Prognostic Factors for Restenosis of Superficial Femoral Artery after Endovascular Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.; Bjorck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debusa, S.; et al. 2017 ESC Guidelines on the Di-agnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [PubMed]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on peripheral arterial disease. Vasa 2019, 48, 1–79. [Google Scholar] [CrossRef] [PubMed]
- Dake, M.D.; Ansel, G.M.; Jaff, M.R.; Ohki, T.; Saxon, R.R.; Smouse, H.B.; Machan, L.S.; Snyder, S.A.; O’leary, E.E.; Ragheb, A.O.; et al. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery. Circulation 2016, 133, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Laird, J.A.; Schneider, P.A.; Jaff, M.R.; Brodmann, M.; Zeller, T.; Metzger, D.C.; Krishnan, P.; Scheinert, D.; Micari, A.; Wang, H.; et al. Long-Term Clinical Effectiveness of a Drug-Coated Balloon for the Treatment of Femoropopliteal Lesions. Circ. Cardiovasc. Interv. 2019, 12, e007702. [Google Scholar] [CrossRef] [PubMed]
- Park, U.J.; Kim, H.T.; Roh, Y.N. Factors affecting outcomes after endovascular treatment for femoropopliteal atherosclerotic lesions. Asian J. Surg. 2019, 42, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.R. Inter-Society Consensus for the Man-agement of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 2007, 45, S5–S67. [Google Scholar] [CrossRef]
- Clark, T.W.I.; Groffsky, J.L.; Soulen, M.C. Predictors of Long-term Patency after Femoropopliteal Angioplasty: Results from the STAR Registry. J. Vasc. Interv. Radiol. 2001, 12, 923–933. [Google Scholar] [CrossRef]
- Matsi, P.J.; Manninen, H.I.; Vanninen, R.L.; Suhonen, M.T.; Oksala, I.; Laakso, M.; Hakkarainen, T.; Soimakallio, S. Femoropopliteal angioplasty in patients with claudication: Primary and secondary patency in 140 limbs with 1-3-year follow-up. Radiology 1994, 191, 727–733. [Google Scholar] [CrossRef]
- Davies, M.G.; Saad, W.E.; Peden, E.K.; Mohiuddin, I.T.; Naoum, J.J.; Lumsden, A.B. Percutaneous Superficial Femoral Artery Interventions for Claudication—Does Runoff Matter? Ann. Vasc. Surg. 2008, 22, 790–798. [Google Scholar] [CrossRef]
- Salapura, V.; Blinc, A.; Kozak, M.; Jezovnik, M.K.; Perme, P.; Berden, P.; Kuhelj, D.; Kljucevsek, T.; Popovic, P.; Stankovic, M.; et al. Infrapopliteal run-off and the outcome of femoropopliteal percutaneous transluminal angioplasty. Vasa 2010, 39, 159–168. [Google Scholar] [CrossRef]
- Tendera, M.; Aboyans, V.; Bartelink, M.; Baumgartner, I.; Clement, D.L.; Collet, J.; Cremonesi, A.; De Carlo, M.; Erbel, R.; Fowkes, F.G.R.; et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries * The Task Force on the Diagnosis and Treat. Eur. Heart J. 2011, 32, 2851–2906. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, R.B.; Baker, J.; Ernst, C.; Johnston, K.; Porter, J.M.; Ahn, S.; Jones, D.N. Recommended standards for reports dealing with lower extremity ischemia: Revised version. J. Vasc. Surg. 1997, 26, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Božič-Mijovski, M. Measuring hypercoagulability as a risk factor for cardiovascular diseases. In Handbook of Nutrition and Diet in Leukemia and Blood Disease Therapy; Watson, R.R., Mahadevan, D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 31–48. [Google Scholar]
