Corrective Osteotomies in Severe Non-Idiopathic Lower Limb Alignment Disorders in the Aspect of Future Joint Endoprosthesis—A Perspective Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFO | distal femur osteotomy |
HTO | high tibia osteotomy |
PTO | proximal tibia osteotomy |
MOW | medial open wedge |
LCW | lateral close wedge |
JLCA | joint line convergence angle |
CWO | combined wedge osteotomy |
TSF | Taylor Spatial Frame |
LCP | locking plate |
IM | intramedullary nail |
AP | antero-posterior |
References
- Liu, X.; Chen, Z.; Gao, Y.; Zhang, J.; Jin, Z. High Tibial Osteotomy: Review of Techniques and Biomechanics. J. Healthc. Eng. 2019, 2019, 8363128. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.S.; Kim, T.H.; Bin, S.I.; Kim, J.M.; Kim, H. Clinic radiologic Outcomes of Medial Open-Wedge High-Tibial Osteotomy Are Equivalent in Bone-on-Bone and Non-Bone-on-Bone Medial Osteoarthritis. Arthroscopy 2021, 37, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Mai, X.; Wang, J.; Feng, E.; Huang, Y. Unicompartmental Knee Arthroplasty vs High Tibial Osteotomy for Knee Osteoarthritis: A Systematic Review and Meta-Analysis. J. Arthroplast. 2018, 33, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Luis, M.; Varatojo, R. Radiological assessment of lower limb alignment. EFORT Open Rev. 2021, 6, 487–494. [Google Scholar] [CrossRef]
- Paley, D. Normal Lower Limb Alignment and Joint Orientation. In Principles of Deformity Correction; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–18. [Google Scholar]
- Zak, L.; Tiefenboeck, T.M.; Wozasek, G.E. Computed Tomography in Limb Salvage and Deformity Correction—3D Assessment, Indications, Radiation Exposure, and Safety Considerations. J. Clin. Med. 2021, 10, 3781. [Google Scholar] [CrossRef]
- Bae, D.K.; Park, C.H.; Kim, E.J.; Song, S.J. Medial cortical fractures in computer-assisted closing-wedge high tibial osteotomy. Knee 2016, 23, 295–299. [Google Scholar] [CrossRef]
- Song, S.J.; Bae, D.K. Computer-Assisted Navigation in High Tibial Osteotomy. Clin. Orthop. Surg. 2016, 8, 349–357. [Google Scholar] [CrossRef]
- Iorio, R.; Pagnottelli, M.; Vadala, A.; Giannetti, S.; Di Sette, P.; Papandrea, P.; Conteduca, F.; Ferretti, A. Open-wedge high tibial osteotomy: Comparison between manual and computer-assisted techniques. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 113–119. [Google Scholar] [CrossRef]
- Picardo, N.E.; Khan, W.; Johnstone, D. Computer-assisted navi- gation in high tibial osteotomy: A systematic review of the literature. Open Orthop. J. 2012, 6, 305–312. [Google Scholar] [CrossRef]
- Bakircioglu, S.; Caglar, O.; Yilmaz, G. Multiplanar correction of proximal tibial recurvatum deformity with tibial osteotomy and computer assisted fixator. Knee 2021, 32, 159–165. [Google Scholar] [CrossRef]
- Chung, J.H.; Choi, C.H.; Kim, S.H.; Kim, S.J.; Suk, Y.J.; Jung, M. Effect of the sagittal osteotomy inclination angle on the posterior tibial slope change in high tibial osteotomy: Three-dimensional simulation study. Sci. Rep. 2022, 12, 19254. [Google Scholar] [CrossRef] [PubMed]
