Rinaldi, F.S.; de Castro Bienert, I.R.; Barbosa, R.A.; Esteves, V.; Tebet, M.; Zukowski, C.; Maia, F.; Piva, E.M.L.A.; et al. Vascular Closure Devices Attenuate Femoral Access Complications of Primary Percutaneous Coronary Intervention. J. Invasive Cardiol. 2020, 32, 364–370. [Google Scholar]
- Patel, M.R.; Smalling, R.W.; Thiele, H.; Barnhart, H.X.; Zhou, Y.; Chandra, P.; Chew, D.; Cohen, M.; French, J.; Perera, D.; et al. Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock: The CRISP AMI randomized trial. JAMA 2011, 306, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Marsalese, D.; Brodie, B.R.; Griffin, J.J.; Donohue, B.; Costantini, C.; Balestrini, C.; Wharton, T.; Esente, P.; Spain, M.; et al. A prospective, randomized evaluation of prophylactic intraaortic balloon counterpulsation in high risk patients with acute myocardial infarction treated with primary angioplasty. Second Primary Angioplasty in Myocardial Infarction (PAMI-II) Trial Investigators. J. Am. Coll. Cardiol. 1997, 29, 1459–1467. [Google Scholar] [CrossRef] [Green Version]
- Van ‘t Hof, A.W.; Liem, A.L.; de Boer, M.J.; Hoorntje, J.C.; Suryapranata, H.; Zijlstra, F. A randomized comparison of intra-aortic balloon pumping after primary coronary angioplasty in high risk patients with acute myocardial infarction. Eur. Heart J. 1999, 20, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Zhang, J.; Kong, Z.; Wu, H.; Gu, R.; Zheng, H.; Xu, B.; Wei, Z. Comparison of the prognosis for different onset stage of cardiogenic shock secondary to ST-segment elevation myocardial infarction. BMC Cardiovasc. Disord. 2020, 20, 302. [Google Scholar] [CrossRef] [PubMed]
- Obling, L.; Frydland, M.; Hansen, R.; Møller-Helgestad, O.K.; Lindholm, M.G.; Holmvang, L.; Ravn, H.B.; Wiberg, S.; Thomsen, J.H.; Jensen, L.O.; et al. Risk factors of late cardiogenic shock and mortality in ST-segment elevation myocardial infarction patients. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, G.; Savonitto, S.; Greco, C.; Parodi, G.; Dajelli Ermolli, N.C.; Silva, C.; Lucci, D.; Gonzini, L.; Maggioni, A.P.; Cuccia, C. Cardiogenic shock developing in the coronary care unit in patients with ST-elevation myocardial infarction. J. Cardiovasc. Med. 2008, 9, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Mauri, L.; Cox, D.; Hermiller, J.; Massaro, J.; Wahr, J.; Tay, S.W.; Jonas, M.; Popma, J.J.; Pavliska, J.; Wahr, D.; et al. The PROXIMAL trial: Proximal protection during saphenous vein graft intervention using the Proxis Embolic Protection System: A randomized, prospective, multicenter clinical trial. J. Am. Coll. Cardiol. 2007, 50, 1442–1449. [Google Scholar] [CrossRef]
- Haeck, J.D.; Koch, K.T.; Bilodeau, L.; Van der Schaaf, R.J.; Henriques, J.P.; Vis, M.M.; Baan, J., Jr.; Van der Wal, A.C.; Piek, J.J.; Tijssen, J.G.; et al. Randomized comparison of primary percutaneous coronary intervention with combined proximal embolic protection and thrombus aspiration versus primary percutaneous coronary intervention alone in ST-segment elevation myocardial infarction: The PREPARE (PRoximal Embolic Protection in Acute myocardial infarction and Resolution of ST-Elevation) study. JACC. Cardiovasc. Interv. 2009, 2, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.W.; Zhu, M.; Wang, F.Q.; Li, K.; Zhou, C.F.; Li, B.; Wang, M.; Deng, J.L.; Jiang, B.; Bai, J.; et al. Intracoronary arterial retrograde thrombolysis with percutaneous coronary intervention: A novel use of thrombolytic to treat acute ST-segment elevation myocardial infarction. J. Geriatr. Cardiol. JGC 2019, 16, 458–467. [Google Scholar] [CrossRef]