- Polak, J.P. Perpheral Vascular Sonography, 2nd ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2004; pp. 1–366. [Google Scholar]
- Jämsén, T.S.; Manninen, H.I.; Jaakkola, P.A.; Matsi, P.J. Long-term Outcome of Patients with Claudication after Balloon An-gioplasty of the Femoropopliteal Arteries. Radiology 2002, 225, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Baril, D.T.; Marone, L.K.; Kim, J.; Go, M.R.; Chaer, R.A.; Rhee, R.Y. Outcomes of endovascular interventions for TASC II B and C femoropopliteal lesions. J. Vasc. Surg. 2008, 48, 627–633. [Google Scholar] [CrossRef]
- Dake, M.D.; Ansel, G.M.; Jaff, M.R.; Ohki, T.; Saxon, R.R.; Smouse, H.B.; Zeller, T.; Roubin, G.S.; Burket, M.W.; Khatib, Y.; et al. Paclitaxel-Eluting Stents Show Superiority to Balloon Angioplasty and Bare Metal Stents in Femoropopliteal Disease. Circ. Cardiovasc. Interv. 2011, 4, 495–504. [Google Scholar] [CrossRef]
- Hamburg, N.M.; Balady, G.J. Exercise Rehabilitation in Peripheral Artery Disease: Functional impact and mechanisms of benefits. Circulation 2011, 123, 87–97. [Google Scholar] [CrossRef]
- Fiogbé, E.; de Vassimon-Barroso, V.; de Medeiros Takahashi, A.C. Exercise training in older adults, what effects on muscle oxygenation? A systematic review. Arch. Gerontol. Geriatr. 2017, 71, 89–98. [Google Scholar] [CrossRef]
- Schieber, M.N.; Pipinos, I.I.; Johanning, J.M.; Casale, G.P.; Williams, M.A.; DeSpiegelaere, H.K.; Senderling, B.; Myers, S.A. Supervised walking exercise therapy improves gait biomechanics in patients with peripheral artery disease. J. Vasc. Surg. 2020, 71, 575–583. [Google Scholar] [CrossRef]
- Poredoš, P.; Jezovnik, M.K. Why to evaluate the functional capacity in PAD patients? Vasa 2020, 49, 275–280. [Google Scholar] [CrossRef]
- Ihnat, D.M.; Duong, S.T.; Taylor, Z.C.; Leon, L.R.; Mills, J.L.; Goshima, K.R.; Echeverri, J.A.; Arslan, B. Contemporary outcomes after superficial femoral artery angioplasty and stenting: The influence of TASC classification and runoff score. J. Vasc. Surg. 2008, 47, 967–974. [Google Scholar] [CrossRef]
- Gordon, I.L.; Conroy, R.M.; Tobis, J.M.; Kohl, C.; Wilson, S.E. Determinants of patency after percutaneous angioplasty and atherectomy of occluded superficial femoral arteries. Am. J. Surg. 1994, 168, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Noh, B.G.; Park, Y.M.; Choi, J.B.; Lee, B.C.; Lee, S.S.; Jung, H.J. Influence of Infrapopliteal Runoff Vessels on Primary Patency after Superficial Femoral Artery Angioplasty with Stenting in Patients with Claudication. Vasc. Spec. Int. 2020, 36, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Hehrlein, C.; Chuang, C.H.; Tuntelder, J.R.; Tatsis, G.P.; Littmann, L.; Svenson, R.H. Effects of vascular runoff on myointimal hyperplasia after mechanical balloon or thermal laser arterial injury in dogs. Circulation 1991, 84, 884–890. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yamazaki, T.; Yoshida, H.; Hayashi, O.; Yahiro, R.; Nakao, K.; Okai, T.; Ehara, S.; Izumiya, Y.; Yoshiyama, M. Angioscopic Ulcerated Plaques in the Femoropopliteal Artery Associated with Impaired Infrapopliteal Runoff. J. Vasc. Interv. Radiol. 2022, 33, 97–103.e1. [Google Scholar] [CrossRef]