- Hoell, S.; Suttmoeller, J.; Stoll, V.; Fuchs, S.; Gosheger, G. The high tibial osteotomy, open versus closed wedge, a comparison of methods in 108 patients. Arch. Orthop. Trauma Surg. 2005, 125, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Schröter, S.; Yamamoto, C.; Iseki, T.; Kanto, R.; Kurosaka, K.; Kam-bara, S.; Yoshiya, S.; Higa, M. Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1873–1878. [Google Scholar] [CrossRef]
- Nejima, S.; Kumagai, K.; Yamada, S.; Sotozawa, M.; Kumagai, D.; Yamane, H.; Inaba, Y. Potential anatomic risk factors resulting oversized postoperative medial proximal tibial angle after double level osteotomy. BMC Musculoskelet. Disord. 2022, 23, 1121. [Google Scholar] [CrossRef]
- Huizinga, M.R.; Brouwer, R.W.; van Raaij, T.M. High tibial osteotomy: Closed wedge versus combined wedge osteotomy. BMC Musculoskelet. Disord. 2014, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Gaasbeek, R.; Welsing, R.; Barink, M.; Verdonschot, N.; van Kampen, A. The influence of open and closed high tibial osteotomy on dynamic patellar tracking: A biomechanical study. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Hinterwimmer, S.; Beitzel, K.; Paul, J.; Kirchhoff, C.; Sauerschnig, M.; von Eisenhart-Rothe, R.; Imhoff, A.B. Control of pos-terior tibial slope and patellar height in open-wedge valgus high tibial osteotomy. Am. J. Sports Med. 2011, 39, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Kloos, F.; Becher, C.; Fleischer, B.; Feucht, M.J.; Hohloch, L.; Südkamp, N.; Niemeyer, P.; Bode, G. High tibial osteotomy increases patellofemoral pressure if adverted proximal, while open-wedge HTO with distal biplanar osteotomy discharges the patellofemoral joint: Different open-wedge high tibial osteotomies compared to an extra-articular unloading device. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2334–2344. [Google Scholar]
- Wahab, H.; Fahad, S.; Noor-Us-Sabah, T.A.; Mohib, Y.; Ur Rashid, H.; Umer, M. Correction of lower limb deformities with fixator assisted nailing. Ann. Med. Surg. 2019, 45, 40–44. [Google Scholar] [CrossRef]
- Kariksiz, M.; Karakoyun, O. Acute correction of distal femoral deformities by retrograde femoral nail using preoperative planning. J. Orthop. Surg. 2022, 30, 10225536221143552. [Google Scholar] [CrossRef]
- Pietrzak, S.; Grzelecki, D.; Parol, T.; Czubak, J. Comparison of Intramedullaryy Magnetic Nail, Monolateral External Distractor, and Spatial External Fixator in Femur Lengthening in Adolescents with Congenital Diseases. J. Clin. Med. 2021, 10, 5957. [Google Scholar] [CrossRef] [PubMed]
- Laufer, A.; Frommer, A.; Gosheger, G.; Toporowski, G.; Duedal Rölfing, J.; Antfang, C.; Roedl, R.; Vogt, B. Antegrade Intramedullaryy Femoral Lengthening and Distal Temporary Hemiepiphysiodesis for Combined Correction of Leg Length Discrepancy and Coronal Angular Deformity in Skeletally Immature Patients. J. Clin. Med. 2023, 12, 3022. [Google Scholar] [CrossRef] [PubMed]