- Elghamaz, A.; Myat, A.; de Belder, A.; Collison, D.; Cocks, K.; Stone, G.W.; Oldroyd, K. Continuous intracoronary versus standard intravenous infusion of adenosine for fractional flow reserve assessment: The HYPEREMIC trial. EuroIntervention 2020, 16, 560–567. [Google Scholar] [CrossRef]
- Park, C.B.; Cho, J.M.; Kim, D.H.; Kim, C.J. Intracoronary nitroglycerin injection through a microcatheter for coronary no-reflow following percutaneous coronary intervention. Int. J. Cardiol. 2016, 214, 400–402. [Google Scholar] [CrossRef]
- Gunata, M.; Parlakpinar, H. A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochem. Funct. 2021, 39, 190–217. [Google Scholar] [CrossRef]
- Beurskens, D.M.H.; Huckriede, J.P.; Schrijver, R.; Hemker, H.C.; Reutelingsperger, C.P.; Nicolaes, G.A.F. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb. Haemost. 2020, 120, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Kapur, N.K.; Alkhouli, M.A.; DeMartini, T.J.; Faraz, H.; George, Z.H.; Goodwin, M.J.; Hernandez-Montfort, J.A.; Iyer, V.S.; Josephy, N.; Kalra, S.; et al. Unloading the Left Ventricle before Reperfusion in Patients with Anterior ST-Segment-Elevation Myocardial Infarction. Circulation 2019, 139, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Kobayashi, E.; Kawaguchi, M.; Matsuoka, Y.; Fujii, A.; Ando, M.; Kubo, Y.; Imaizumi, T.; Miyagawa, Y.; Inagaki, T.; et al. Comparison between the effects of normal saline with and without heparin for the prevention and management of arterial catheter occlusion: A triple-blinded randomized trial. J. Anesth. 2021, 35, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Klocke, F.J.; Bunnell, I.L.; Greene, D.G.; Wittenberg, S.M.; Visco, J.P. Average coronary blood flow per unit weight of left ventricle in patients with and without coronary artery disease. Circulation 1974, 50, 547–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otterspoor, L.C.; Van ‘t Veer, M.; Van Nunen, L.X.; Brueren, G.R.G.; Tonino, P.A.L.; Wijnbergen, I.F.; Helmes, H.; Zimmermann, F.M.; Van Hagen, E.; Johnson, N.P.; et al. Safety and feasibility of selective intracoronary hypothermia in acute myocardial infarction. EuroIntervention 2017, 13, e1475–e1482. [Google Scholar] [CrossRef]
- Wang, Y.S.; Zhang, J.; Li, Y.F.; Chen, B.R.; Khurwolah, M.R.; Tian, Y.F.; Shi, H.J.; Yang, Z.J.; Wang, L.S. A pilot clinical study of adjunctive therapy with selective intracoronary hypothermia in patients with ST-segment elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2018, 92, E433–E440. [Google Scholar] [CrossRef]