- Kaczmarczyk, P.; Krzanowski, M.; Szybiak, E.; Maga, M.; Wachsmann, A.; Tyrak, K.; Januszek, R.; Belowski, A.; Partyka, Ł.; Maga, P. Dynamics of below-the-knee arterial blood flow after endovascular revascularisation of peripheral arteries as a potential predictor of clinical outcomes during one-year follow-up. Kardiol. Pol. 2019, 77, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Graziani, L.; Silvestro, A.; Bertone, V.; Manara, E.; Andreini, R.; Sigala, A.; Mingardi, R.; De Giglio, R. Vascular Involvement in Diabetic Subjects with Ischemic Foot Ulcer: A New Morphologic Categorization of Disease Severity. Eur. J. Vasc. Endovasc. Surg. 2007, 33, 453–460. [Google Scholar] [CrossRef]
- Surowiec, S.M.; Davies, M.G.; Eberly, S.W.; Rhodes, J.M.; Illig, K.A.; Shortell, C.K.; Lee, D.E.; Waldman, D.L.; Green, R.M. Percutaneous angioplasty and stenting of the superficial femoral artery. J. Vasc. Surg. 2005, 41, 269–278. [Google Scholar] [CrossRef]
- DeRubertis, B.G.; Pierce, M.; Chaer, R.A.; Rhee, S.J.; Benjeloun, R.; Ryer, E.J.; Kent, C.; Faries, P.L. Lesion severity and treatment complexity are associated with outcome after percutaneous infra-inguinal intervention. J. Vasc. Surg. 2007, 46, 709–716. [Google Scholar] [CrossRef]
- Conrad, M.F.; Cambria, R.P.; Stone, D.H.; Brewster, D.C.; Kwolek, C.J.; Watkins, M.T.; Chung, T.K.; LaMuraglia, G.M. Intermediate results of percuta-neous endovascular therapy of femoropopliteal occlusive disease: A contemporary series. J. Vasc. Surg. 2006, 44, 762–769.e1. [Google Scholar] [CrossRef]
- Elad, B.; Koren, O.; Slim, W.; Turgeman, Y.; Avraham, G.; Schwartz, N.; Elias, M. Thrombin generation’s role in predicting coronary disease severity. Oury C, editor. PLoS ONE 2020, 15, e0237024. [Google Scholar] [CrossRef]
- Liew, A.; Failla, G.; Molinari, G.; Prior, M.; Zalunardo, B.; Pergolini, D.; Knavs, K.; Kozak, M.; Cortelazzo, A.; Van Dreden, P.; et al. Thrombin Generation Profile in Patients With Steady State Peripheral Arterial Disease. Clin. Appl. Thromb. 2018, 24, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Jansen, F.; Nickenig, G.; Werner, N. Extracellular Vesicles in Cardiovascular Disease. Circ. Res. 2017, 120, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Ryu, A.-R.; Kim, D.H.; Kim, E.; Lee, M.Y. The Potential Roles of Extracellular Vesicles in Cigarette Smoke-Associated Diseases. Oxid. Med. Cell Longev. 2018, 2018, 4692081. [Google Scholar] [CrossRef]
- Akbar, N.; Azzimato, V.; Choudhury, R.P.; Aouadi, M. Extracellular vesicles in metabolic disease. Diabetologia 2019, 62, 2179–2187. [Google Scholar] [CrossRef]