- Dessyn, E.; Sharma, A.; Donnez, M.; Chabrand, P.; Ehlinger, M.; Argenson, J.N.; Parratte, S.; Ollivier, M. Adding a protective K-wire during opening high tibial osteotomy increases lateral hinge resistance to fracture. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 751–758. [Google Scholar] [CrossRef]
- Zak, L.; Tiefenboeck, T.M.; Wozasek, G.E. Traumatic periimplant fracture after nail arthrodesis of the knee in a limb reconstruction case. Trauma Case Rep. 2019, 20, 100173. [Google Scholar] [CrossRef] [PubMed]
- Powel, K.; Hammound, A.; Hlukha, L.; Rivera, J.; Patel, M.; Rozbruch, S.; Conway, J.; Herzenberg, J. Motorized Intramedullaryy Nail Lengthening in the Older Population. J. Clin. Med. 2022, 11, 5242. [Google Scholar] [CrossRef]
- Bei, T.; Yang, L.; Huang, Q.; Wu, J.; Liu, J. Effectiveness of bone substitute materials in opening wedge high tibial osteotomy: A systematic review and meta-analysis. Ann. Med. 2022, 54, 565–577. [Google Scholar] [CrossRef]
- Seagrave, R.A.; Sojka, J.; Goodyear, A.; Munns, S.W. Utilizing reamer irrigator aspirator (RIA) autograft for opening wedge high tibial osteotomy: A new surgical technique and report of three cases. Int. J. Surg. Case Rep. 2014, 5, 37–42. [Google Scholar] [CrossRef]
- Jones, G.G.; Clarke, S.; Jaere, M.; Cobb, J.P. Failed high tibial osteotomy: A joint preserving alternative to total knee arthroplasty. Orthop. Traumatol. Surg. Res. 2019, 105, 85–88. [Google Scholar] [CrossRef]
- Kulinski, K.; Trams, E.; Pomianowski St Kaminski, R. Osteotomies and Total Knee Arthroplasty: Systematic Review and Meta-Analysis. Life 2022, 12, 1120. [Google Scholar] [CrossRef]
- Iseki, T.; Onishi, S.; Kanto, M.; Kanto, R.; Kambara, S.; Yoshiya, S.; Tachibana, T.; Nakayama, H. Double-level osteotomy for severe varus osteoarthritic knees can prevent change in leg length and restore physiological joint geometry. Knee 2021, 31, 136–143. [Google Scholar] [CrossRef]
GROUP A—Femur Segment Alignment Disorder | GROUP B—Tibia Segment Alignment Disorder | GROUP C—Femur and Tibia Segment Alignment Disorder | TOTAL | |
---|---|---|---|---|
Mean age (year) | 47 (18–86) | 44 (18–72) | 38 (18–52) | 45 (18–86) |
Sex | 5 Female 19 Male | 4 Female 14 Male | 4 Female 4 Male | 13 Female 37 Male |
Patient number | 24 | 18 | 8 | 50 |
Operation side | 13 Right 11 Left | 12 Right 6 Left | 4 Right 4 Left | 29 Right 21 Left |
Etiology | Post-traumatic 15; Other 9: Fibrous dysplasia 3, Congenital femur diseases 2, Fibular hemimelia 2, Post septic 2 | Post-traumatic 14; Other 4: Fibular hemimelia 3, Ollier disease 1 | Other 8: Blount diseases 6, Fibular hemimelia 1, Post septic 2 | Post-traumatic: 29; Other: 21 |
Deformity | Varus: 20 Valgus: 3 Torsion: 11 Shortening: 1 Sagittal: 7 | Varus: 8 Valgus: 8 Torsion: 9 Shortening: 3 Sagittal: 6 | Varus: 7 Valgus: 8 Shortening: 1 | Varus: 35 Valgus: 19 Torsion: 20 Shortening: 5 Sagittal: 13 |
Osteotomy level | PFO: 9 Femur shaft: 6 DFO: 9 | PTO: 6 Tibia shaft: 3 DTO: 9 | DFO: 7 PTO: 8 Femur shaft: 1 | PFO: 9 Shaft f: 7 DFO: 16 PTO: 14 Shaft t: 3 DTO: 9 |