- De Maria, G.L.; Alkhalil, M.; Borlotti, A.; Wolfrum, M.; Gaughran, L.; Dall’Armellina, E.; Langrish, J.P.; Lucking, A.J.; Choudhury, R.P.; Kharbanda, R.K.; et al. Index of microcirculatory resistance-guided therapy with pressure-controlled intermittent coronary sinus occlusion improves coronary microvascular function and reduces infarct size in patients with ST-elevation myocardial infarction: The Oxford Acute Myocardial Infarction-Pressure-controlled Intermittent Coronary Sinus Occlusion study (OxAMI-PICSO study). EuroIntervention 2018, 14, e352–e359. [Google Scholar] [CrossRef]
- Chalikias, G.; Tziakas, D. Slow Coronary Flow: Pathophysiology, Clinical Implications, and Therapeutic Management. Angiology 2021, 72, 808–818. [Google Scholar] [CrossRef]
- Annibali, G.; Scrocca, I.; Aranzulla, T.C.; Meliga, E.; Maiellaro, F.; Musumeci, G. “No-Reflow” Phenomenon: A Contemporary Review. J. Clin. Med. 2022, 11, 2233. [Google Scholar] [CrossRef]
- O’Regan, D.P.; Ariff, B.; Neuwirth, C.; Tan, Y.; Durighel, G.; Cook, S.A. Assessment of severe reperfusion injury with T2* cardiac MRI in patients with acute myocardial infarction. Heart 2010, 96, 1885–1891. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Age, years | 59.8 ± 12.4 |
Male gender | 26 (86.7) |
BMI, kg/m2 | 25.10 ± 3.21 |
Hypertension | 16 (53.3) |
Diabetes mellitus | 9 (30.0) |
Hyperlipidemia | 6 (20.0) |
Chronic obstructive pulmonary disease | 2 (6.7) |
Chronic kidney disease | 1 (3.3) |
Stroke | 1 (3.3) |
Current smoking | 24 (80.0) |
Family history of coronary artery disease | 3 (10.0) |
Admission haemodynamics | |
Systolic blood pressure, mmHg | 138.1 ± 25.2 |
Diastolic blood pressure, mmHg | 87.7 ± 18.2 |
Heart rate, bpm | 75.4 ± 15.2 |
Killip classification at admission | |
1 | 18 (60.0) |
2 | 12 (40.0) |
Laboratory findings at admission | |
TNI, ng/mL | 0.10 (0.05, 0.93) |
CKMB, ng/mL | 3.75 (1.08, 20.35) |
BNP, pg/mL | 41.90 (17.75, 92.25) |
LAC, mmol/L | 1.70 (1.40, 2,10) |
TC, mmol/L | 5.12 ± 0.99 |
TG, mmol/L | 2.62 ± 1.77 |
HDL-C, mmol/L | 0.97 ± 0.18 |
LDL-C, mmol/L | 3.49 ± 0.94 |
UA, mmol/L | 5.75 ± 1.86 |
CR, umol/L | 75.26 ± 23.16 |
WBC, 109/L | 11.28 ± 1.99 |
HGB, g/L | 148.67 ± 18.96 |
PLT, 109/L | 231.00 (202.81, 254.32) |
D-dimer, mg/L | 0.34 (0.14, 0.72) |
FIB, mg/dL | 274.23 ± 45.95 |
Characteristic | Value |
---|---|
Time intervals, min | |
Symptom onset to hospital arrival | 194.00 ± 165.40 |
Hospital arrival to catheterization laboratory | 15.70 ± 4.43 |
Catheterization laboratory to radial access | 7.87 ± 2.22 |
Infarct-related artery | |
Left anterior descending coronary artery | 17 (56.7) |
Right coronary artery | 10 (33.3) |
Left circumflex coronary artery | 3 (10.0) |
Multivessel disease | 15 (50.0) |
TIMI flow grade before PCI | |
0 | 30 (100.0) |
1 | 0 (0.0) |
Time for VCR model※ establishment, min | 12.44 ± 2.03 |
VCR duration, s | 750 (750, 760) |
PCI procedure duration, min | 44.70 ± 3.23 |
Mean aortic pressure during VCR, mmHg | 100.50 (96.00, 106.00) |
Mean heart rate during VCR, bpm | 72.00 (61.50, 80.25) |
Drug-eluting stent implantation | 16 (53.3) |
Total stent number (n = 16) | 2 (1, 2) |
Total stents length, mm (n = 16) | 32.50 (22.0, 51.50) |
Minimum stent diameter, mm (n = 16) | 3.50 (3.00, 3.90) |
Drug-eluting balloon implantation | 14 (46.7) |
Total balloon number (n = 14) | 1 (1, 1) |
Total balloon length, mm (n = 14) | 29.00 (23.80, 32.50) |
Minimum balloon diameter, mm (n = 14) | 3.00 (3.00, 3.10) |