- Preston, R.A.; Jy, W.; Jimenez, J.J.; Mauro, L.M.; Horstman, L.L.; Valle, M.; Aime, G.; Ahn, Y.S. Effects of Severe Hypertension on Endothelial and Platelet Microparticles. Hypertension 2003, 41, 211–217. [Google Scholar] [CrossRef]
- Saenz-Pipaon, G.; San Martín, P.; Planell, N.; Maillo, A.; Ravassa, S.; Vilas-Zornoza, A.; Martinez-Aguilar, E.; Rodriguez, J.A.; Alameda, D.; Lara-Astiaso, D.; et al. Functional and transcriptomic analysis of extracellular vesicles identifies calprotectin as a new prognostic marker in peripheral arterial disease (PAD). J. Ex-tracell Vesicles 2020, 9, 1729646. [Google Scholar] [CrossRef]
- Verwer, M.C.; Mekke, J.M.; Timmerman, N.; Van Der Pol, Q.Y.; Frissen, C.; Pasterkamp, G.; De Borst, G.J.; Hazenberg, C.E.; De Kleijn, D.P. Plasma Extracellular Vesicle Serpin G1 and CD14 Levels are Associated with Major Adverse Cardiovascular Events and Major Adverse Limb Events in Patients Undergoing Femoral Endarterectomy. Eur. J. Vasc. Endovasc. Surg. 2023, 65, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Maga, P.; Sanak, M.; Rewerska, B.; Maga, M.; Jawien, J.; Wachsmann, A.; Rewerski, P.; Szczeklik, W.; Celejewska-Wójcik, N. Urinary cysteinyl leukotrienes in one-year follow-up of percutaneous transluminal angioplasty for peripheral arterial occlusive disease. Atherosclerosis 2016, 249, 174–180. [Google Scholar] [CrossRef]
- Listi, F.; Candore, G.; Lio, D.; Cavallone, L.; Colonna-Romano, G.; Caruso, M.; Hoffmann, E.; Caruso, C. Association between platelet endothelial cellular adhesion molecule 1 (PECAM-1/CD31) polymorphisms and acute myocardial infarction: A study in patients from Sicily. Eur. J. Immunogenet. 2004, 31, 175–178. [Google Scholar] [CrossRef]
- Elrayess, M.A.; Webb, K.E.; Bellingan, G.J.; Whittall, R.A.; Kabir, J.; Hawe, E.; Syvänne, M.; Taskinen, M.-R.; Frick, M.H.; Nieminen, M.S.; et al. R643G polymorphism in PECAM-1 in-fluences transendothelial migration of monocytes and is associated with progression of CHD and CHD events. Atherosclerosis 2004, 177, 127–135. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Li, Q.; Long, L.; Zhang, N. Asn563Ser polymorphism of CD31/PECAM-1 is associated with atherosclerotic cerebral infarction in a southern Han population. Neuropsychiatr. Dis. Treat. 2014, 11, 15–20. [Google Scholar] [CrossRef]
- Sahebkar, A.; Morris, D.R.; Biros, E.; Golledge, J. Association of single nucleotide polymorphisms in the gene encoding platelet endothelial cell adhesion molecule-1 with the risk of myocardial infarction: A systematic review and meta-analysis. Thromb. Res. 2013, 132, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Boc, V.; Božič-Mijovski, M.; Pohar Perme, M.; Blinc, A. Diabetes and smoking are more important for prognosis of patients with peripheral arterial disease than some genetic polymorphisms. Vasa 2019, 48, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Bonta, P.I.; Pols, T.W.; van Tiel, C.M.; Vos, M.; Arkenbout, E.K.; Rohlena, J.; Koch, K.T.; de Maat, M.P.; Tanck, M.W.; de Winter, R.J.; et al. Nuclear Receptor Nurr1 Is Expressed In and Is Associated With Human Restenosis and Inhibits Vascular Lesion Formation In Mice Involving Inhibition of Smooth Muscle Cell Proliferation and Inflammation. Circulation 2010, 121, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Božič-Mijovski, M.; Bedenčič, M.; Stegnar, M.; Salapura, V.; Ježovnik, M.; Kozak, M.; Blinc, A. Nurr1 Haplotypes are Associated with Femoropopliteal Restenosis/Re-occlusion after Percutaneous Transluminal Angioplasty. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 337–338. [Google Scholar] [CrossRef] [PubMed]
Patients’ Characteristics (N = 206) | Value |
---|---|
Clinical | |
Age (years) | 67 ± 9 |
Male sex | 142 (69) |
Arterial hypertension | 184 (89) |
Dyslipidaemia | 186 (90) |
Diabetes mellitus | 78 (38) |
Chronic kidney disease (eGFR < 60), N = 196 | 18 (9) |
Smoking (current/abstinence > 1 year) | 70/95 (34/46) |
Ankle-brachial index before revascularisation | 0.64 ± 0.21 |
Ischaemic heart disease | 47 (23) |
Prior ischaemic stroke or TIA | 41 (20) |
Treatment with ACE or ARB | 174 (85) |
Treatment with statins | 183 (89) |
Laboratory | |
Haemoglobin (g/L), N = 189 | 142 ± 14 |
Platelet count (×109/L), N = 189 | 233 ± 66 |
eGFR (mL/min), N = 196 | 87 ± 22 |
Lesions’ characteristics (N = 206) | |
TASC II classification | |
A | 66 (32.0) |
B | 103 (50.0) |
C | 36 (17.5) |
D | 1 (0.5) |
Stenosis/occlusion | 108/98 (52/48) |
Calcification | 77 (37) |
Preliminary interventions in the same/different segment | 22/49 (11/24) |
Restenosis (N = 91) | No Restenosis (N = 111) | p | |
---|---|---|---|
Clinical Characteristics | |||
Age (years) | 68 ± 9 | 66 ± 8 | 0.071 |
Male gender | 59 (64.8) | 79 (71.2) | 0.336 |
Arterial hypertension | 76 (83.5) | 105 (94.6) | 0.010 |
Dyslipidaemia | 81 (89.0) | 103 (92.8) | 0.348 |
Diabetes mellitus | 40 (44) | 37 (33.3) | 0.122 |
Chronic kidney disease (N = 139) | 9 (10.5) | 9 (8.6) | 0.656 |
Smoking (active or former) | 69 (75.8) | 92 (82.9) | 0.215 |
Ischaemic heart disease | 23 (25.3) | 24 (21.6) | 0.541 |
Prior ischaemic stroke or TIA | 23 (25.3) | 18 (16.2) | 0.111 |
Former procedures | 37 (40.7) | 33 (29.7) | 0.104 |
ABI after revascularisation (N = 198) | 0.85 ± 0.17 | 0.93 ± 0.17 | 0.001 |
Poor infrapopliteal runoff | 20 (22.0) | 6 (5.4) | <0.001 |
Stent implantation | 18 (19.8) | 23 (20.7) | 0.869 |
Treatment with ACE or ARB | 74 (81.3) | 97 (87.4) | 0.234 |
Treatment with statins | 80 (87.9) | 101 (91.0) | 0.476 |
Dual antiplatelet treatment | 34 (37.4) | 36 (32.4) | 0.464 |
Characteristics of the treated lesions | |||
TASC II classification | |||
A | 15 (16.5) | 49 (44.1) | <0.001 |
B | 53 (58.2) | 48 (43.2) | |
C | 22 (24.2) | 14 (12.6) | |
D | 1 (1.1) | 0 | |
Complete occlusion | 50 (54.9) | 45 (40.5) | 0.041 |
Calcification | 32 (35.2) | 44 (39.6) | 0.514 |
N | Restenosis | No Restenosis | p | |
---|---|---|---|---|
Coagulation parameters | ||||
D-dimer (μg/L) | 85/109 | 570 (395–835) | 540 (395–775) | 0.315 |
PT (rel.) | 85/109 | 0.99 (0.91–1.04) | 0.97 (0.91–1.04) | 0.959 |
APTT (s) | 85/109 | 34.4 (31.4–37.5) | 34.0 (31.4–38.3) | 0.804 |
Fibrinogen (g/L) | 85/109 | 3.6 (3.1–4.2) | 3.5 (3.1–4.0) | 0.561 |
Thrombin generation | ||||