Osteosynthesis | LCP: 10 Intramedullary nail: 15 | LCP: 6 Intramedullary nail: 11 TSF: 2 | LCP: 10 Intramedullary nail: 1 TSF: 3 | LCP: 26 Intramedullary nail: 27 TSF: 5 |
Deformation duration (mean months) | 150.7 (±103.5) | 184.5 (±76.4) | 200.6 (±60.3) | 170.7 (±89.5) |
Operative time (mean minutes) | 162 (±61.9) | 156.3 (±52.9) | 158.7 (±16.4) | 159.4 (±53.2) |
Time to bone union (mean months) | 7.44 (±3.5) | 7.05 (±2.5) | 4.1 (±0.84) | 6.7 (±3.11) |
Complication: | 2 (Destabilization, non-union) | 2 (Infection) | 0 | 4 |
Follow-up (mean months) | 53.5 (±18.7) | 57.8 (±15.7) | 58 (±19.8) | 55.8 (±17.6) |
Femur Varus Alignment Disorders (Mean) n = 22 | Pre-Operation SD (95% CI) | Post-Operation SD (95% CI) | Diff. | p-Value |
---|---|---|---|---|
mLPFA (80–90 deg) | 102.5 ± 11.5 (90–127.5) | 91.5 ± 5.3 (80–102) | −11.0 | <0.005 |
mLDFA (85–90 deg) | 94.5 ± 8.7 (81.5–117) | 90.0 ± 1.7 (87–93) | −4.5 | 0.01 |
CORA coronal | 29.5 ± 19.7 (11.5–80.5) | 5.0 ± 9.0 (0–36.0) | −24.5 | <0.005 |
CORA sagittal | 8.0 ± 16.5 (0–64.0) | 1.0 ± 4.0 (0–20.0) | −7.0 | 0.03 |
MAD (10–15 mm) | 26.5 ± 17.0 (5.0–65.0) | 7.0 ± 8.0 (0–28.0) | −19.5 | <0.005 |
Femur Valgus Alignment Disorders (Mean) n = 10 | Pre-Operation SD (95% CI) | Post-Operation SD (95% CI) | Diff. | p-Value |
---|---|---|---|---|
mLPFA (85–90 deg) | 81.0 ± 7.62 (64.0–89.0) | 84.0 ± 8.0 (67.5–89) | 3.0 | 0.18 |
mLDFA (85–90 deg) | 75.5 ± 4.6 (67.0–81.0) | 87.5 ± 2.63 (83.5–91.5) | 12.0 | <0.005 |
CORA coronal | −12.5 ± 4.5 (−7.5–−20.0) | 0.05 ± 1.82 (−2.5–2.5) | 12.55 | <0.005 |
CORA sagittal | 0.0 | 0.0 | 0 | 1 |
MAD (10–15 mm) | −26.5 ± 8.1 (−16.0–−40.0) | 4.5 ± 7.3 (−6.0–15.0) | 31.0 | <0.005 |
Tibia Varus Alignment Disorders (Mean) n = 14 | Pre-Operation SD (95% CI) | Post-Operation SD (95% CI) | Diff. | p-Value |
---|---|---|---|---|
mMPTA (85–90 deg) | 78.5 ± 9.1 (63.0–89.5) | 88.0 ± 2.5 (82.5–90.0) | 9.5 | <0.005 |
mLDTA (86–92 deg) | 100.5 ± 14.1 (76.0–124.0) | 92.0 ± 4.2 (89.0–99.0) | −8.5 | 0.02 |
CORA coronal | 22.5 ± 7.7 (10.0–33.0) | 2.0 ± 2.8 (0–6.5) | −20.5 | <0.005 |
CORA sagittal | 9.5 ± 13.3 (0–40) | 1.5 ± 4.6 (0–15.5) | −8.0 | 0.02 |
MAD (10–15 mm) | 40.5 ± 20.7 (22.0–95.0) | 9.5 ± 6.24 (2.0–20.0) | −31.0 | <0.005 |
Tibia Valgus Alignment Disorders (Mean) n = 10 | Pre-Operation SD (95% CI) | Post-Operation SD (95% CI) | Diff. | p-Value |
---|---|---|---|---|
mMPTA (85–90 deg) | 92.0 ± 5.4 (81.5–101.0) | 89.5 ± 3.1 (86.0–96.5) | −2.5 | 0.11 |
mLDTA (86–92 deg) | 82.0 ± 8.2 (65.5–93.0) | 86.0 ± 4.8 (78.0–93.0) | 4.0 | 0.103 |
CORA coronal | −14.0 ± 4.9 (−8.0–−21.0) | −0.5 ± 1.9 (−4.2–3.0) | 13.5 | <0.005 |
CORA sagittal | 5.0 ± 14.5 (−12.0–36.5) | 1.5 ± 5.2 (−8.0–12.0) | −3.5 | 0.26 |
MAD (10–15 mm) | −25.0 ± 6.7 (−34.0–−17.0) | 3.0 ± 5.4 (−5.0–10.0) | 28.0 | <0.005 |
Patient Group Comparison | Deformation Duration (mth) (p-Value) | Operative Time (min) (p-Value) | Time to Bone Union (mth) (p-Value) | Follow-Up (mth) (p-Value) |
---|---|---|---|---|
Group A/B | 150.7 ± 103.5/184.5 ± 76.4 (p = 0.110) | 162 ± 61.9/156.3 ± 52.9 (p = 0.372) | 7.44 ± 3.5/7.05 ± 2.5 (p = 0.337) | 53.5 ± 18.7/57.8 ± 15.7 (p = 0.202) |