Plain balloon angioplasty | 2 (6.7) |
Thrombosis aspiration | 3 (10.0) |
Intra-aortic balloon pump | 4 (13.3) |
Glycoprotein IIb/IIIa therapy | 3 (10.0) |
TIMI flow grade < 3 post PCI | 2 (6.6) |
Non-infarct-related artery with stenosis >70% | 15 (50.0) |
Intervention for non-infarct-related artery | 11 (36.7) |
Immediate complete revascularization | 5 (45.5) |
Staged complete revascularization | 6 (54.5) |
Doses of heparin, IU | 8000.00 (7000.00, 9250.00) |
Medication at discharge | |
Aspirin | 26 (86.7) |
Clopidogrel | 26 (86.7) |
Ticagrelor | 3 (10.0) |
Statins | 26 (86.7) |
Beta-blockers | 20 (66.7) |
Calcium channel blockers | 0 (0.0) |
ACEI/ARB | 15 (50.0) |
Variable | Value |
---|---|
Procedural success | 28 (93.3) |
Successful completion of operation process | 30 (100.0) |
Maintaining stable hemodynamics during the entire infusion | 30 (100.0) |
Achieving a TIMI grade 3 post-procedure | 28 (93.3) |
Variable | Value |
---|---|
All-cause death | 0 (0.0) |
Major vascular complications | 0 (0.0) |
Major adverse cardiac events | 1 (3.3) |
Cardiac death | 0 (0.0) |
Myocardial reinfarction | 0 (0.0) |
Target vessel revascularization | 1 (3.3) |
Heart failure | 0 (0.0) |
Variable | Value |
---|---|
Complete ST-segment resolution at 60 min after PCI | 21 (70.0) |
Cardiac biomarkers peak post-PCI | |
CKMB peak (ng/mL) | 176.85 (97.05, 289.7) |
TNI peak (ng/mL) | 184.78 (56.04, 258.45) |
BNP peak (pg/mL) | 327.00 (126.75, 567.00) |
LVEF ≥ 50% within 3 days after PCI | 27 (90.0) |
LGE-CMR within 7 days after PCI (n = 16) | |
Infarct size, g | 33.77 (24.45, 44.20) |
MVO mass, g | 0.64 (0.14, 1.82) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.-F.; Yang, Y.-X.; Li, J.-Y.; Liang, L.; Xu, L.; Liu, Y.; Guo, Z.-S.; Yang, Q.; Jiang, T.; Lin, X.-M.; et al. A Novel Reperfusion Strategy for Primary Percutaneous Coronary Intervention in Patients with Acute ST-Segment Elevation Myocardial Infarction: A Prospective Case Series. J. Clin. Med. 2023, 12, 433. https://doi.org/10.3390/jcm12020433
He J-F, Yang Y-X, Li J-Y, Liang L, Xu L, Liu Y, Guo Z-S, Yang Q, Jiang T, Lin X-M, et al. A Novel Reperfusion Strategy for Primary Percutaneous Coronary Intervention in Patients with Acute ST-Segment Elevation Myocardial Infarction: A Prospective Case Series. Journal of Clinical Medicine. 2023; 12(2):433. https://doi.org/10.3390/jcm12020433
Chicago/Turabian StyleHe, Ji-Fang, Yi-Xing Yang, Jiang-Yuan Li, Lu Liang, Li Xu, Yu Liu, Zong-Sheng Guo, Qi Yang, Tao Jiang, Xiang-Min Lin, and et al. 2023. "A Novel Reperfusion Strategy for Primary Percutaneous Coronary Intervention in Patients with Acute ST-Segment Elevation Myocardial Infarction: A Prospective Case Series" Journal of Clinical Medicine 12, no. 2: 433. https://doi.org/10.3390/jcm12020433
APA StyleHe, J. -F., Yang, Y. -X., Li, J. -Y., Liang, L., Xu, L., Liu, Y., Guo, Z. -S., Yang, Q., Jiang, T., Lin, X. -M., Yang, X. -C., Chen, M. -L., Su, P. -X., Zhong, J. -C., & Wang, L. -F. (2023). A Novel Reperfusion Strategy for Primary Percutaneous Coronary Intervention in Patients with Acute ST-Segment Elevation Myocardial Infarction: A Prospective Case Series. Journal of Clinical Medicine, 12(2), 433. https://doi.org/10.3390/jcm12020433