Lag phase (min) | 84/108 | 12 (10–14) | 11 (9–13) | 0.042 |
Peak thrombin (nM) | 84/108 | 462 (368–562) | 493 (396–588) | 0.349 |
Time to peak (min) | 84/108 | 16 (13–18) | 15 (12–17) | 0.055 |
Velocity (nM/min) | 84/108 | 135 (96–196) | 147 (108–203) | 0.213 |
ETP (nM x min) | 84/108 | 4552 (4101–4951) | 4570 (4090–4944) | 0.938 |
EV (%) | 84/108 | 44.7 (36.6–51.7) | 37.3 (26.0–46.4) | <0.001 |
EV (nM) | 84/108 | 189 (160–244) | 164 (128–229) | 0.006 |
Haemostatic potential | ||||
OHP (Abs-sum) | 84/105 | 12.5 (10.1–16.9) | 12.6 (10.0–15.1) | 0.669 |
OCP (Abs-sum) | 84/105 | 27.4 (22.1–31.6) | 27.0 (22.4–30.1) | 0.355 |
OFP (%) | 84/105 | 53 (44–60) | 52 (44–59) | 0.648 |
CRP | 85/110 | 1.0 (0.4–2.7) | 1.0 (0.4–2.8) | 0.692 |
Polymorphism | Restenosis N (%) | No Restenosis N (%) | p |
---|---|---|---|
NR4A2 rs1466408 (N = 154) | 67 (100) | 87 (100) | |
TT | 60 (89.6) | 76 (87.4) | 0.675 |
TA | 7 (10.4) | 11 (12.6) | |
AA | 0 | 0 | |
NR4A2 rs13428968 (N = 157) | 70 (100) | 87 (100) | |
TT | 51 (72.9) | 66 (75.9) | 0.766 |
TC | 18 (25.7) | 17 (19.5) | |
CC | 1 (1.4) | 4 (4.6) | |
NR4A2 rs12803 (N = 160) | 72 (100) | 88 (100) | |
GG | 22 (30.6) | 31 (35.2) | 0.576 |
GT | 35 (48.6) | 40 (45.5) | |
TT | 15 (20.8) | 17 (19.3) | |
PECAM1 rs668 (N = 141) | 65 (100) | 76 (100) | |
GG | 15 (23.1) | 24 (31.6) | 0.213 |
GC | 28 (43.1) | 32 (42.1) | |
CC | 22 (33.8) | 20 (26.3) | |
PECAM1 rs12953 (N = 141) | 65 (100) | 76 (100) | |
AA | 19 (29.2) | 27 (35.5) | 0.315 |
AG | 31 (47.7) | 36 (47.4) | |
GG | 15 (23.1) | 13 (17.1) |
Haplotype | rs1466408 | rs13428968 | rs12803 | Restenosis (%) | No Restenosis (%) | p |
---|---|---|---|---|---|---|
1 | T | T | G | 51 | 59 | 0.190 |
2 | T | T | T | 29 | 21 | 0.809 |
3 | T | C | T | 13 | 14 | 0.776 |
4 | A | T | T | 6 | 6 | 0.773 |
Risk Factor. | OR | 95-% CI | p |
---|---|---|---|
Age | 1.04 | 1.00–1.08 | 0.077 |
Male sex | 1.25 | 0.59–2.65 | 0.569 |
Poor infrapopliteal runoff | 5.72 | 1.73–18.95 | 0.004 |
TASC II (B vs. A) | 3.43 | 1.51–7.79 | 0.003 |
TASC II (C vs. A) | 9.83 | 3.34–28.95 | <0.001 |
Complete occlusion | 1.53 | 0.76–3.09 | 0.233 |
Arterial hypertension | 0.21 | 0.07–0.67 | 0.009 |
Lag phase in thrombin generation | 1.20 | 1.05–1.36 | 0.008 |
EV (nm) | 1.01 | 1.00–1.01 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boc, V.; Kozak, M.; Eržen, B.; Božič Mijovski, M.; Boc, A.; Blinc, A. Prognostic Factors for Restenosis of Superficial Femoral Artery after Endovascular Treatment. J. Clin. Med. 2023, 12, 6343. https://doi.org/10.3390/jcm12196343
Boc V, Kozak M, Eržen B, Božič Mijovski M, Boc A, Blinc A. Prognostic Factors for Restenosis of Superficial Femoral Artery after Endovascular Treatment. Journal of Clinical Medicine. 2023; 12(19):6343. https://doi.org/10.3390/jcm12196343
Chicago/Turabian StyleBoc, Vinko, Matija Kozak, Barbara Eržen, Mojca Božič Mijovski, Anja Boc, and Aleš Blinc. 2023. "Prognostic Factors for Restenosis of Superficial Femoral Artery after Endovascular Treatment" Journal of Clinical Medicine 12, no. 19: 6343. https://doi.org/10.3390/jcm12196343