Group B/C | 184.5 ± 76.4/200.6 ± 60.3 (p = 0.283) | 156.3 ± 52.9/158.7 ± 16.4 (p = 0.429) | 7.05 ± 2.5/4.1 ± 0.84 (p < 0.005) | 57.8 ± 15.7/58 ± 19.8 (p = 0.494) |
Group A/C | 150.7 ± 103.5/200.6 ± 60.3 (p = 0.054) | 162 ± 61.9/158.7 ±16.4 (p = 0.406) | 7.44 ± 3.5/4.1 ± 0.84 (p < 0.005) | 53.5 ± 18.7/58 ± 19.8 (p = 0.292) |
LLFI (Mean) | Pre-Operation SD (95% CI) | Post-Operation SD (95% CI) | Diff. | p-Value |
---|---|---|---|---|
Group A | 31.8 ± 4.8 (24.0–42.0) | 72.3 ± 5.8 (55.0–80.0) | 40.5 | <0.005 |
Group B | 39.4 ± 9.5 (25.0–58.0) | 70.1 ± 6.8 (59.0–79.0) | 30.67 | <0.005 |
Group C | 36.7 ± 5.4 (30.0–45.0) | 74 ± 3.6 (69.0–79.0) | 37.25 | <0.005 |
LLFI (Mean) | Varus Femur n = 22 | Valgus Femur n = 10 | Diff. | p-Value |
---|---|---|---|---|
Pre-operation SD (95% CI) | 32.0 ± 5.5 (24.0–45.0) | 35.8 ± 4.6 (30.0–42.0) | 3.8 | 0.02 |
Post-operation SD (95% CI) | 72.5 ± 6.0 (55.0–80.0) | 73.8 ± 3.99 (68.0–79.0) | 1.3 | 0.28 |
Varus Tibia n = 14 | Valgus Tibia n = 10 | |||
Pre-operation SD (95% CI) | 35.3 ± 5.8 (25.0–46.0) | 42.0 ± 10.3 (25.0–45.0) | 6.7 | 0.04 |
Post-operation SD (95% CI) | 71.7 ± 5.6 (63.0–79.0) | 71 ± 7.8 (59.0–79.0) | 0.7 | 0.37 |
LLFI (Mean) | Varus Femur n = 22 | Varus Tibia n = 14 | Diff. | p-Value |
---|---|---|---|---|
Pre-operation SD (95% CI) | 32.0 ± 5.5 (24.0–45.0) | 35.3 ± 5.8 (25.0–46.0) | 3.3 | 0.04 |
Post-operation SD (95% CI) | 72.5 ± 6.0 (55.0–80.0) | 71.7 ± 5.6 (63.0–79.0) | 0.8 | 0.3 |
Valgus Femur n = 10 | Valgus Tibia n = 10 | |||
Pre-operation SD (95% CI) | 35.8 ± 4.6 (30.0–42.0) | 42.0 ± 10.3 (25.0–45.0) | 6.2 | 0.052 |
Post-operation SD (95% CI) | 73.8 ± 3.99 (68.0–79.0) | 71 ± 7.8 (59.0–79.0) | 2.8 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołodziejczyk, K.; Saganek, M.; Czwojdziński, A.; Garlewicz, R.; Złotorowicz, M.; Czubak, J. Corrective Osteotomies in Severe Non-Idiopathic Lower Limb Alignment Disorders in the Aspect of Future Joint Endoprosthesis—A Perspective Study. J. Clin. Med. 2023, 12, 6380. https://doi.org/10.3390/jcm12196380
Kołodziejczyk K, Saganek M, Czwojdziński A, Garlewicz R, Złotorowicz M, Czubak J. Corrective Osteotomies in Severe Non-Idiopathic Lower Limb Alignment Disorders in the Aspect of Future Joint Endoprosthesis—A Perspective Study. Journal of Clinical Medicine. 2023; 12(19):6380. https://doi.org/10.3390/jcm12196380
Chicago/Turabian StyleKołodziejczyk, Kamil, Michał Saganek, Adam Czwojdziński, Rafał Garlewicz, Marcin Złotorowicz, and Jarosław Czubak. 2023. "Corrective Osteotomies in Severe Non-Idiopathic Lower Limb Alignment Disorders in the Aspect of Future Joint Endoprosthesis—A Perspective Study" Journal of Clinical Medicine 12, no. 19: 6380. https://doi.org/10.3390/jcm12196380
APA StyleKołodziejczyk, K., Saganek, M., Czwojdziński, A., Garlewicz, R., Złotorowicz, M., & Czubak, J. (2023). Corrective Osteotomies in Severe Non-Idiopathic Lower Limb Alignment Disorders in the Aspect of Future Joint Endoprosthesis—A Perspective Study. Journal of Clinical Medicine, 12(19), 6380. https://doi.org/10.3390/jcm12196380